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Abstract Most previous research on unsupervised categori-
zation has used unconstrained tasks in which no instructions
are provided about the underlying category structure or in
which the stimuli are not clustered into categories. Few studies
have investigated constrained tasks in which the goal is to learn
predefined stimulus clusters in the absence of feedback. These
studies have generally reported good performance when the
stimulus clusters could be separated by a one-dimensional rule.
In the present study, we investigated the limits of this ability.
Results suggest that even when two stimulus clusters are as
widely separated, as in previous studies, performance is poor if
within-category variance on the relevant dimension is non-
negligible. In fact, under these conditions, many participants
failed even to identify the single relevant stimulus dimension.
This poor performance is generally incompatible with all
current models of unsupervised category learning.

Keywords Categorization . decision making . perceptual
categorization

The vast majority of category learning theories have focused on
supervised category learning (i.e., the ability to learn categories
with the aid of corrective feedback). Several recent theories,
however, have incorporated mechanisms for unsupervised
category learning (i.e., the ability to learn categories without
the aid of corrective feedback) (e.g., Love, Medin, & Gureckis,

2004; Pothos & Chater, 2002). Most empirical research on
unsupervised categorization has used unconstrained tasks in
which participants are not explicitly informed that there is an
underlying category structure. Furthermore, in most cases,
there is no underlying structure to discover in these experi-
ments (i.e., there are no stimulus clusters). In constrained
tasks, in contrast, the stimuli form separate clusters, partic-
ipants are informed that there is an underlying category
structure, and they are told that their goal is to attempt to learn
the categories in the absence of trial-by-trial feedback.
Unconstrained tasks tend to focus on the question of how
participants prefer to construct categories, whereas constrained
tasks tend to focus on what types of category structures
participants are capable of learning. Thus, these two
approaches are complementary, and a thorough understanding
of the psychological processes involved in both is necessary
in order to refine theories of unsupervised category learning.

In constrained unsupervised category-learning tasks, partic-
ipants have had the most success when attempting to learn
category structures in which the optimal decision strategy
requires selective attention to a single stimulus dimension
(Ashby, Queller, & Berretty, 1999; Ell, Ashby, & Hutchinson,
2011; Zeithamova & Maddox, 2009). In addition, these data
suggest that there may be a bias to use one-dimensional rules
in constrained tasks. With unconstrained tasks, the evidence
for such a one-dimensional bias is far less consistent. Some
studies have reported a one-dimensional bias (e.g., Colreavy
& Lewandowsky, 2008; Medin, Wattenmaker, & Hampson,
1987), whereas others have highlighted numerous methodo-
logical factors that mediate the bias to use one-dimensional
strategies (Ahn & Medin, 1992; Milton, Longmore, & Wills,
2008; Milton & Wills, 2004; Pothos & Chater, 2005; Pothos
& Close, 2008; Regehr & Brooks, 1995). For example,
simply informing participants of the number of categories has
been argued to instill a one-dimensional bias (e.g., Murphy,
2002).
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Studies demonstrating successful unsupervised learning of
one-dimensional categorization rules have generally used
highly separated categories—that is, category structures in
which the within-category variances are low and/or the
between-category distance is high. Consider, for instance, the
Fig. 1 category structures used by Ashby et al. (1999). The
stimuli were lines varying continuously across trials in length
and orientation, and the optimal strategy (i.e., the strategy that
maximized accuracy) was the one-dimensional rule, “Respond
A if the line is short, otherwise respond B” (Fig. 1). Thus, the
participant’s task was to learn that length was relevant (and
that orientation was irrelevant) and to learn a decision criterion
on the length dimension. Participants were successful in
learning the optimal rule regardless of whether they were
trained under supervised or unsupervised conditions.

Note, however, that within-category variance on the
relevant dimension of the Ashby et al. (1999) categories
was so small that many participants may have perceived
this dimension as binary, with one level for Category A and
another for Category B. This feature of the experiment
could have been critical because evidence suggests that
within-category variance strongly influences unsupervised
category learning (Kloos & Sloutsky, 2008). One of the
goals of the present study was to determine whether
variation in within-category variance along the relevant
dimension affects the ability to learn in constrained tasks as
well as the bias to use one-dimensional rules.

