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Abstract

& Many studies suggest that the sustained activation under-
lying working memory (WM) maintenance is mediated by
a distributed network that includes the prefrontal cortex
and other structures (e.g., posterior parietal cortex, thalamus,
globus pallidus, and the caudate nucleus). A computational
model of WM, called FROST (short for FROntal–Striatal–
Thalamic), is proposed in which the representation of items
and spatial positions is encoded in the lateral prefrontal cor-

tex. During delay intervals, activation in these prefrontal cells
is sustained via parallel, prefrontal cortical–thalamic loops.
Activation reverberates in these loops because prefrontal
cortical excitation of the head of the caudate nucleus leads
to disinhibition of the thalamus (via the globus pallidus).
FROST successfully accounts for a wide variety of WM data,
including single-cell recording data and human behavioral
data. &

INTRODUCTION

Working memory (WM) is the ability to maintain and
manipulate limited amounts of information during brief
periods of cognitive activity. It is heavily used in a variety
of cognitive tasks, and for this reason, it is often associ-
ated with planning and problem solving. An influential
account was proposed by Baddeley (1986), who argued
that WM is a multicomponent system composed of
a central executive attentional system and subsidiary
visuospatial and phonological storage systems (the vi-
suospatial sketch pad and phonological loop).

In addition to countless cognitive studies of WM (for
a recent review, see Cowan, 2000), many studies have
also investigated the neural basis of WM. These in-
clude single-cell recordings (e.g., Fuster & Alexander,
1971), neuroimaging studies (e.g., Carpenter, Just, &
Reichle, 2000), and neurocomputational modeling (e.g.,
Durstewitz, Seamans, & Sejnowski, 2000a). This explo-
sion of new knowledge about the neural basis of WM
has inspired the development of many neurobiologi-
cally based computational models of this vital cognitive
function.

This article proposes and tests a new computational
model of WM constructed from components that corre-
spond to groups of similar cells in specific brain regions
(e.g., cortical columns or hypercolumns). One of the
novel contributions of the model is that it is simple and
flexible enough to account for a wide variety of data.

This article focuses on testing the model against single-
unit recording data and classic behavioral data, but the
same model can also be used to account for neuro-
imaging data (Ashby & Valentin, in press). Other models
of WM have simulated single-unit recording and neuro-
imaging data (Deco, Rolls, & Horwitz, 2004; Tagamets &
Horwitz, 2000), but none of these have been tested
against human behavioral data.

Another important strength of the present model is its
focus on the role of a frontal–striatal–thalamic network
in WM maintenance. This is among the first models to
implement the hypothesis that all brain areas within this
network are involved in the maintenance of information.
Almost all other anatomically similar neurocomputation-
al models assign the maintenance function to the lateral
prefrontal cortex (pFC) and propose that subcortical
structures are involved only in the updating of informa-
tion (e.g., Frank, Loughry, & O’Reilly, 2001).

The present model does not attempt to explain how
information in WM is manipulated; it only aims to clarify
the most basic mechanism of WM—maintenance. To-
ward this end, at the single-cell level, we focus on the
sustained changes in single-cell firing rates that are
commonly observed in delayed-response tasks. This is
also rather unique because many neurocomputational
models focus on the on-line manipulation of informa-
tion involved in more complicated extensions of the
delayed-response task (Frank et al., 2001; Monchi &
Taylor, 1999; O’Reilly, Braver, & Cohen, 1999; Beiser &
Houk, 1998).

Despite the limited scope of the resulting model,
there is still a huge amount of behavioral and neuro-
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physiological data that can be used to test its predic-
tions. Once the model is validated against these data,
it will be possible to generalize it to the many other
more complex manipulation functions and WM-related
tasks. By focusing on simple maintenance phenomena,
however, we believe the present WM maintenance
model is the most comprehensive interpretation of the
neurophysiological evidence from single-unit recording,
neuroimaging, lesion, and patient studies.

We begin by reviewing the neural basis of WM and
then introduce our basic model of WM maintenance and
test it against single-cell recording data. Next, we con-
sider the ability of the model to account for the most
classic of all WM phenomena—namely, its limited ca-
pacity, which was immortalized by Miller’s (1956) fa-
mous ‘‘magical number seven, plus or minus two.’’ We
also consider the ability of the model to account for the
effects of attention on WM span, as well as individual dif-
ferences. We close with a discussion of the relationship of
the model we propose to other neurobiologically plausi-
ble models of WM and with some general conclusions.

Neural Circuits of Working Memory

There is overwhelming evidence linking WM to the pFC
( Jonides, Smith, et al., 1993; Fuster, 1989; Goldman-
Rakic, 1987). Even so, the question remains of how the
pFC is able to maintain a sensory representation over
an extended period. One popular proposal has been
that delay-related activity is maintained in the lateral
pFC via recurrent, excitatory, cortico-cortical connections
within the pFC (Durstewitz, Seamans, & Sejnowski,
2000b). However, many well-established results chal-

lenge the view that WM is mediated entirely within the
pFC. For example, a number of similar studies have been
reported in which monkeys performed some sort of spa-
tial delayed-response task while single-cell recordings
were made in one of a variety of different brain regions.
In a typical application, a monkey watches through a
window while an experimenter hides a food reward in a
covered location. The window is covered for some sec-
onds and then opened, at which time the monkey is
free to retrieve the reward. Using a paradigm such as
this, a number of studies have found cells that show
sustained activity during the delay period not only in
the pFC (delayed response: Fuster, 1973), but also in the
posterior parietal cortex (PPC; delayed match-to-sample:
Constantinidis & Steinmetz, 1996), the medial dorsal
nucleus of the thalamus (MDN; delayed response: Fuster
& Alexander, 1973), the caudate nucleus (CD; delayed
saccade: Schultz & Romo, 1992; Hikosaka, Sakamoto, &
Sadanari, 1989), and the globus pallidus (GP; memory-
guided sequential pointing: Mushiake & Strick, 1995). To
anticipate, we propose that the sustained activation in
these structures all contribute to WM maintenance.

