
In the study of category learning, it is often desirable to 
design tasks in which participants use a particular type of 
decision strategy. This goal is typically pursued by sim-
ply instructing participants to use a specific strategy (see, 
e.g., Allen & Brooks, 1991) rather than constraining the 
design of the categorization task. We propose that specify-
ing the amount of overlap between contrasting categories 
may provide a simple method to constrain decision strat-
egy. Category overlap historically has been manipulated 
to control task difficulty, and was not thought to affect the 
qualitative nature of the decision strategy used by partici-
pants. This article presents the results of three experiments 
that challenge this widely held view.

Category learning has been investigated using tasks that 
vary considerably with regard to stimulus materials, cate-
gory structures, and procedure. For example, in some tasks, 
the entire stimulus set comprises just nine exemplars (e.g., 
Medin & Schaffer, 1978), whereas in other tasks, a single 
category comprises hundreds of exemplars (e.g., Ashby & 

Gott, 1988). Despite this variability, in the majority of tasks, 
a trial begins with the presentation of a stimulus, followed 
by a categorization response, and typically, corrective feed-
back. Thus, at first glance, one might expect any effect of 
category overlap on decision strategy to be invariant across 
tasks. Recent research, however, suggests that the choice of 
task may be critical in determining the particular category-
learning system and, consequently, the particular decision 
strategy that is used to learn the categories (Ashby & Ell, 
2001). Thus, an alternative hypothesis is that the effect of 
category overlap on decision strategy may vary as a func-
tion of the task. We investigate this alternative using two 
category-learning tasks that have received the majority 
of attention in the multiple systems debate: information- 
integration and rule-based tasks (see Ashby & Maddox, 
2005, and Maddox & Ashby, 2004, for a complete review 
of the dissociations between these two tasks).

Information-integration tasks are those in which accu-
racy is maximized by implicit, perceptual-integration strat-
egies, which assume that information from two or more di-
mensions is integrated at some predecisional stage, outside 
of conscious awareness (Ashby, Alfonso-Reese, Turken, & 
Waldron, 1998). The type of perceptual integration required 
could take any number of forms, from a weighted combina-
tion of the two dimensions (Ashby & Gott, 1988; Garner, 
1974) to more holistic processing (see, e.g., Kemler Nelson, 
1993) to the incremental acquisition of stimulus–response 
associations (Ashby & Waldron, 1999), but the critical point 
is that the integration is assumed to occur prior to invoking 
any decision processes.
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For example, the stimuli might be Gabor patterns (sine 
wave gratings in which contrast is modulated by a circular 
Gaussian filter) that vary across trials in spatial frequency 
and orientation. In a typical information-integration task, 
the optimal decision bound might be set at the y 5 x line, 
requiring participants to attend to both spatial frequency 
and orientation in order to maximize accuracy. In this ex-
ample, a verbal description of the optimal strategy would 
be to “Respond A if the difference between orientation and 
spatial frequency is positive and Respond B if the differ-
ence is negative.” However, this is not a strategy that par-
ticipants readily verbalize, since it involves comparing di-
mensions measured in different units (Ashby et al., 1998). 
Nonetheless, given enough practice, neurologically healthy 
individuals are able to learn information-integration tasks, 

even though they are rarely able to accurately describe their 
decision strategy (see, e.g., Ashby & Maddox, 1992).

Early in training, however, participants often use sub-
optimal, explicit strategies (Ashby et al., 1998; Ashby, 
Queller, & Berretty, 1999). The simplest explicit strategy 
would assume that participants attend selectively to spatial 
frequency or orientation while ignoring the other dimen-
sion. In this example, the decision rule might be described 
as: “Respond A if the line is low in spatial frequency; oth-
erwise Respond B.” Unlike perceptual-integration strate-
gies, explicit strategies are assumed to be accessible to 
conscious awareness and, consequently, easily verbaliz-
able (Ashby et al., 1998).

One question for the present research is whether vary-
ing the overlap between contrasting categories will fun-

Figure 1. The information-integration task of Experiment 1 defined at five 
different levels of category overlap. Each symbol represents a Gabor stimulus in 
spatial frequency–orientation space (with spatial frequency in arbitrary units 
and orientation in degrees from horizontal). The black plus signs and gray 
circles denote Category A and B exemplars, respectively. The solid lines are the 
optimal perceptual-integration decision strategies. In the low condition, the 
dotted line is an example of an explicit strategy that would also maximize ac-
curacy. Note that an explicit strategy assuming selective attention to orientation 
(i.e., a horizontal criterion) would also maximize accuracy. The filled circles in 
the low condition denote probe stimuli that were included to aid in distinguish-
ing between explicit and perceptual-integration strategies.
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damentally affect decision strategy in an information- 
integration task. In Experiment 1, we varied category over-
lap from low to high by decreasing the distance between cat-
egory means (see Figure 1). In the low condition, the overlap 
is low enough that explicit (the dashed line) and perceptual- 
integration (the solid line) strategies predict similar accuracy. 
Thus, we would predict that participants would continue to 
use the seemingly default explicit strategies and never tran-
sition to perceptual-integration strategies. As overlap is in-
creased, the accuracy of explicit strategies becomes far less 
than the accuracy of perceptual-integration strategies. There-
fore, consistent with previous data, under normal conditions, 
participants should come to rely on perceptual-integration 
strategies and learn the information-integration task (see, 
e.g., Ashby & Maddox, 2005).