Any increase in within-category variance of the Ashby et
al. (1999) categories, in isolation, would also decrease

category separation. Thus, in order to permit a comparison
to Ashby et al. (1999), it was necessary to manipulate
within-category variability while controlling for category
separation. We used two different measures of separation.
One equates the distance between the nearest exemplars from
the contrasting categories (i.e., the between-category dis-
tance). This is the distance condition in Fig. 2. A second
method equates class separation by equating the standardized
distance between the category means using a multivariate
analog of the signal detection measure d′ (Fukunaga, 1990).
This is the class condition in Fig. 2.

Fig. 1 Scatterplot of the stimuli used in theAshby et al. (1999) experiment.
Each point represents a line of a particular length and orientation.
Category A and Category B exemplars are depicted as black plus signs
(“+”) and gray circles (“o), respectively. Perfect performance could be
obtained by attending selectively to line length and learning the optimal
position of a decision criterion that discriminates short and long lines

Fig. 2 Scatterplots of the stimuli used in the present experiments.
Each point represents a line of a particular length and orientation.
Category A and Category B exemplars are depicted as black plus
signs (“+”) and gray circles (“o”), respectively
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A comparison of the distance and class conditions also
provides a test of the importance of within-category
variability. This comparison, however, is confounded by a
difference in the between-category distance. To address this
confound, we also included a condition with the same
between-category distance as in the distance condition and
the same within-category variance as in the class condition.
This is the distance–class condition in Fig. 2.

If within-category variance is critical, accuracy should be
higher in the class and distance–class conditions than in the
distance condition. If category separation is also important,
then one might expect the following ordering by accuracy:
class, distance–class, distance. A qualitative comparison to the
one-dimensional categories of Ashby et al. (1999) will provide
a further test of the importance of within-category variability
as the distance and class conditions increase within-category
variability while controlling for category separation.

Method

Participants and design

Sixty participants were recruited from the University of
California, Santa Barbara and University of Maine commu-
nities and received partial course credit for participation.
Twenty participants were randomly assigned to each of three
experimental conditions: distance, class, and distance–class.
No participant completed more than one experimental
condition. All participants had normal (20/20) or corrected-
to-normal vision. Each participant completed one session of
approximately 45 min duration.

Stimuli and Apparatus

The stimuli in all experiments were lines that varied
continuously along the dimensions of length and orientation.1

The complete set of stimuli used in the three experimental
conditions is shown in Fig. 2. The experiment used a
variation of the randomization technique introduced by
Ashby and Gott (1988) in which each category was defined
as a bivariate uniform distribution. Each category distribution

was specified by the minimum and maximum on each
dimension (see Table 1 for category parameters and class
separation and Appendix A for more detail on the calculation
of class separation).

On each trial, a random sample (x, y) was drawn from the
Category A or B distribution, and these values were used to
construct a line of x pixels in length (ranging from .7 to 7.8
degrees of visual angle) and y degrees of orientation
(counterclockwise from horizontal). A total of 400 stimuli
(200 from each category) were generated. All stimuli were
generated offline, and a linear transformation was applied to
ensure that the sample statistics matched the population
parameters. The experiment was run using the Psychophy-
sics Toolbox (Brainard, 1997; Pelli, 1997) in the MATLAB
computing environment. Each line was presented in white on
a black background and was displayed on a 15-in. CRT with
832×624 pixel resolution at a viewing distance of 58 in. in a
dimly lit room.