Figure 1 shows typical examples of the sustained
activity that has been found in each of these areas.
The first classic recordings from the pFC provided an
influential clue that the pFC helps mediate WM (e.g.,
Fuster & Alexander, 1971). In subsequent years, delay-
related activity was found in many other brain areas.
Figure 1 shows that a number of different profiles have
been found, but in each case the cells in question
change their firing rate during the delay period. In most
cases, the cells in Figure 1 show an increased activation,
relative to baseline, during the entire delay period. The

Figure 1. Single-cell recording

data collected from monkeys

in a variety of delayed-
response tasks.
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exceptions are the cells in the GP, whose firing rates
decrease during the delay period. Note that there are
also regional differences in which event triggers the
initial change in firing rate. Cells in the PPC and the
MDN, and some cells in the pFC increase their firing rate
at the moment the target is first presented. In contrast,
cells in the CD and the GP, and other pFC cells do not
respond to the initial presentation of the target, but
instead, their firing rate changes at the beginning of the
delay period.

Finding cells in the thalamus and basal ganglia with
sustained delay-related activity that is correlated with the
activity of ‘‘working memory units’’ in pFC challenges
the view that WM maintenance function is largely medi-
ated within the cortex, but it is hardly definitive. Even so,
a variety of other evidence supports the hypothesis that
the thalamus and basal ganglia play critical roles in a
widely distributed WM circuit. First, lesions to the MDN
have been reported to impair WM in both animals and
humans (Van der Werf, Witter, Uylings, & Jolles, 2000).
Second, there are several reports that patients with basal
ganglia lesions have WM deficits (Janahashi et al., 2002).
Third, a number of studies have reported WM deficits in
early Parkinson’s disease patients, especially in spatial
WM tasks (Lewis et al., 2002; Postle, Jonides, Smith,
Corkin, & Growdon, 1997). Finally, increased thalamic
and basal ganglia activation has been reported in some
neuroimaging studies (Callicott et al., 1999; Jonides,
Schumacher, et al., 1997). Any one of these studies, by
itself, is hardly definitive, but together they provide a
challenge to the view that WM is exclusively a cortical
phenomenon.

An alternative hypothesis, pursued in this article, is
that the pFC is part of a distributed reverberating WM
circuit that includes both cortical and subcortical struc-
tures (Goldman-Rakic, 1995). Alexander, DeLong, and
Strick (1986) identified a number of parallel loops that
link the cortex to the basal ganglia and thalamus. In each
case, a group of cells in the cortex projects directly to
the neostriatum (comprising the putamen and the CD),
which then projects to the (internal segment of the) GP,
which projects to the thalamus, which finally projects
back to the cortex. Since this seminal discovery, such
cortical–striatal–pallidal–thalamic loops have been the
focus of much theorizing. For example, it has been
proposed that they play a major role in category learn-
ing (Ashby, Alfonso-Reese, Turken, & Waldron, 1998),
creative problem solving (Ashby, Isen, & Turken, 1999),
motor performance (Strick, Dum, & Pickard, 1995),
selective attention (Posner & Petersen, 1990), skill learn-
ing (Gabrieli, 1995), and the learning of serial order
(Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Beiser &
Houk, 1998).

The lateral pFC is also part of such a loop, with
efferent projections to the CD and afferent projections
originating in the MDN. Thus, every subcortical region
illustrated in Figure 1 lies on the same cortical–striatal–
pallidal–thalamic loop.

A Neurocomputational Model of Working
Memory Maintenance

Figure 2 sketches a neural circuit that is compatible with
the single-cell recording data shown in Figure 1. The

Figure 2. A model of spatial

WM.
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spatial location of the food reward is encoded in some
small set of cells in the PPC. When the animal can see
the food, these cells are driven primarily by bottom-up
input from lower levels of the visual cortex. These units
in the PPC project into WM units in the lateral pFC. The
goal of the WM circuit is to keep the pFC cells active
during the delay period when the animal can no longer
see the reward.

This goal is attained with the help of two excitatory,
reverberating loops—one between the PPC and the
lateral pFC, and one between the pFC and the MDN.
More specifically, the WM cells in the lateral pFC send an
excitatory signal to the PPC, which sends a recurrent
excitatory signal back to the same pFC neurons. At the
same time, a similar cortical–thalamic loop helps to
sustain activity in the pFC WM cells.

An inhibitory input to the MDN from the GP disrupts
processing in this loop. Spontaneous activity in the
GABAergic pallidal cells is high (Wilson, 1990), so with-
out impeding the action of the GP, the GP will prevent
the thalamus from closing the cortical–thalamic loop,
and the information will quickly decay from WM. The
solution is for the CD to inhibit the GP (because the CD
cells are GABAergic), thereby preventing the GP from
disrupting the reverberating cortical–thalamic WM loop.
Cells in the CD have a low spontaneous firing rate and
are characterized by bursts of activity when stimulated
by the cortex (Bennett & Wilson, 2000). A direct excit-
atory projection from the pFC causes the CD cells to
fire, which inhibit the GP, and ultimately, the cortical–
thalamic loop stays active.

The single-cell recording data shown in Figure 1
indicate that the firing rate in the CD increases and
the firing rate in the GP decreases only after the visual
stimulus is withdrawn. Thus, we propose that the pFC
input driving the CD does not originate from the pFC
cells that are activated by sensory input and maintain the
representation of the stimulus, but rather from pFC cells
that become active only when the stimulus disappears
with the start of the delay period. It is exactly at this
point that attentional demands also increase, and be-
cause we hypothesize that the Figure 2 circuit will be
important in almost all executive tasks, we interpret this
delay-activated pFC unit as providing an attentional
signal. As Figure 1 shows, several single-unit recording
studies have reported pFC cells whose firing increases at
the beginning of the delay rather than during stimulus
presentation (Williams & Goldman-Rakic, 1995; Fuster,
1973; Fuster & Alexander, 1971).