This line of reasoning suggests that perceptual-integration 
strategies will be used as long as they are more accurate 
than any competing explicit strategy. It is not clear, how-
ever, how large this accuracy advantage must be. In Fig-
ure 1, the accuracy advantage for the optimal perceptual-
integration strategy is at its peak in the medium condition 
(see the Methods section for details of this computation), 
but steadily declines in the medium-high and high condi-

tions. Thus, an alternative possibility is that the accuracy 
advantage at greater levels of overlap may be insufficient 
to trigger the transition to perceptual-integration strate-
gies. If so, then suboptimal, explicit strategies would dom-
inate in the high (and perhaps medium-high) condition 
instead of perceptual-integration strategies.

In contrast, we would predict that category overlap has 
little effect on the decision strategy in tasks in which accu-
racy is maximized by explicit strategies (i.e., a rule-based 
task; Ashby et al., 1998). In Experiment 3, we tested this 
hypothesis by varying category overlap in a rule-based 
task. In the rule-based task of Figure 2, the optimal ex-
plicit strategy always requires participants to attend se-
lectively to spatial frequency while ignoring orientation 
at all levels of category overlap.1 In all cases, this strategy 
could be described as: “Respond A if the line is low in 
spatial frequency; otherwise Respond B.” At relatively 
low levels of overlap (i.e., the medium-low condition), 
we would expect that explicit strategies would dominate, 
given that they seem to be the default decision strategy 
(Ashby et al., 1999; Medin, Wattenmaker, & Hampson, 
1987). As category overlap increases, the use of explicit 
strategies will consistently result in higher accuracy than 
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Figure 2. The rule-based task used in Experiment 3 defined at four different 
levels of category overlap. Each symbol represents a Gabor stimulus in spatial 
frequency–orientation space (with spatial frequency in arbitrary units and 
orientation in degrees from horizontal). The black plus signs and gray circles 
denote Category A and B exemplars, respectively. The solid lines are the opti-
mal explicit decision strategies. In the medium-low condition, the dotted line 
is an example of a perceptual-integration strategy that would also maximize 
accuracy. The filled circles in the medium-low condition denote probe stimuli 
that were included to aid in distinguishing between explicit and perceptual-
integration strategies. Note that the low condition was omitted because of its 
similarity to the medium-low condition.
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with perceptual-integration strategies. Thus, we would ex-
pect explicit strategies to continue to dominate, regardless 
of the amount of overlap.

Across three experiments, we tested the predictions de-
tailed above regarding the differential impact of category 
overlap on the decision strategy used in information- 
integration (Experiments 1 and 2) and rule-based (Experi-
ment 3) category-learning tasks. The extant data suggest 
that category overlap can be used to constrain decision 
strategy, but only in information-integration tasks. Specifi-
cally, we predict that explicit strategies will be used when 
overlap is low and that perceptual-integration strategies 
will be used as overlap is increased. Whether participants 
will be constrained to use explicit or perceptual-integration 
strategies in an information-integration task at high levels 
of overlap is unclear.

EXPERIMENT 1

Method
Participants and Design. Twenty-five participants, ranging in 

age from approximately 18 to 26, were recruited from the University 
of California, Santa Barbara student community, and paid $15 per 
experimental session (10 blocks of 60 trials) for their participation. 
There were a total of five experimental conditions, varying in cat-
egory overlap. Five participants participated in each condition, and 
the number of training sessions varied across conditions as follows: 
low, 1; medium-low, 3 (1 participant completed 2 days of training); 
medium, 3; medium-high, 3; high, 4. No one participated in more 
than one experimental condition. All of the participants reported 
20/20 vision or vision corrected to 20/20. Each session was approxi-
mately 45 min in duration and consecutive sessions were separated 
by 24 h, on average.

Stimuli  and  stimulus  generation. Experiment 1 used an  
information-integration task at five levels of category overlap (Fig-
ure 1). Category overlap was varied from low to high by decreasing 
the distance between category means. The labels low, high, and so on 
are purely descriptive and are intended to represent ordinal relations 
among increasing levels of category overlap.