Procedure

Each participant was run individually. Participants were told
that lines varying in length and orientation would be presented
one at a time on a monitor and that their task was to learn to
categorize the stimuli into two categories. Following Ashby et
al. (1999), five observation-only blocks (Blocks 1, 3, 5, 7,
and 9) alternated with five response blocks (Blocks 2, 4, 6, 8,
and 10). The same 400 stimuli were presented during the
observation and response blocks with presentation order
randomized. During the observation-only blocks, participants
were instructed to look at 80 sequentially presented stimuli
and to try and learn about the categories. The stimuli in the
observation-only blocks were presented for 1 s with an
interstimulus interval of 0.5 s. The observation-only blocks
were included in an effort to increase the number of stimuli
that the participants were exposed to during an experimental
session. The observation-only blocks did not require a
response and, thus, took less time to complete than the
response blocks (Ashby et al., 1999). During the response
blocks, participants were instructed to select a category for
each stimulus and to press a button labeled “A” or a button
labeled “B” to show which category had been selected. The
participants were told that the category labels were arbitrary,
but were instructed to be consistent with what they called a
member of Category A and what they called a member of
Category B. Given that the category labels were arbitrary, it
was assumed that participants assigned the stimuli to the two
categories in a manner that resulted in the highest accuracy
(percent correct) for each block. Therefore, it was impossible
for participants to achieve accuracy below 50% correct in
any given block. The participants were told that perfect
accuracy was possible, but they were never given any
feedback about their performance. The stimulus display was

1 We focused on categories defined by variation in length for two
reasons. First, Ashby et al. (1999) observed no differences between
length-relevant and orientation-relevant categories. Second, categories
in which orientation is the only relevant dimension pose serious
difficulties when studying unsupervised category learning. Orientation
(unlike length) has anchor points that can influence categorization
decisions (e.g., Zeithamova & Maddox, 2007). More specifically,
people are drawn to highly salient rules that place the criterion on
horizontal, vertical, or 45-degree orientations. This is especially
problematic with unsupervised studies because such initial biases
can dominate performance, making it difficult to determine whether
the participant’s behavior is a result of learning or bias.
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response terminated (with 5-s maximum exposure duration)
in the response blocks and the response-to-stimulus interval
was 0.5 s. The break between blocks was participant paced.

Results

Accuracy-based analyses

Preliminary inspection indicated that the data from all
conditions and response blocks were highly bimodal with
one mode near chance accuracy and one mode near optimal
accuracy (Fig. 3). Given these data, we opted to use a series
of nonparametric analyses. First, an analysis of the change in
accuracy across response blocks (Friedman’s test) indicated
that accuracy did not generally improve with training in any
condition, distance: χ2(4) = .23, p = .99; class: χ2(4) = 6.31,
p = .18; distance–class: χ2(4) = 2.55, p = .64. These data
suggest that participants who responded optimally either
learned the category structures very early in training, or else
guessed the optimal categorization rule at the outset of the
experiment.

Next, we computed the proportion of successful partic-
ipants, with success being defined as above chance
accuracy (i.e., 59%)2 during the majority of response
blocks. These data, plotted in Fig. 4A, suggest an ordering
by condition across the class, distance–class, and distance
conditions. Although the proportion of successful partic-
ipants was higher in the class condition than in the Distance
condition, χ2(1) = 6.67, p = .03, the proportion of
successful participants in the distance–class condition did
not differ significantly from either the class,χ2(1) = 1.6, p = .6,
or distance, χ2(1) = 1.91, p = .5, conditions.3 The distribution

of successful participants by condition was virtually identical
when defining success as above chance accuracy during the
final response block (Fig. 4B).

Fig. 3 Frequency distributions of the accuracy rates during the final
response block for all conditions (bin width = 10%). These data are
representative of the frequency distributions for all response blocks

2 The criterion for chance performance, 59% correct, was estimated
using a binomial distribution (n = 80, p = .5) at α = .05 (one-tailed).
3 A Sidak correction for multiple comparisons was applied here, and
throughout the article.

Table 1 Parameters of the uni-
form distributions used to gen-
erate the category structures for
the three conditions as well as
measures of category separation

See Appendix A for details on the
calculation of class separation

Length (pixels) Orientation (degrees) Class Separation d′

Min Max Min Max

Distance 7.5 5.5

Category A 55 245 0 180

Category B 355 545 0 180

Class 85.2 18.5

Category A 50 129 0 180

Category B 471 550 0 180

Distance–Class 17.2 8.3

Category A 166 245 0 180

Category B 355 434 0 180
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Chance performance was used as the criterion for success
because it is an objective standard against which to judge
performance that would not be influenced by idiosyncrasies of
the particular sample. That being said, chance represents only
a minimal criterion against which to judge performance. Thus,
for descriptive purposes, we also investigated the impact of
varying the accuracy cutoff on the proportion of successful
participants. In Fig. 5, the data corresponding to the two
definitions of success used in Fig. 4 are plotted. Importantly,
the numerical ordering of the three conditions was robust
across the range of accuracy cutoffs. In sum, the numerical
ordering of the three conditions and the superior performance
of the class condition relative to the distance condition
suggest that both within-category variance and between-
category separation influence unsupervised categorization on
constrained tasks.