Clearly, the Figure 2 model oversimplifies the struc-
ture of the cortex. A more realistic model of the pFC
is illustrated in Figure 3, which shows the well-known
six cortical layers. The best evidence indicates that the
pFC–PPC loop shown in Figure 2 projects in and out of
Layers 2 and 3, the projection to the CD is from Layer 5,
the MDN projection is from Layer 6, and the MDN
projects into Layer 4 (e.g., Heimer, 1995). However,

many excitatory interneurons connect these layers. For
our purposes, the most important of these are the cells
that project from Layer 4 to Layers 2 and 3, and the
series of cells that project from Layers 2 and 3 to Layer 6
via Layer 5 (Heimer, 1995). Note that the interneurons
that connect the various layers close the proposed
cortical–thalamic reverberating circuit. They also pro-
vide a mechanism via which cortical input from struc-
tures regulating executive attention could drive the
pFC input to the CD.

The model described in Figures 2 and 3 assumes WM
is mediated by parallel, frontal cortical–striatal–thalamic
loops. As a result, we refer to it as the FROST (FROntal–
Striatal–Thalamic) model of WM. FROST is at least qual-
itatively consistent with the single-cell recording data
shown in Figure 1 as it assumes that WM is mediated
by a widely distributed network. Figure 3 illustrates
another important prediction of FROST. Specifically,
FROST predicts that multi-unit recordings in the lateral
pFC during a WM task should show reverberating (or
correlated) activity among units in different pFC layers.
As mentioned above, there have been many proposals
that delay-related activity is maintained in the lateral
pFC via recurrent, excitatory, cortico-cortical connec-
tions solely within the pFC (e.g., Tagamets & Horwitz,
2000). FROST therefore offers a possible resolution to
the debate between proponents of this position and
those who argue for more extended, macro-network
models of WM. In FROST, a macro-circuit that includes
the PPC, the MDN, and the basal ganglia drives a micro-
circuit within the lateral pFC.

Of course, it is one thing to claim that FROST is
qualitatively consistent with observed single-cell record-
ing data and quite another to show that it can account
quantitatively for such data. To derive quantitative
predictions from FROST, we developed a computational
model that is biophysically complex enough to be
consistent with the neural network shown in Figure 2,
while still able to account for human behavior.

Figure 3. The six layers of the lateral pFC and some excitatory

interneurons.
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The computational version of FROST assumes that
WM is mediated by the functional interconnections
between the brain regions shown in Figure 2, so these
interconnections are captured in the mathematical equa-
tions that model the network. In addition, FROST
models two key biophysical properties that are shared
by all neurons: (1) saturation—every neuron has a maxi-
mum firing rate, and (2) decay—if all inputs to a neuron
cease then the activation in that cell will decay to
some baseline firing level. The Methods section devel-
ops a set of differential equations that accomplishes
these goals—that is, a different equation describes acti-
vation in each of the Figure 2 brain regions, these equa-
tions model the functional interconnections shown in
Figure 2, and the equations also model the biophysical
properties of saturation and decay.1 Each of these equa-
tions models a functional unit that corresponds to a
group of similar cells in a specific brain region (e.g.,
cortical columns or hypercolumns, caudate domains).
The principle advantage of this approach, and one of
the truly unique contributions of the FROST model of
WM, is its extreme flexibility with respect to the types
of data that it can be tested against. For example, in
addition to accounting simultaneously for single-cell
recording data and human behavioral data (some of
these applications are described below), we have also
had some success in fitting FROST to functional neuro-
imaging data (i.e., to the fMRI BOLD signal; Ashby &
Valentin, in press). To our knowledge, FROST is the only
current WM model that can be tested against such
diverse types of data.

RESULTS

Simulation of Single-Cell Recording Data

The basic FROST model (see Equations 1–6 in the Meth-
ods) describes continuous changes (over time) in acti-
vation in each brain region shown in Figure 2. These
can be converted into spike trains using a standard
integrate-and-fire model.2 With this addition, we might
ask whether the units in the model behave in a qualita-
tively similar fashion as real neurons. To answer this
question, we compared the behavior of the FROST units
to the monkey single-cell recording data shown in
Figure 1. Given the significant intercell variability, our
goal was not to provide a precise quantitative fit to these
data. Instead, our goal was simply to ask whether the
units in FROST show delay-related response profiles that
are similar to those seen in real cells.

With this goal in mind, we crudely searched through
different numerical values of the unknown constants
in Equations 1–6 for values that produced reasonable
behavior.3 As is clear from the Methods section, most of
these parameters are measures of synaptic strength.
Results are shown in Figure 4. Note that FROST suc-
cessfully displays sustained activity in the PPC, the pFC,

the MDN, and the CD, and it also displays a sustained
depression in the GP. To our knowledge, FROST is the
only existing model able to account for the CD and GP
data shown in Figure 4 (e.g., most other models with
subcortical components predict phasic changes in CD
and GP activation). Note also that FROST successfully
models the two different types of pFC cells shown in
Figure 1. Because we expect learning (e.g., changes in
synaptic strength) to be minimally important in the
kinds of WM tasks considered in this article, all other
applications of FROST reported in this article used the
same numerical constants that produced the simulated
single-cell data shown in Figure 4. These values are given
in Table 1.

Model Fits to Behavioral Data: The Magical
Number 4, 5, 6, or 7

As mentioned above, a major advantage of FROST,
compared to many other computational models of
WM, is that it can be tested against a wide variety of
data types. Figure 4 shows that it can account for single-
cell recording data. Our next step was to examine its
ability to account for human behavioral data. As current-
ly specified, FROST makes no behavioral predictions.
Instead, it only predicts neural activations in specific
brain regions in certain WM tasks. However, the model
could be used to generate behavioral predictions by
making assumptions about how activation in a certain
region (e.g., pFC) could lead to a behavioral response.
This is the approach we take in the remainder of this
article.