The experiment used the randomization technique introduced by 
Ashby and Gott (1988), in which each category was defined as a 
bivariate normal distribution. Each category distribution was speci-
fied by a mean and a variance on each dimension, and by a covari-
ance between dimensions. The exact parameter values are displayed 
in Table 1. On each trial, a random sample (x, y) was drawn from the 
Category A or B distribution, and these values were used to construct 
a sine wave grating of spatial frequency x′ 5 0.2x 21 cycles/100 
pixels and orientation y′ 5  /180y radians. The resulting range on 

the spatial frequency dimension was .5 to 6 cycles/degree of visual 
angle. In each condition, all stimuli were generated offline and a linear 
transformation was applied to the sample stimuli to ensure that the 
sample statistics matched the population parameters. For all condi-
tions, the two categories had identical spatial frequency and orienta-
tion variances and an identical spatial frequency–orientation covari-
ance. Under these conditions, the optimal strategies in all conditions 
are linear (i.e., the solid decision boundaries plotted in Figure 1).2 
Participants who consistently responded using the optimal strategy 
would achieve the following accuracy rates: low 5 100%, medium-
low 5 100%, medium 5 96%, medium-high 5 78%, high 5 70%. In 
contrast, the participants who consistently responded using the most 
accurate explicit strategy would achieve accuracy rates of 100%, 92%, 
75%, 62%, and 58% correct, respectively.3

In the low condition, it was predicted that the participants would 
use the explicit strategy depicted in Figure 1 (the dashed line). How-
ever, it would be impossible to distinguish between this explicit 
strategy and alternative perceptual-integration strategies (e.g., the 
solid line in the low condition of Figure 1) on the basis of accuracy 
alone. Probe stimuli (the filled black circles in Figure 1) were in-
cluded to test this critical prediction. The coordinates of the probe 
stimuli were chosen so that the explicit and perceptual-integration 
strategies depicted in Figure 1 predicted different categorization re-
sponses. For example, those probe stimuli less than approximately 
110 spatial frequency units would be classified as Category A exem-
plars, according to the explicit strategy, but only half of these probe 
stimuli would be classified as Category A exemplars according to 
the perceptual-integration strategy. A total of 16 probe stimuli were 
generated and were included in the final block of training. The coor-
dinates of the probe stimuli are presented in Appendix A.

The stimuli were computer generated and displayed on a view-
Sonic 15-in. CRT with 832 3 624 pixel resolution in a dimly lit 
room. Each stimulus was presented on a gray background and sub-
tended a visual angle of approximately 3º. The stimuli were gen-
erated and presented using the Psychophysics Toolbox (Brainard, 
1997; Pelli, 1997) in the MATLAB software environment.

Procedure. The participants were told that there were two equally 
likely categories, and were informed of the optimal accuracy (e.g., in 
the high condition, the participants were instructed that, across the 
entire experiment, 70% correct was the highest accuracy they could 
achieve). All of the participants within a condition were presented 
with a different random ordering of the same 600 stimuli in each 
experimental session. On a trial, a single stimulus was presented 
and the participant was instructed to make a category assignment by 
depressing one of two response keys (labeled A or B) with his or her 
index fingers, and trial-by-trial feedback was provided for stimuli 
from the Category A and B distributions. In the low condition, the 
16 probe stimuli were randomly interleaved with 34 Category A and 
B stimuli during the final block of trials. The probe trials differed, 
in that trial-by-trial feedback was omitted in an effort to minimize 
the likelihood that the probe stimuli would contribute to the forma-

Table 1 
Parameter Values Used to Generate the Stimuli From the Information-Integration Task 

at Each Level of Category Overlap

Means variances
Spatial Frequency Orientation Spatial

Condition  Category A  Category B  Category A  Category B  Frequency  Orientation  Covariance 

Low  70.5 150.5 150.5  70.5 162.5 162.5 112
Medium-low  92.5 127.5 127.5  92.5 162.5 162.5 112
Medium 101.5 118.5 118.5 101.5 162.5 162.5 112
Medium-high 106.1 113.9 113.9 106.1 162.5 162.5 112
High  107.4  112.6  112.6  107.4  162.5  162.5  112

Note—The spatial frequency values are in arbitrary units, and the orientation values are in degrees rotated clockwise from 
horizontal. variances and covariance are for both categories.
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tion of a participant’s decision strategy. Specifically, the participants 
were instructed that trial-by-trial feedback would be provided, but 
that there would be some trials near the end of the experiment in 
which feedback would be omitted. The probe trials were used to aid 
in the identifiability of a participant’s decision strategy in the model-
based analyses (as described above), but were not considered when 
computing the participant’s accuracy.

The trials were self-paced, with an upper time limit of 5 sec. If 
a response was not given in that time period, the participant was 
prompted to speed up his or her response, and that trial was dis-
carded. A brief (1-sec) high-pitched tone (500 Hz) was presented if 
the response was correct, and a low-pitched tone (200 Hz) was pre-
sented if the response was incorrect. In addition, feedback was given 
at the end of each block of 60 trials regarding the participant’s accu-
racy during that block. The response–stimulus interval was 1 sec.