Model-based analyses

Analysis of the accuracy data does not directly address the
question of what decision strategies were used to perform
the Fig. 2 tasks. For instance, does near chance perfor-
mance reflect guessing or that participants adopted a highly
suboptimal decision strategy (e.g., a strategy based on

orientation)? The following analyses represent a quantita-
tive approach to investigating these questions.

Three different types of models were evaluated, each
based on a different assumption concerning the participant's
strategy. First, the one-dimensional classifiers assume that
the participant attends selectively to one dimension (e.g., if
the line is long, respond B; otherwise respond A). There
were three versions of the one-dimensional classifier: one
assuming that participants used the optimal decision
strategy on length, one assuming that participants used a
one-dimensional classifier with a suboptimal intercept on
length, and one assuming that participants used a one-

Fig. 4 Proportion of successful participants (+/− the standard error of
proportion) by condition using two definitions of success. a A
successful participant is defined as a participant performing greater
than chance during the majority of response blocks. b A successful
participant is defined as a participant performing above chance during
the last response block. Dist distance

Fig. 5 The proportion of successful participants as a function of the
accuracy cut-off used to define a success. a A successful participant is
defined as a participant performing greater than the cut-off during the
majority of response blocks. b A successful participant is defined as a
participant performing above the cut-off during the last response
block. The vertical line in both plots denotes the criterion used to
define success in Fig. 4 (i.e., chance). Note that the large range of
accuracy cut-offs for which the proportion of successful participants
changes very little (i.e., from a cut-off of approximately 60% to a cut-
off of approximately 90%) is consistent with the bimodal nature of the
accuracy distributions described in Fig. 3
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dimensional classifier on orientation. Second, the general
linear classifier assumes that participants integrate the
stimulus information from both dimensions prior to
making a categorization decision. This model predicts
that participants will use a linear decision bound that
can have any slope and intercept. Finally, the random
responder models assume that participants guessed. Each
of these models was fit separately to the data from
every response block for all participants using a
standard maximum likelihood procedure for parameter
estimation (Ashby, 1992b; Wickens, 1982) and the Bayes
information criterion for goodness-of-fit (Schwarz, 1978)
(see Appendix B for a more detailed description of the
models and fitting procedure).

The proportion of participants best fit by each model
type is plotted in Fig. 6. In the distance condition, there
was a strong and consistent bias to use a one-dimensional
rule on the irrelevant dimension, suggesting that the

relatively low accuracy was driven by the use of an
inappropriate rule rather than by guessing. In the class
condition, a similar proportion of participants used one-
dimensional rules on the relevant and irrelevant dimen-
sions. Mirroring the accuracy data, the distribution of best-
fitting models in the distance–class condition was inter-
mediate between the distance and class conditions.
Consistent with this descriptive analysis, analyzing the
proportion of participants best fit by the optimal classifier
across conditions (focusing on block 5 for simplicity)
indicated that although the optimal classifier was more
frequently used in the class condition than in the distance
condition, χ2(1) = 6.21, p = .04, the distance–class
condition did not differ significantly from either the class,
χ2(1) = 2.06, p = .45, or distance, χ2(1) = 1.29, p = .77,
conditions. In sum, the accuracy advantage for participants in
the class condition was driven by more frequent use of the
optimal classifier and, in general, there was a strong and

Fig. 6 The proportion of partic-
ipants in the distance, class, and
distance–class conditions whose
data were best fit by the optimal
classifier (OC), the suboptimal
one-dimensional classifier on
length (UL), the suboptimal
one-dimensional classifier on
orientation (UO), or a model
assuming that participants were
responding randomly (RR). One
block from one participant in the
distance condition and one
block from three participants in
the distance–class condition
were best fit by the linear clas-
sifier. These data have been
excluded from the figure for
brevity
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consistent bias to use one-dimensional rules across all three
conditions.