To this point, FROST has been developed primarily in
the context of spatial WM. However, in addition to the
PPC, all other sensory association areas also project to
the pFC (Heimer, 1995), so there is no reason that other
types of WM could not operate in much the same way.
For example, Figure 5 shows how FROST might work in
a more generic WM task (e.g., digit span). Presentation
of a stimulus will cause bottom-up activation of some
sensory association area that encodes a high-level rep-
resentation of the stimulus. This region, in turn, will be
reciprocally connected to a WM unit in the pFC, and
from there the circuitry is essentially identical to the
version of FROST shown in Figure 2. It is important to
note, however, that the specific pFC WM cells activated
in a spatial delayed-response task and in say, a digit span
task will be different. This is because there are separate
topographic pFC representations of activity in the PPC
and the auditory cortex. Posterior cortical units of the
type shown in Figure 5 could be interpreted as encoding
the long-term memory of the object or event reverber-
ating in WM. Many theorists have argued that WM
follows many of the same rules as long-term memory
(e.g., Nairne, 1991). FROST is consistent with many of
these arguments because it postulates a mechanism via
which long-term memories are loaded into WM.
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Using this more general version of FROST allows us to
explore many other phenomena. Perhaps the most
widely known and extensively replicated phenomenon
of WM is its extremely limited storage capacity. This
feature was made famous by Miller’s (1956) claim that
the limit is ‘‘seven, plus or minus two.’’ Although a fixed
limit is widely accepted, debate continues as to whether
the limit is as high as seven, or as low as four (Cowan,

2000). Figure 6 summarizes data from three very differ-
ent WM experiments—classic memory span (Guilford &
Dallenbach, 1925), span of apprehension or object
enumeration (Mandler & Shebo, 1982), and absolute
identification of pure tones (Pollack, 1952).

In a classic memory span task, in which a participant is
read a list of unrelated items and then immediately
asked to recall that list, a natural application of FROST

Figure 4. Single-cell

recording data collected from

monkeys in a variety of

delayed-response tasks (left
column) and single-cell

recording data simulated from

FROST.
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assumes that each successive item activates a unique
unit in some posterior sensory association area (assum-
ing all items are different), and that each of these units
projects to a separate pFC WM unit. FROST sets no strict
limit on the number of pFC WM units that can be active
simultaneously. However, activation in these units will
decay during the time when the observer is retrieving
other items from WM. Thus, FROST predicts an upper
limit on WM span because of decay to later items while
the observer is reporting the earlier items. In addition,
lateral inhibition between WM units will increase with
memory span. Other models have attributed the magic
number to such decay and interference phenomena
rather than to a fixed limit on the number of storage
slots per se (e.g., Baddeley, 1992).

To fit FROST to these data, we made the following
extra assumptions. First, we assumed a separate WM
loop for each item in the study list. Second, we assumed
that study time was long enough to ensure perfect
encoding. We also assumed that retrieval proceeded in
a serial fashion at the rate of two items per second.
Finally, we assumed that an item is correctly retrieved if
the activation in the pFC is greater than some threshold

at the time of the retrieval (see Equation 7 in the
Methods section). For the basic FROST circuit, we used
the same parameter estimates that were estimated in the
Figure 4 simulations of the single-cell recording data.
The resulting model fits are also shown in Figure 6. As
can be seen, FROST provides an excellent account of
these behavioral data, accounting for 99.7% of the
variance in the mean memory span data.

Many other variations on this same experimental task
have been reported that provide additional challenges
for FROST. We briefly consider just one of these. There
is a large literature showing that individuals differ subs-
tantially in their WM span (e.g., Miyake, 2001). One
such study, which was reported by Cowan, Nugent,
Elliott, Ponomarev, and Saults (1999), is summarized in
Figure 7. In a pretest, the memory span of each partic-
ipant was estimated by determining the largest number
of items they could recall without error. This resulted in
four groups, with spans that ranged from six to nine.
The performance of each group in a subsequent test
(with spoken digits) is shown in the top of Figure 7 (the
‘‘attend’’ data). In a second condition, these same
participants performed either a picture-naming or
rhyme-matching task at the same time that a sequence
of digit lists was spoken. Participants were instructed
to ignore the digits, although every once in awhile,
they were asked to recall these unattended lists.
These ‘‘ignore’’ data are shown in the bottom half of
Figure 7.

To apply FROST to these data, it is natural to assume
that the primary difference between the attend and
ignore conditions will be in the strength of the atten-
tional signal (determined by the parameter � from
Equation 6 in the Methods section). Modeling individual
differences, however, is not so straightforward. There
are a number of possibilities. High-span individuals
might have less noise, an increased gain, slower decay,
or less lateral inhibition. In FROST, any of these would
increase WM span. Of course, it is quite likely that there
are multiple causes of individual differences in WM span.
Certainly, a complete model of such differences is
beyond the scope of this article.

One clue for how to model individual differences
comes from experiments in which participants must
later recall information that was previously irrelevant.
For example, in one popular procedure, participants
memorize and are tested on a list of items, and then
later, on a second list. As might be expected, high-span
individuals perform better than low-span individuals on
both of these tests. Following the second test, however,
participants are then retested on the first list. Somewhat
surprisingly, low-span individuals outperform high spans
on this retest (Engle, 2001). One popular hypothesis is
that to perform well on the second list, participants
must inhibit the first list, and that this type of inhibition
is easier for high-span individuals. Inhibiting the first list
helps high spans memorize the second list, but it hurts

Table 1. Parameter Estimates Used to Simulate Single-cell
Recording Data Shown in Figure 4

Equation Parameter Value

1 aP 0.4

bP 0.001726

gP 0.01398

2 aF 0.0055

bF 0.0030

dF 0.0025

3 aT 6.2421

bT 22.161

gT 60.087

4 aG 2.2414

bG 31.445

GB 0.5

5 aC 1.882

bC 6.2889

gC 99.914

6 aA 0.0015

bA 0.0015

gA 0.0050

Integrate-and-fire model s2 0.8

V0 1

1734 Journal of Cognitive Neuroscience Volume 17, Number 11



their performance on the first list retest (Conway &
Engle, 1994). A wide variety of evidence now supports
this inhibition hypothesis. The Cowan et al. (1999)
Figure 7 data are from a similar paradigm—during a
picture-naming or rhyme-matching task, a list of digits
was unexpectedly cued for recall. The inhibition hypoth-
esis predicts that high spans should be better able to
ignore the digits while performing the primary task (i.e.,
picture-naming or rhyme-matching), which should im-

pair their recall of the digits. The neural mechanisms
mediating this hypothesized inhibition have not been
articulated. In FROST, a natural way to instantiate the
inhibition hypothesis is to assume that high-span indi-
viduals have increased attentional control.