Results
Accuracy-based analyses. The learning curves for 

each of the five overlap conditions are plotted in Figure 3. 
visual inspection of the learning curves indicates that av-
erage accuracy improved with training, with the exception 
of the high condition, in which average accuracy hovered 
around chance levels and never approached optimal (i.e., 
70%). As expected, asymptotic accuracy decreased with 
increasing category overlap. A one-way ANOvA con-
ducted on the average accuracy during the final session 
(low, M 5 96.64, SD 5 2.50; medium-low, M 5 98.03, 
SD 5 .43; medium, M 5 87.45, SD 5 5.06; medium-
high, M 5 60.79, SD 5 5.69; high, M 5 51.21, SD 5 
3.35) confirmed this observation [F(4,20) 5 152.84, 
MSe 5 15.12, p , .001] with post hoc tests (Tukey) re-
vealing that all conditions were significantly different 
from each other ( p , .05), with the exception of the high 
and medium-high conditions.

To investigate whether or not accuracy improved with 
training in the high condition, a within-subjects ANOvA 
was conducted on the average accuracy from each of the 
four sessions (Session 1, M 5 53.11, SD 5 2.92; Session 2, 

M 5 53.00, SD 5 3.55; Session 3, M 5 52.08, SD 5 2.35; 
Session 4, M 5 51.21, SD 5 3.35). This analysis revealed 
that there was no significant difference in accuracy across 
sessions [F(3,12) 5 .69, MSe 5 5.71, p 5 .58]. The average 
accuracy was marginally significantly greater than chance 
during the first session [t(4) 5 2.39, p 5 .07], but not sig-
nificantly greater than chance in the remaining sessions 
[Session 2, t(4) 5 1.89, p 5 .13; Session 3, t(4) 5 1.98, 
p 5 .12; Session 4, t(4) 5 .81, p 5 .47].

Model-based analyses. As expected, the analysis of 
the accuracy data revealed that performance generally de-
creased with increasing overlap. The primary question, 
however, concerns the effect of overlap on the decision 
strategy. For example, participants might use the optimal 
perceptual-integration strategy (see Figure 1) at all levels 
of overlap. Alternatively, participants might rely on subop-
timal, explicit strategies. The following analyses present 
a quantitative approach to evaluating these hypotheses. 
Specifically, we fit a number of different decision bound 
models (Ashby, 1992a; Maddox & Ashby, 1993) to each 
participant’s responses. Decision bound models assume 
each participant partitions the perceptual space into re-
sponse regions by constructing a decision bound. On each 
trial, the participant determines which region the percept 
is in, and then produces the associated response. To be 
clear, in the present application, decision bound models 
are used as an analytic tool to provide a description of each 
participant’s data.

Two different types of models were fit to each partici-
pant’s responses (see Appendix B for more details). One 
type was compatible with the assumption that participants 
used an explicit strategy and one type assumed a perceptual- 
integration strategy. These models make no detailed pro-
cess assumptions, in the sense that a number of different 
process accounts are compatible with each of the models 
(e.g., Ashby, 1992a; Ashby & Waldron, 1999). For ex-

Figure 3. Average accuracy across levels of category overlap in the information-integration 
task of Experiment 1.
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ample, if a perceptual-integration model fits significantly 
better than an explicit model, we can be confident that 
participants did not use an explicit strategy, but we cannot 
specify which perceptual-integration strategy was used 
(e.g., a weighted combination of the two dimensions vs. 
more holistic processing). Thus, the modeling described 
in this section provides a powerful vehicle to test hypothe-
ses about the decision strategies used by participants, even 
though it has little to say about psychological process.

Each model was fit separately to the data for every partic-
ipant from every training session (excluding the first block 
in the session, because it was considered practice). Ana-
lyzing the data in this way resulted in the following num-
ber of data sets per condition: low, 5 (1 training session 3 
5 participants), medium-low, 14 (3 training sessions 3 4 
participants, 2 training sessions 3 1 participant who com-
pleted only 2 training sessions), medium, 15 (3 training 
sessions 3 5 participants), medium-high, 15 (3 training 
sessions 3 5 participants), high, 20 (4 training sessions 3 
5 participants).

The proportion of data sets best accounted for by explicit 
strategies across experimental condition is plotted in Fig-
ure 4. For simplicity, the data from all three experiments 
have been plotted in Figure 4, and the Experiment 1 data is 
plotted in light gray. For moderate levels of category overlap 
(the medium-low, medium, and medium-high conditions), 
perceptual-integration strategies were found to dominate, 
whereas for the two extreme overlap conditions (the low 
and high conditions), explicit strategies dominated.4 More-

over, the prevalence of explicit strategies was approximately 
equal in the low and high conditions.