General discussion

The ability to categorize in the absence of feedback has
been an area of ongoing interest in the categorization
literature, with the majority of work focusing on categori-
zation preferences in unconstrained tasks in which often
there is no underlying category structure to discover.
Clearly, the question of categorization preference is
important, but knowledge of the limitations of unsupervised
category learning is also critical for a thorough understand-
ing of real-world cognition. Constrained tasks, such as
those investigated in the present study, contribute to this
issue by investigating the limits on unsupervised category
learning that result from manipulating category separation
(i.e., within-category variance and between-category dis-
tance). Our results suggest that even when the categories
are as widely separated as in Ashby et al. (1999),
performance is poor if within-category variance on the
relevant dimension is nonnegligible. In fact, under these
conditions, many participants failed even to identify the
single relevant stimulus dimension.

Increasing within-category variance and/or decreasing
between-category distance did not reduce the tendency of
participants to use one-dimensional rules, but did greatly
reduce their ability to find the one relevant stimulus
dimension. Participants in the condition with high within-
category variance and low between-category distance (i.e.,
the distance condition) were less likely to use the optimal
decision strategy than participants in the condition with low
within-category variance and high between-category dis-
tance (i.e., the class condition). Somewhat surprisingly,
however, one-dimensional strategies on the irrelevant
stimulus dimension were prevalent in all conditions, and
their use did not differ in frequency across conditions, χ2(2) =
5.02, p = .08.

An open, but critically important, question is whether
our participants learned anything in this experiment.
Evidence favoring learning can be found in the large
number of participants who responded optimally, but
evidence against learning comes from the statistical
analyses that failed to find any evidence that accuracy
improved across blocks in any experimental condition. If
there was no learning, then why did so many participants
respond optimally? One possibility is that participants have
a strong preference to use one-dimensional rules, and that
each stimulus dimension was equally salient. This hypoth-
esis provides a good account of our results. First, it
correctly predicts no improvement in accuracy with training
(because there was no learning). Second, it predicts that, by

chance, roughly half of the participants will select the
optimal rule and half will select a rule on the irrelevant
dimension. This pattern roughly matches the results in each
condition. On the other hand, note that this hypothesis
predicts no difference across conditions. Thus, the slightly
better performance we observed in the class condition is
evidence that at least in this condition, some category
learning occurred.

Recall that in the Ashby et al. (1999) experiments, the
distance between categories was the same as in our distance
condition, and the class separation was the same as in our
class condition. Yet, virtually all participants in the Ashby
et al. (1999) one-dimensional conditions were responding
with near perfect accuracy by the end of their unsupervised
training, and the responses of all of those participants were
best fit by the optimal one-dimensional classifier during
their final response block. In contrast, many participants in
our distance and class conditions were responding with near
chance accuracy at the end of their training, and roughly
half of these participants were basing their categorization
responses on the value of the stimulus on the irrelevant
dimension. Our data therefore strongly suggest that the
excellent performance of the Ashby et al. (1999) partic-
ipants was not due only to the distance between the
categories or to their class separation.

Why were the participants in the one-dimensional
conditions of Ashby et al. (1999) so much better than our
participants? One obvious hypothesis is that the within-
category variance on the relevant dimension was much
smaller for the Ashby et al. (1999) categories (i.e., 75) than
for any of our conditions (e.g., 520 in our class condition).
In fact, as was mentioned earlier, there was so little variance
along the relevant dimension in the Ashby et al. (1999)
categories that participants in those (one-dimensional)
conditions may have noticed only two discrete values and
associated one of them with each category. If so, then their
optimal behavior might not be unexpected. This hypothesis
seems to predict that successful unsupervised category
learning is likely quite rare: In effect, it is limited to
categories that can be separated on a single stimulus
dimension and for which all category exemplars share (or
nearly share) a common value on that dimension. Note,
however, that the within-category variance hypothesis does
not provide a complete account of the data since there was
no significant difference between the proportion of partic-
ipants performing above chance in the class and distance–
class conditions.