Because of massive cortical–striatal convergence, the
resolution of medium spiny cells in the CD is much
poorer than in the cortical cells from which they receive
input (Wilson, 1995). For this reason, a single attentional
signal might suffice when memorizing a list of similar
items. However, if the items are dissimilar, then they will
be encoded by spatially separated WM units, which will
be innervated by separate thalamic units, and therefore,
will require separate attentional signals. In the Cowan
et al. (1999) experiment in which high-span individuals
generally recalled less of the ignored material, very
different items were used for the primary task (pictures)
and the ignored list (spoken digits). Thus, in such
paradigms, the two lists would each have their own
attentional signal. Now assume that high-span individu-
als have improved attentional control. During the attend
conditions, the magnitude of the attentional signal
would be higher for the high-span than for the low-span
groups, leading to better high-span performance. How-
ever, the high spans would also have better control of
the attentional signal for the ignore items than the low
spans. Thus, if participants were rewarded for ignoring
the ignore items, then this model of individual differ-
ences would predict that the high spans would have
a weaker attentional signal for the ignore items than
the low spans, thereby paradoxically guaranteeing that
the low-span individuals would have better memory

Figure 5. A general model of

WM.

Figure 6. The proportion of correct responses as a function of

memory load in three different working memory tasks. Pollack’s

data have been corrected. Also shown are fits of FROST (% of
variance accounted for = 99.7%, SSE = 0.008; parameter estimates:

threshold = 0.06, se = 0.027, gF = 0.002).
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for the ignored items. In the case of the Cowan et al.
experiment, this latter prediction must be weakened
somewhat because participants were not rewarded for
ignoring the ignore items.

For these reasons, we modeled individual differences
in span by assuming that the parameter � in Equation 6
(see Methods) increases with WM span under conditions
of high attention and decreases with WM span under
conditions of low attention. To model the 32 data points
of Cowan et al. (1999), therefore, FROST had 10 free
parameters (a threshold, a noise variance, and a � for
each curve in Figure 7, with the provision that �
increases with span in the attend conditions and de-
creases with span in the ignore conditions). The results
are shown in Figure 8. Note that FROST accurately
captures the effects of attention and individual differ-
ences on WM span (accounting for 95.7% of the variance
in the Cowan et al. data).

Lesions to FROST

FROST predicts that WM ability is distributed across a
variety of neural structures. Nevertheless, the model
predicts that the only structures strictly necessary for
WM maintenance are the pFC WM units. FROST predicts
that a variety of other neural structures (i.e., those
shown in Figure 2) should facilitate WM performance,
but lesions to these structures should still preserve some
rudimentary WM ability. For example, FROST predicts
that subcortical lesions to the head of the CD, the GP, or
the MDN of the thalamus should reduce (or eliminate)
the efficacy of the cortical–thalamic loops, but some pFC
activity should still persist during the delay period of
a delayed-response task because of reverberating activ-
ity in the cortical–cortical loops. Disrupting activity in
the PPC during the delay period should have similar
effects—that is, delay-related activity in the pFC will be

Figure 8. Fits of FROST to

the data of Cowan et al. (1999)

[% of variance accounted for =
95.7%, SSE = 0.139; parameter

estimates: threshold =

0.048, se = 0.026, � in attend

condition = 0.120 (span 6),
0.213 (span 7), 0.590 (span 8),

4.00 (span 9), � in ignore

condition = 0.040 (span 6),

0.038 (span 7), 0.037 (span 8),
0.019 (span 9)].

Figure 7. Recall after

attended and ignored speech

for four different groups of

participants who differed
in their WM capacity (from

Cowan et al., 1999).
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reduced but not eliminated, because of reverberating
activity in the cortical–thalamic loops.

Figure 9 illustrates these robust predictions of FROST.
Each panel in the figure shows simulated single-cell
firing data from a pFC WM unit during a delayed-
response task. For reference, Figure 9A shows the
performance of an isolated pFC cell. This is a cell that
is completely disconnected from the network. Its only
input is from the visual cortex, and it has no outputs.
Activation increases during stimulus presentation, but
the cell shows no sustained activity during the delay. In
contrast, Figure 9B shows the performance of this same
cell when the full network is intact. Figure 9C shows the
performance when the CD has been lesioned, and
Figure 9D shows the performance when the MDN has
been lesioned. Note that, as anticipated, both lesions
attenuate the delay related activity in the pFC WM units,
but neither lesion completely abolishes this activity (as
compared to Figure 9A).

The posterior cortical regions of FROST are necessary
for the initial perceptual representation of the position

or item to be held in memory. However, after the WM
loops are initialized, these posterior cortical regions
facilitate, but are not necessary for, WM maintenance.
For example, the bottom panel of Figure 9 shows the
effects on pFC activation of disrupting activity in the PPC
after the delay period begins. Note that, as with thalamic
lesions, such disruptions impair, but do not abolish, pFC
delay-related activity. Some experimental data support
this prediction of FROST. For example, Oliveri et al.
(2001) showed that disrupting posterior cortical activa-
tion in humans (via transcranial magnetic stimulation)
during the delay period of a WM task had only minor
effects on performance. Similarly, several studies have
demonstrated that pFC activity is robust to interference
from distractor stimuli (Constantinidis & Steinmetz,
1996; Miller, Erickson, & Desimone, 1996).