The results of the model-based analysis are only valid 
to the extent that the models themselves provide adequate 
accounts of the observed data. One practical method of 
assessing goodness-of-fit is to compute the percentage of 
responses the best-fitting model was able to reproduce. 
The average percentage of responses accounted for is 
listed in Table 2. First consider the data from the low con-
dition. Not surprisingly, the best-fitting models provide 
a very good account of these data. Central to the ques-
tion of whether or not these data were best fit by explicit 
or perceptual-integration strategies is how well the best- 
fitting model was able to reproduce the probe data. As can 
be seen in Table 2, the best-fitting models did quite well 
in this regard. In fact, across the 4 participants best fit by 
explicit strategies, the best-fitting model failed to repro-
duce only one response. The best-fitting model failed to 
reproduce five responses for the participant whose data 
were best fit by a perceptual-integration model. Thus, we 
can be confident that the dominance of explicit strategies 
in the low condition cannot be attributed to the undue in-
fluence of the probe stimuli.

Given the probabilistic nature of the medium, medium-
high, and high conditions, it was expected that the best-
fitting models would account for far less than 100% of the 
responses. However, it is potentially problematic that the 
best-fitting model accounted for fewer than 60% of the 
responses for 5 of the 20 data sets in the high condition (2 
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from Session 1; 3 from Sessions 3 and 4). After excluding 
these 5 data sets, explicit strategies accounted for 87% 
of the remaining data sets, and the average percentage of 
responses accounted for increased to 67%.

EXPERIMENT 2

The results of Experiment 1 suggest that the decision 
strategy in information-integration tasks is nonmonotoni-
cally related to category overlap. However, these conclu-
sions are critically dependent on the model-based analy-
ses of the data from the high condition. There is a long 
tradition of collecting a large amount of data (in this case, 
3,000 data points per participant) from a limited number 
of participants in cognitive psychology. Nevertheless, it 
could reasonably be argued that the interpretation of the 
present data would be more compelling if the sample size 
were increased. Experiment 2 replicated the critical high 
condition of Experiment 1 with the addition of a monetary 
incentive intended to increase motivation to maximize ac-
curacy. Note that this manipulation intentionally biases 

the data in favor of perceptual-integration strategies, 
because if the participants are maximizing accuracy (to 
achieve the greater reward) then the model-based analyses 
would indicate that the participants were using perceptual- 
integration strategies.

Method
Participants and Design. Five participants (4 female), ranging 

in age from 20 to 24, were recruited from the University of Califor-
nia, Berkeley student community, and paid $10 per experimental 
session (plus an accuracy bonus) for participation. All participants 
reported 20/20 vision or vision corrected to 20/20. Each session was 
approximately 45 min in duration and consecutive sessions were 
separated by 24 h, on average.

Stimuli and stimulus generation. The stimuli were identical to 
those in the high condition of Experiment 1.

Procedure. The procedure was identical to that of Experiment 1, 
with the exception that the participants were instructed that they 
would receive a $1 bonus for every block in which their accuracy 
exceeded 60% correct. Thus, across the four days of training, it was 
possible to earn a bonus of $48.

Results
Accuracy-based  analyses. The learning curve is 

shown in Figure 5, along with the learning curve from 
the high condition of Experiment 1, for reference. Inspec-
tion of the learning curves suggests that increasing the 
motivation to maximize accuracy resulted in improved 
performance by the end of training. A comparison of the 
average accuracy from the final session of Experiment 1 
(M 5 51.2%, SD 5 3.35) and Experiment 2 (M 5 60.5%, 
SD 5 5.03) supported this claim [t(8) 5 3.45, SEdiff 5 
2.71, p 5 .009].

Importantly, unlike in Experiment 1, there was a clear 
improvement in accuracy late, relative to early, in train-
ing. To verify this claim, a within-subjects ANOvA was 
conducted on the average accuracy from each of the four 
sessions of the present experiment (Session 1, M 5 53.4, 

Table 2 
Average Percentage of Responses Accounted for by the 
Best-Fitting Model Across Levels of Category Overlap 

for All Experiments

E1 E2 E3

Condition  Avg  SEM  Avg  SEM  Avg  SEM

Low 97.2 1.0 – – – –
Low-probe 92.5 6.1 – – – –
Medium-low 94.7 1.3 – – 96.8  .4
Medium 84.8 2.3 – – 89.6 1.6
Medium-high 66.6 1.7 – – 77.1 1.7
High  61.8 2.5  69.4  1.5  75.4  1.7

Note—Low-probe, probe stimuli from the low condition. E1, Experi-
ment 1; E2, Experiment 2; E3, Experiment 3.

Figure 5. Average accuracy in the high condition of Experiment 2 (E2). The data 
from the high condition of Experiment 1 (E1) are presented for comparison.
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SD 5 1.04; Session 2, M 5 57.59, SD 5 4.40; Session 3, 
M 5 59.43, SD 5 3.29; Session 4, M 5 60.53, SD 5 
5.04). This analysis revealed a significant effect of session 
[F(3,12) 5 7.29, MSe 5 6.71, p 5 .005] with a marginally 
significant increase in accuracy from Block 1 to Block 2 
( p 5 .08), and significant increases in Blocks 3 ( p 5 .01) 
and 4 ( p 5 .03), relative to Block 1. The average accuracy 
was also significantly greater than chance performance in 
all four sessions [Session 1, t(4) 5 7.32, p 5 .002; Ses-
sion 2, t(4) 5 3.86, p 5 .018; Session 3, t(4) 5 6.41, p 5 
.003; Session 4, t(4) 5 4.68, p 5 .009].