A second, less obvious, possibility is that the variance
along the irrelevant dimension is also important. More
specifically, the ratio of the within-category variance along
the irrelevant dimension to the variance along the relevant
dimension may be an important factor. The idea is that
learning should be easier the greater this ratio, because
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large ratios may draw more attention to the relevant
dimension. Indeed, similar category complexity measures
have been shown to be predictive of supervised (Alfonso-
Reese, Ashby, & Brainard, 2002) and unsupervised (e.g.,
Kloos & Sloutsky, 2008) category-learning performance.
This variance ratio correctly predicts the ordering by task
difficulty across the Ashby et al. (125), class (5.2), and
distance (0.9) category structures. Note, though, that the
variance ratio is not influenced by between-category
distance, and it therefore incorrectly predicts no difference
between the distance and distance–class conditions. In this
sense, class separation (or other d′ like statistics) provides a
better account of our data because it correctly predicts the
difficulty ordering of all three conditions. The problem, of
course, is that class separation incorrectly predicts no
difficulty difference between our class condition and the
one-dimensional conditions of Ashby et al. (1999). Thus,
none of the common metrics discussed presently provide a
complete explanation of the performance differences across
the distance, class, and distance–class conditions and the
one-dimensional categories of Ashby et al. (1999).

Implications for models of category learning

The finding that unsupervised categorization performance is
improved if within-category variance is reduced and/or if
between-category distance is increased is consistent with
many current computational models of unsupervised catego-
rization (e.g., Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Fried & Holyoak, 1984; Love et al., 2004). Even so,
this fact alone does not guarantee that a model will be able to
predict our results. For example, Pothos and Chater’s (2002)
simplicity model predicts that the larger the within-category
similarity and the smaller the between-category similarity,
the more intuitive the categories (Pothos & Bailey, 2009).
Assuming that higher intuitiveness implies higher accuracy,
the simplicity model correctly predicts that the categories
from the class condition are more intuitive than the
categories from the distance condition, but it also incorrectly
predicts that the categories from the class condition are more
intuitive than the Ashby et al. (1999) categories.4 It is likely,

however, that more recent extensions of the simplicity model
will be able to account for these data upon further
development (e.g., Pothos & Close, 2008).

Even though some unsupervised models may be able to
account for the ordering by task difficulty that we observed
across our three conditions, they would all have difficulty
accounting for the high prevalence of one-dimensional
strategies on the irrelevant dimension. At first glance, the
explicit (i.e., rule-based) subsystem of the COVIS model of
category learning (Ashby et al., 1998) might be in the best
position to predict these data. COVIS was designed as a
model of supervised category learning, but because it assumes
that there is a bias to use one-dimensional rules (a bias that
cannot be overcome in the absence of feedback), it could have
some success predicting these data. In COVIS, however, the
stimulus dimension that is selected is determined by the
relative salience. If length and orientation were equally salient,
COVIS would predict that the one-dimensional rules on
length and orientation would be used approximately equiva-
lently. Although such a prediction is generally consistent with
the data from the class and distance–class conditions, it is
inconsistent with the distance condition (and the data of
Ashby et al., 1999). Similarly, relatively greater salience on
either length or orientation would result in a misprediction for
some subset of the available data. As is the case with many
models of category learning (e.g., Erickson & Kruschke,
1998; Kruschke, 1992), COVIS assumes that salience can
change as a result of learning. Learning-related changes in
salience would improve the ability of COVIS to account for
these data, but this learning mechanism is driven by external
feedback and therefore would not be predicted to contribute
on unsupervised categorization tasks.