Figure 10 shows that the reduced pFC activations
shown in Figure 9 lead to impaired performance in
classic behavioral tests of WM span. Note that FROST
predicts that MDN or basal ganglia lesions should have
little effect on performance when the memory load is
small, but with higher memory loads such lesions should
produce substantial deficits.

In summary, FROST predicts that lesions to the CD or
the MDN should impair, but not completely abolish,
WM. Of course, most lesions that occur because of
stroke or surgery would not eliminate the entire CD or
the MDN. In the case of such partial lesions, FROST
predicts WM deficits, but not as severe as those shown in
Figure 10. In fact, the FROST predictions that lesions to
the CD or MDN will impair, but not abolish, WM have
considerable empirical support (Janahashi et al., 2002;
Van der Werf et al., 2000; Gabrieli, Singh, Stebbins, &
Goetz, 1996; Hunt & Aggleton, 1991). As mentioned
above, such results, which are predicted by FROST,
represent a major challenge to purely cortical models
of WM.

RELATIONS TO OTHER WORKING
MEMORY MODELS

WM has been a topic of intense research for many years.
As a result, there are many WM models in the literature.
Even so, FROST is perhaps the only computational
model to account simultaneously for single-cell record-
ing data and such a diverse amount of human behavioral
data. Nevertheless, because it is based on widely known
neuroanatomy, there are a number of similar biologically
plausible models.

FROST differs from other biologically plausible mod-
els of WM in that it hypothesizes that the pFC, CD, GP,
and MDN are all important for WM maintenance. More
specifically, in agreement with existing data from single-
unit recording studies, FROST predicts sustained activa-
tion during the delay period in each of the above
regions, and suggests a mechanism by which these
regions contribute to WM maintenance. In contrast,

Figure 9. Activity of a pFC WM unit in FROST when (A) the cell only
receives input from the PPC and sends no outputs, (B) the full network

is intact, (C) the head of the CD has been lesioned, (D) the MDN of the

thalamus has been lesioned, and (E) activity in the PPC was disrupted

after the working memory was initiated.
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most models assume that WM maintenance is mediated
primarily by sustained, delay-related activity entirely
within the pFC (Deco et al., 2004; Frank et al., 2001;
Braver & Cohen, 2000; Durstewitz et al., 2000a; Taga-
mets & Horwitz, 2000; O’Reilly et al., 1999). Further-
more, although many pFC models of maintenance
provide a more detailed account of pFC function than
the current instantiation of FROST (see Durstewitz et al.,
2000b for a review), a more detailed version of FROST,
which replaces the single pFC unit of Equation 2 with
the more detailed layer-rich model shown in Figure 3,
could endow FROST with many of the attractive features
of the pFC models, yet still account for the data impli-
cating subcortical structures.

The emphasis on the pFC in models of WM is, at least
in part, due to the observation that, unlike cells in
posterior cortical regions, single-unit activity in the
pFC is extremely resistant to interference (Miller et al.,
1996). In fact, sustained activation in other cortical
regions has been assumed to be driven by sensory input
(Durstewitz et al., 2000b). However, this account is at
odds with single-unit recording data indicating mne-
monic functions of the basal ganglia (Mushiake & Strick,
1995; Hikosaka et al., 1989) and data suggesting a
functional role of the thalamus and basal ganglia in
WM (Janahashi et al., 2002; Van der Werf et al., 2000;
Gabrieli et al., 1996; Hunt & Aggleton, 1991). FROST
offers a powerful resolution to this controversy. Accord-
ing to FROST, delay activity is most robust within the
pFC because the pFC is the only region receiving

recurrent excitation from three sources—the sensory
association cortex, the thalamus, and the other layers
within the pFC.

The models that are most similar to FROST include
some, but not all, of FROST’s recurrent, excitatory loops.
One class of models includes the recurrent loop be-
tween sensory association areas of the cortex and the
pFC (Raffone & Wolters, 2001). Another class includes the
pFC–thalamic recurrent loop (Monchi, Taylor, & Dagher,
2000; Taylor & Taylor, 2000; Beiser & Houk, 1998). Beiser
and Houk (1998) assume the pFC–thalamic recurrent
loop facilitates maintenance, and that the basal ganglia
gates input into WM (via the GP or midbrain dopamine
neurons), but they do not assume that sustained changes
in firing within the basal ganglia are responsible for WM
maintenance.

Another popular class of models assumes a similar
gating role for the basal ganglia either by disinhibition of
the thalamus (Frank et al., 2001) or by dopamine input
to the pFC (Braver & Cohen, 2000; O’Reilly et al., 1999).
However, these models also assume that WM mainte-
nance is mediated primarily within the pFC rather than
being distributed. In the Frank et al. model, for example,
cortico-cortical and cortico-thalamic loops play a rela-
tively minor role, participating mainly in the passive
maintenance of information. The type of active WM
maintenance that is assumed to be robust to interfer-
ence from distracting stimuli is mediated by recurrent,
excitatory connections across different cortical layers
within individual pFC neurons. Similar to the model of

Figure 10. Predicted

performance in a classic

memory span test (e.g., digit

span) following lesions to the
CD, GP, or MDN. Parameter

values were identical to those

in generating the FROST
prediction shown in Figure 6.
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Beiser and Houk (1998), the basal ganglia is assumed to
be important for gating input to WM via phasic disinhi-
bition of the thalamus, and consequently, switching on
this intracellular maintenance mechanism in the pFC.
According to Frank et al., the neurophysiological evi-
dence for such an intracellular mechanism is tentative;
thus, the biophysically simpler mechanism proposed by
FROST for maintaining pFC activity presents a plausible
alternative—namely, that robust maintenance in the
pFC is a consequence of the activation of many recur-
rent loops between many brain areas with sustained-
activation profiles rather than being a property of a
single cell, area, or loop.