Model-based  analyses. As in Experiment 1, each 
model was fit separately to the data for every participant 
from every training session (excluding the first block in 
the session, because it was considered practice). Analyz-
ing the data in this way resulted in 20 data sets (4 training 
sessions 3 5 participants). As can be seen in Figure 4 (i.e., 
the dark gray bar on the far right), the results of the model-
based analyses are consistent with the data from Experi-
ment 1 in suggesting that suboptimal, explicit decision 
strategies dominated. Importantly, the best-fitting model 
accounted for more than 60% of the responses in 17 of the 
20 data sets and more than 70% of the responses in 11 of 
the 20 data sets. In sum, even when the participants have 
incentive to use perceptual-integration decision strategies, 
they seem limited in their ability to do so.

Given the relatively low accuracy in the high conditions 
of Experiments 1 and 2, and the less than perfect abil-
ity of the best-fitting models to reproduce the observed 
data, it is important to consider whether these data truly 
reflect an intact decision process. One approach to answer-
ing this question is to investigate the pattern of data that 
would be expected from participants known to be using 
some specific decision strategy. We simulated such data 
from two different models in the high overlap condition. 
One assumed the optimal decision strategy (i.e., the optimal  
perceptual-integration model in Appendix B) and one as-
sumed the most accurate explicit strategy (i.e., the dashed 
line in the low condition of Figure 1). In both models, we 
set the internal noise to the median noise estimate obtained 
from the model-based analyses in the high-overlap condi-
tions of Experiments 1 and 2 (Mdn 5 22.5). The optimal 
decision bound accounted for a mean of only 62% of the re-
sponses generated from the optimal decision bound model 
(SD 5 2.2%, averaged over 100 replications). Similarly, 
the most accurate explicit bound accounted for a mean of 
67% of the responses generated from the most accurate ex-
plicit model (SD 5 1.7%, averaged over 100 replications). 
Note that these percentages are similar to the percentages 
of responses accounted for by the models that best fit the 
data from the high-overlap condition. If participants were 
simply guessing in this condition, each of the models we 
fit would account for only 50% of the observed responses. 
Thus, the model-based analyses are consistent with the hy-
pothesis that participants did use an intact decision process 
in the high-overlap condition, and that they were not simply 
guessing. Although accuracy was quite low in the high con-
dition of Experiment 1, the addition of a monetary incen-

tive in Experiment 2 encouraged learning and resulted in 
accuracy rates well above chance.

EXPERIMENT 3

The results of Experiments 1 and 2 showed that the deci-
sion strategy varied nonmonotonically with category over-
lap in an information-integration task. Specifically, explicit 
strategies were used at extreme levels of category overlap, 
and perceptual-integration strategies at intermediate lev-
els. Recall, however, that the primary question is whether 
the effect of overlap on the decision strategy will vary as 
a function of the categorization task. Alternatively, it may 
be the case that the nonmonotonicity observed across Ex-
periments 1 and 2 is a generic feature of all categorization 
tasks. Experiment 3 tests this hypothesis by replicating 
Experiment 1 on a rule-based task. The rule-based task is 
plotted at four levels of category overlap in Figure 2. The 
low condition was omitted from Experiment 3 because of 
its similarity to the medium-low condition (and because 
there are no predicted theoretical differences between these 
conditions in the present experiment).

Method
Participants and Design. Twenty-three participants, ranging in 

age from approximately 18 to 26, were recruited from the University 
of California, Santa Barbara student community, and paid $15 per 
experimental session for their participation. There were a total of 
four experimental conditions, varying in category overlap. Eight 
participated in the medium-low condition, whereas 5 participated 
in each of the remaining conditions. The number of training ses-
sions varied across conditions as follows: medium-low, 1; medium, 
3; medium-high, 3; high, 4. No one participated in more than one 
experimental condition. All of the participants reported 20/20 vi-
sion or vision corrected to 20/20. Each session was approximately 
45 min in duration and consecutive sessions were separated by 24 h, 
on average.

Stimuli and stimulus generation. The stimuli were generated 
by rotating the Experiment 1 category structures from the medium-
low, medium, medium-high, and high conditions 45º counterclock-
wise. Specifically, 

′ = 





X X

cos _sin

sin cos

θ θ
θ θ

,

where X′ is the new Experiment 3 stimuli, X is the matrix of stimuli 
from Experiment 1, and θ 5 .7854 radians. The low condition was 
omitted from Experiment 3, because the rotated low and medium-
low conditions were redundant with respect to the theoretical predic-
tions. A scatterplot of the stimuli used in the experiment is shown 
in Figure 2.