Summary

In sum, our results suggest that people are surprisingly poor at
unsupervised category learning on constrained tasks. Roughly
half of our participants performed at chance, even on widely
separated categories that differed on only one relevant
dimension. These results present a challenge to extant models
of unsupervised category learning. We argue that these data
suggest a need for a more thorough investigation of the
properties of category structures that bias selective attention
processes toward different stimulus dimensions. More specif-
ically, models of unsupervised category learning should include
a more detailed mechanism by which category separation can
influence predictions regarding how the task is learned.
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Appendix A

Class separation

Class separation is a multivariate analog of the signal
detection measure d′ from the statistical pattern recognition
literature. Class separation is based on a measure of the
variability between category means, denoted by Sb, and a
measure of the variability within each category, denoted by
Sw (Fukunaga, 1990). The between category variability
matrix Sb is defined as

Sb ¼ 1

2
m
A
� m

� �
m
A
� m

� �T
� �

þ 1

2
m
B
� m

� �
m
B
� m

� �T
� �

; and m ¼ 1

2
m
A
� m

B

� �
;

where m
A
and m

B
are the means of Categories A and B,

respectively. When the two categories have the same
variance–covariance matrix (as in the present experi-
ments), the within-category variability matrix Sw equals
the common variance–covariance matrix of each category
(i.e., Σ). Given these definitions, class separation is
defined as

J ¼ trace S�1
w Sb

� �
;

where the trace of a matrix equals the sum of all elements
on the main diagonal.

Appendix B

Model-based analyses

To get a more detailed description of how participants
categorized the stimuli, a number of different decision-
bound models (Ashby, 1992a; Maddox & Ashby, 1993)
were fit separately to the data for each participant from
every block. Decision-bound models are derived from
general recognition theory (Ashby & Townsend, 1986), a
multivariate generalization of signal detection theory
(Green & Swets, 1966). It is assumed that, on each trial,
the percept can be represented as a point in a multidimen-

sional psychological space and that each participant con-
structs a decision bound to partition the perceptual space
into response regions. The participant determines which
region the percept is in and then makes the corresponding
response. Although this decision strategy is deterministic,
decision-bound models predict probabilistic responding
because of trial-by-trial perceptual and criterial noise
(Ashby & Lee, 1993).

The appendix briefly describes the decision bound
models. For more details, see Ashby (1992a) or Maddox
and Ashby (1993).

One-dimensional classifier

This model assumes that the stimulus space is partitioned
into two regions by setting a criterion on one of the
stimulus dimensions. Three versions of the one-
dimensional classifier were fit to these data: One assumed
that participants attended selectively to length (UL), and
another assumed that participants attended selectively to
orientation. The one-dimensional classifier has two free
parameters: a decision criterion on the relevant perceptual
dimension and the variance of internal (perceptual and
criterial) noise (i.e., σ2). A third version is a special case of
the UL, the optimal one-dimensional classifier, which
assumes that participants use the one-dimensional decision
bound that maximizes accuracy (Fig. 2). This special case
has one free parameter (σ2).

General linear classifier

This model assumes that a linear decision bound partitions
the stimulus space into two regions and integrates the
perceived values on the stimulus dimensions prior to
producing a categorization response. The general linear
classifier has three parameters: slope and intercept of the
linear bound, and σ2.

Random responder models

Equal response frequency This model assumes that partic-
ipants randomly assign stimuli to the two response
frequencies in a manner that preserves the category base
rates (i.e., 50% of the stimuli in each category). This model
has no free parameters.

Biased response frequency This model assumes that
participants randomly assign stimuli to the two response
frequencies in a manner that matches the participant’s
categorization response frequencies (i.e., the percentage
of stimuli in each category is computed from the
observed response frequencies). This model has no free
parameters.
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Model fitting

The model parameters were estimated using maximum
likelihood, which entails finding the parameters that
maximize the likelihood of the data (or, equivalently,
minimizing the negative natural log of the likelihood)
(Ashby, 1992b; Wickens, 1982). The goodness-of-fit
statistic was

BIC ¼ r lnN � 2 ln L;

where N is the sample size, r is the number of free
parameters, and L is the likelihood of the model given the
data (Schwarz, 1978). The BIC statistic penalizes a model
for poor fit and for extra free parameters. To find the best
model among a set of competitors, one simply computes a
BIC value for each model and then chooses the model with
the smallest BIC.
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