The model that is most similar to FROST was pro-
posed by Monchi et al. (2000) and Taylor and Taylor
(2000). Both models assign a similar role to the CD.
However, in the Monchi, Taylor et al. model, the caudate
becomes active upon stimulus presentation, whereas in
FROST the caudate becomes active only after the stim-
ulus is removed. The single-cell recording data shown
in Figure 1 (i.e., Mushiake & Strick, 1995; Hikosaka,
Sakamoto, & Sadanari, 1989) favor FROST on this point.

To summarize, FROST assumes that maintenance is
achieved primarily by recurrent cortico-thalamic projec-
tions that are initiated by recurrent cortico-cortical
projections from sensory areas that depend on the
stimulus modality (e.g., PPC) and by cortico-subcortical
projections from frontal areas to the CD. As in other
models that postulate a role for the basal ganglia,
disinhibition of the thalamus is critical for the initiation
of sustained activation. However, we do not assume that
this disinhibition is phasic in nature. As previously
discussed, the regions implicated in FROST all display
sustained activation during the delay period of WM
tasks. Thus, sustained depression of the GP (via inhib-
itory projections from the CD) results in a sustained
increase in the firing rate of cells in the MDN and, in
turn, sustained activation of recurrent cortico-thalamic
loops. We conclude that, although FROST is based on
the same neuroanatomy as other models of WM, it
assigns a unique functional role to the basal ganglia
and thalamus.

Conclusions

This article proposed and tested a neurocomputational
model that assumes WM is mediated by a widely distrib-
uted neural network that includes multiple reverberat-
ing circuits. The model assigns a unique role to the basal
ganglia. Specifically, FROST is the first model to assume
that the head of the caudate and the GP contribute to
WM maintenance via sustained activation that is primar-
ily under attentional control (rather than, e.g., under
stimulus control). Another unique feature of FROST is
that it can be tested against both single-cell recording
and behavioral data. For example, FROST predicts that,
in any standard WM task, sustained increases in firing

rate that begin with stimulus presentation and end with
the relevant response should be observed in the sensory
association cortex, the MDN of the thalamus, and some
areas of the pFC. In addition, other units in the pFC and
cells in the head of the caudate should show sustained
increases that begin with stimulus offset (i.e., and the
onset of WM demands) and end with the response.
Finally, some cells in the GP should show a sustained
decrease in firing rate that also begins with stimulus
offset and ends with the response. At the behavioral
level, FROST accounts for the most classic WM phenom-
ena and by adding straightforward assumptions relating
pFC activation to behavior, it can be tested against
almost any data in which performance is primarily
mediated by WM maintenance.

In this article, we focused on the ability of FROST
to account for single-cell recording data and human
behavioral data. But the model can also be fit to other
types of data. For example, we have had some initial
success fitting FROST to the fMRI Blood Oxygen Level
Dependent (BOLD) signal (Ashby & Valentin, in press).
Recent evidence suggests that the BOLD signal is
driven by local field potentials (Logothetis, 2003),
which are closely related to the direct solutions of
the differential equations that define FROST. FROST
can be fit to fMRI data by supplementing it with a
model of the transformation from local field potentials
to the fMRI BOLD signal. We have experimented with
both linear and nonlinear models of this transformation
(Ashby & Valentin, in press).

In its current form, FROST is a model of WM mainte-
nance. WM phenomena frequently also require active
manipulation of stored information. Thus, before FROST
could be considered a complete model of WM, it would
need to be generalized to account for manipulation as
well as maintenance.

METHODS

Detailed Description of FROST

A simple model of the activation in PPC cell i at time t,
denoted by Pi(t), which mimics the input–output rela-
tions shown in Figure 2, is defined by the differential
equation:

dPiðtÞ
dt

¼ aPUVðtÞ½aP � PiðtÞ�þ bPFiðtÞ½1 � PiðtÞ� � gPPiðtÞ;

ð1Þ

In this equation, Fi(t) is the activation in pFC cell i at
time t, and the step function UV(t) represents input from
lower visual areas — that is, UV(t) has a numerical value
of 1 when the animal can see the target, and a value of 0
when there is no visual access to the target. The con-
stants aP and bP measure the strength of the synapses
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between the PPC and lower visual areas, and between
the PPC and the pFC, respectively. Finally, gP is a
measure of how quickly activation decays in the absence
of any input. A simple interpretation of this equation is
that the derivative on the left represents the firing rate
of a PPC cell. The right side of Equation 1 therefore
specifies that this firing rate increases with the magni-
tude of the input from lower visual areas and with the
input from pFC. The term [1 � Pi(t)] induces an
asymptotic activation level of 1,4 and the last term on
the right causes activation to decay with time.

Using this same approach, it is straightforward to
construct similar equations that describe the firing rates
of the other cell types shown in Figure 2. For pFC WM
unit i, activation at time t is described by:

dFiðtÞ
dt

¼ ½aFTiðtÞ þ bFPiðtÞ�½1 � FiðtÞ�

� gF

X
j 6¼i

FjðtÞ
" #

FiðtÞ � dFFiðtÞ;
ð2Þ

where aF, bF, gF, and dF are constants, and Ti(t) is the
activation in thalamic unit i at time t. The first term
formalizes the idea that the pFC units in Figure 2 receive
excitatory inputs from the thalamus and the PPC. The
second term is a computationally convenient way to
model the lateral inhibition that is known to exist among
pFC WM cells. Neuroanatomical studies indicate that this
inhibition is mediated by GABAergic interneurons
(Melchitzky & Lewis, 2003), so the second term on the
right side of Equation 2 oversimplifies the neuro-
anatomy. It simply assumes that the amount of lateral
inhibition received by pFC unit i is proportional to the
total activation of all other pFC WM units. The Fi(t)
multiplier prevents this lateral inhibition from driving
the overall activation below zero. Finally, as in Equation 1,
the last term in Equation 2 ensures that in the absence
of all input, activation will decay back to zero.

Activation in thalamic unit i at time t is described by:

dTiðtÞ
dt

¼ aTFiðtÞ½1 � TiðtÞ� � bTGðtÞTiðtÞ � gTTiðtÞ; ð3Þ

where aT, bT, and gT are again constants, and G(t)
represents the input activation from the GP at time t.
Note that activation in the GP decreases the firing rate of
its thalamic target, reflecting its inhibitory nature (i.e.,
these are GABA cells).