Following the same logic as in Experiment 1, a number of probe 
stimuli were included in the medium-low condition to aid in the 
identifiability of the participant’s decision strategy. A total of eight 
probe stimuli were generated (the black, filled circles in Figure 2) 
and were included in the final block of training. The coordinates of 
the probe stimuli are listed in Appendix A.

Procedure. The procedure was identical to that of Experiment 1.

Results
Accuracy-based analyses. The learning curves for 

each of the four levels of category overlap are shown in 
Figure 6. visual inspection of the learning curves indicates 
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that accuracy improved with training in all conditions. As 
expected, average accuracy was negatively correlated with 
category overlap. A one-way ANOvA conducted on the 
average accuracy during the final day of training was gen-
erally consistent with this observation [F(3,22) 5 75.88, 
MSe 5 27.36, p , .001], but only the medium-low (M 5 
95.37, SD 5 5.51) and medium (M 5 90.20, SD 5 3.97) 
conditions were significantly different from the medium-
high (M 5 69.09, SD 5 2.99) and high (M 5 66.04, SD 5 
1.75) conditions ( p , .001). None of the remaining pair-
wise comparisons were significant ( p . .05).

Model-based analyses. As in the previous experiments, 
each model (described in Appendix B) was fit separately to 
the data for every participant from every training session 
(excluding the first block in the session, because it was con-
sidered practice). Analyzing the data in this way resulted 
in the following number of data sets in each condition: 
medium-low, 8 (1 training session 3 8 participants), me-
dium, 15 (3 training sessions 3 5 participants), medium- 
high, 15 (3 training sessions 3 5 participants), high, 20 (4 
training sessions 3 5 participants).

The results of the model-based analysis are summarized 
in Figure 4 (black bars). In contrast to the results from the 
information-integration task of Experiments 1 and 2, in-
spection of Figure 4 reveals that explicit strategies consis-
tently dominated across levels of category overlap in the 
rule-based task. Furthermore, on average, the best-fitting 
model accounted for more than 70% of the responses in 
all conditions (see Table 2). At the level of the individual 
participant, the best-fitting model accounted for at least 
60% of the responses for all but 1 participant.

DISCUSSION

The results of these experiments demonstrate that, con-
trary to the traditional view, category overlap can be used 

as an effective means to constrain decision strategy. The 
success of this approach, however, varies depending on 
the category-learning task. Specifically, the degree of cat-
egory overlap constrains the type of decision strategy used 
in information-integration tasks, but not rule-based tasks. 
For information-integration tasks, participants were con-
strained to use perceptual-integration strategies at moderate 
amounts of category overlap, whereas participants used ex-
plicit strategies at extreme amounts of overlap. In contrast, 
for rule-based tasks, explicit strategies were used consis-
tently, regardless of the amount of category overlap.

One possible explanation of these results is that different 
category-learning systems, specialized to use explicit and 
perceptual-integration strategies (respectively), are in com-
petition throughout learning. Such assumptions are found 
in the COvIS theory of category learning (competition 
between verbal and implicit systems; Ashby et al., 1998). 
COvIS hypothesizes that category learning is a competition 
between separate explicit and implicit systems. The explicit 
system is a logical reasoning system that uses explicit strat-
egies and is assumed to dominate learning in rule-based 
tasks. The implicit system is a procedural-learning system 
that uses perceptual-integration strategies and is assumed to 
dominate in information-integration tasks. In COvIS, the 
two systems operate in parallel, and both systems compete 
for control of the observable categorization response. Ini-
tially, the system weight, which reflects the relative domi-
nance of the explicit system, strongly favors the explicit 
system (Ashby et al., 1999). The system weight is adjusted 
up and down during learning, based on the relative success 
of each system.5 For example, in the medium condition of 
Experiment 1, the system weight would eventually shift in 
favor of the implicit system.

In the low condition of Experiment 1, a perceptual- 
integration strategy yields perfect accuracy, but the most 
accurate explicit strategy (i.e., the dashed line in Figure 1) 

Figure 6. Average accuracy across levels of category overlap in the rule-based task of Ex-
periment 3.
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does just as well. Because the COvIS explicit system ini-
tially dominates and there is a simple explicit strategy 
that will consistently be rewarded, COvIS predicts that 
the explicit system will dominate performance in the low 
condition. In the remaining conditions, the most accurate 
explicit strategies predict poorer performance than the op-
timal perceptual-integration strategy. Despite the initial 
dominance of the explicit system, COvIS predicts that 
the implicit system will be rewarded more frequently and 
that participants will eventually learn to use perceptual- 
integration strategies. In contrast, when category overlap 
is high, the accuracy of the best explicit strategy is low, 
but so is the accuracy of the best perceptual-integration 
strategy. In this case, neither system will be consistently 
rewarded, so COvIS predicts that the implicit system will 
not be able to overcome the initial advantage of the ex-
plicit system and that responding will be dominated by 
explicit strategies.