Activation in GP at time t is described by:

dGðtÞ
dt

¼ �aGCðtÞGðtÞ � bG½GðtÞ � GB�; ð4Þ

where aG and bG are constants, and C(t) represents the
inhibitory input activation from the CD at time t. The

constant GB is the baseline firing rate of cells in the GP,
so the last term in Equation 4 ensures that, in the
absence of input, the firing rate of pallidal cells decays to
GB rather than to zero, as in the other cell types.

Finally, activation in the CD at time t is described by:

dCðtÞ
dt

¼ aCFAðtÞ½1 � CðtÞ� � bCCðtÞ; ð5Þ

where aC and bC are again constants. The term FA(t)
denotes pFC input at time t. As mentioned above, the
single-cell recording data shown in Figure 1 suggest
that the delay-related activity of the CD, and also the
downstream cells in the GP, are driven by the onset
of the delay interval, rather than by target presentation.
This supports the hypothesis that the CD is driven by
some pFC unit other than the WM cells modeled in
Equation 2. In fact, as mentioned above, many single-
unit recording studies have identified cells in the lateral
pFC that increase their firing only at the onset of the
delay period. An example is shown in Figure 1. Note
that the attentional demands on the subject rise sig-
nificantly when the delay begins, so this other pFC
unit could be interpreted as providing an attentional
signal (hence, the subscript A). We model FA(t) in ex-
actly the same way as the pFC WM units of Equation 2,
except we assume the cortical input to these pFC at-
tentional units is from some frontal-based attentional
network, rather than from sensory association areas
(e.g., PPC). A complete model of this attentional net-
work is beyond the scope of this article. Instead, we
model the input from the attentional network in ex-
actly the same way that we modeled the PPC input from
visual cortex (i.e., as a boxcar function). As a result, we
model FA(t) as:

dFAðtÞ
dt

¼ ½aAUAðtÞ þ bATAðtÞ�½1 � FAðtÞ� � gAFAðtÞ; ð6Þ

for some constants aA, bA, and gA. The boxcar function
UA(t) equals � (where 0 	 � 	 1) for the first second
during which the animal must remember, and is set to
zero otherwise.5 The numerical value of � is assumed to
increase with attentional demands. Thus, under condi-
tions of high attention, the model assumes that the pFC
input to the CD is greater than under conditions of low
attention. The function TA(t) represents the thalamic
input to this pFC unit.6

Fitting the Single-Cell Recording Data

Although the Figure 1 data were collected using several
different methodologies, they all required monkeys to
remember the spatial location of a target for some brief
period. The major difference across experiments was in
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the motor response required of the animals (e.g., arm
movement vs. eye movement). FROST does not include
motor circuits (which are downstream of the FROST
architecture), so these differences are irrelevant to our
simulations. Our goal in these simulations was to deter-
mine whether FROST is consistent with the qualitative
results of these experiments. We made no attempt to fit
the data quantitatively. For this reason, all simulations
were done with the same temporal parameters. Specif-
ically, stimulus presentation was set to 1 sec and the de-
lay was set to 6 sec. Given these constraints, parameter
estimates were crudely adjusted until the results shown
in Figure 4 were obtained.

Fitting the Magical Number 4, 5, 6, or 7 Data

We assumed that item i is correctly retrieved if activation
in pFC unit i is greater than some threshold T at retrieval
time tR — that is, that

Probability ðCorrect on item iÞ
¼ Probability½FiðtRÞ þ � > T�; ð7Þ

where Fi(tR) is the activation in pFC unit i at retrieval
time tR, and e is noise (normally distributed with mean 0
and variance se

2).
For the basic FROST circuit, we used the same

parameter estimates that were used in the Figure 4
simulations of the single-cell recording data. Thus,
there are only three parameters that must be estimated
during the data fitting process: the threshold T, the
error variance se

2, and the strength of pFC lateral
inhibition (i.e., gF from Equation 2). Unlike the other
parameters in Equations 1–5, gF could not be estimated
from the single-cell recording data because these re-
cordings were all made during tasks when the memory
load was only a single item. With only one active WM
loop, there is no opportunity for lateral inhibition. The
parameters were estimated using an iterative least
squares algorithm.
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Notes

1. A more detailed computational model could be built that
would also capture the neuroanatomical complexities shown
in Figure 3, but for the applications considered in this article,
the predictions would be virtually identical.

2. The integrate-and-fire model assumes a spike is generated
whenever the integrated activation exceeds a threshold V0.
White noise is added to the activation and after a spike occurs,
the integral is reset to zero. The integrate-and-fire model has
two free parameters (V0 and the noise variance) (see Koch,
1999 or Ashby & Valentin, in press for details).
3. The magnitude of lateral inhibition in the PFC, gF in
Equation 2, will be estimated later. This is because the Figure 1
data were all collected in tasks when the memory load was only
a single item. With only one active working memory loop,
there is no opportunity for lateral inhibition. The parameters
of Equation 6 were estimated from the recordings made in the
caudate nucleus (because the PFC attentional signal is the
primary caudate input).
4. The value of aP is used as the first asymptote, instead of 1,
only to cause activation induced by stimulus presentation to
increase quickly enough so that asymptote is reached even for
relatively brief presentation times (i.e., the numerical value of
aP can be set to a larger value when the asymptote is set to aP

rather than 1). Another method of achieving this same goal
would be to set UV(t) to a value greater than 1 when the
stimulus is present.
5. The 1-sec duration during which this function equals 1 is
arbitrary. Changing this value has little effect on any
predictions derived in this article.
6. For simplicity, we assumed that the thalamic input to the
PFC attentional signal is the same as the thalamic input to the
PFC WM unit (i.e., and therefore modeled by Equation 3).
Whether the PFC attentional signal and WM units have the
same or different thalamic inputs makes no difference to any
predictions derived in this article.
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