COvIS assumes that, throughout learning, explicit and 
implicit systems compete for control of the categoriza-
tion response and that the system that is best suited for 
the particular task eventually dominates. Indeed, many 
of the observed dissociations between rule-based and  
information-integration tasks could be interpreted as evi-
dence for competition. However, we would argue that the 
present data go one step further by beginning to character-
ize conditions under which this competition facilitates the 
dominance of one system or the other. At extreme levels 
of category overlap, the explicit system wins the competi-
tion, which is reflected by the high frequency of explicit 
strategies, regardless of the task. In contrast, at moderate 
levels of category overlap, the implicit system is able to 
overcome the initial bias to use explicit strategies in the 
information-integration task. Consistent with this claim, in 
the conditions with the greatest overlap (i.e., high condi-
tions of Experiments 1 and 2), there was very little change 
in the average proportion of data sets best fit by an explicit 
strategy: .70, .70, .60, and .70 across Sessions 1 through 
4, respectively. In contrast, at moderate levels of category 
overlap (medium-low, medium, and medium-high condi-
tions), there was a trend for the average proportion of data 
sets best fit by an explicit strategy to decrease across the 
three experimental sessions from .27 to .13 to .07. Further 
research will be needed to better characterize the dynam-
ics of this competitive process.

In sum, COvIS successfully predicts that for an 
information-integration task, performance should be 
dominated by explicit strategies at extreme levels of cat-
egory overlap, whereas performance should be dominated 
by implicit, perceptual-integration strategies at moderate 
levels of category overlap. COvIS predicts the present 
results because it assumes that (1) the explicit system ini-
tially dominates responding, and (2) it is only in situations 
in which the implicit system is rewarded more frequently 
than the explicit system that participants will be able to 
overcome this initial dominance and learn perceptual- 
integration strategies (Ashby et al., 1998; Ashby et al., 
1999).

The present results add to the growing number of dis-
sociations between rule-based and information-integration 
tasks that have been predicted a priori by COvIS (see 
Ashby & Maddox, 2005; Maddox & Ashby, 2004, for 
reviews). Multiple systems arguments have also been 
made in such diverse fields as reasoning (Sloman, 1996), 
motor learning (Willingham, 1998), discrimination learn-
ing (Kendler & Kendler, 1962), function learning (Hayes 
& Broadbent, 1988), and identification (Ashby, Waldron, 
Lee, & Berkman, 2001), as well as by other category learn-
ing researchers (e.g., Brooks, 1978; Erickson & Kruschke, 
1998; Nosofsky, Palmeri, & McKinley, 1994). Neverthe-
less, many recent categorization articles have argued for a 
single system that mediates all category learning (Nosofsky 
& Kruschke, 2002; Pothos, 2005; Zaki, Nosofsky, Jessup, 
& Unversagt, 2003; Zaki, Nosofsky, Stanton, & Cohen, 
2003). Although we cannot rule out the possibility that 
some single system model could account for the present 
results, a significant challenge for single system theorists 
is to account for the growing number of observed dissocia-
tions between rule-based and information-integration tasks 
within the same unified model.

Our results suggest that one strategy for designing a 
categorization task that encourages the use of implicit, 
perceptual-integration strategies is to use an information- 
integration task with moderate category overlap. In past 
applications of information-integration tasks, the primary 
design criterion for encouraging participants to use a 
perceptual-integration strategy, rather than an explicit 
strategy, was to ensure that the accuracy of the optimal 
(perceptual-integration) strategy substantially exceeded that 
of the most accurate explicit strategy. The present results 
suggest that this criterion, by itself, is insufficient. For exam-
ple, consider the medium-low, medium, medium-high, and 
high conditions of Experiment 1, in which perceptual- 
integration strategies outperform explicit strategies by 
8%, 21%, 16%, and 12%, respectively. In the medium-
low, medium, and medium-high conditions, perceptual- 
integration strategies clearly dominated. If ensuring an ac-
curacy advantage for the best perceptual-integration strategy 
was the sole condition for recruiting the implicit system, then 
perceptual-integration strategies should have dominated 
in the high condition, but this was not the case. Future re-
search will focus on characterizing the necessary conditions 
for recruiting systems that utilize explicit and perceptual- 
integration strategies.

Increasing category overlap correlated highly with task 
difficulty in the present experiments. To be clear, we are 
not claiming that any method of varying task difficulty 
would be sufficient to reproduce these results. Instead, 
the value of manipulating category overlap was that it pro-
duced category structures that varied in asymptotic accu-
racy. Some manipulations of task difficulty will lower as-
ymptotic accuracy, which should therefore favor explicit 
strategies. Other manipulations would not necessarily 
reduce asymptotic accuracy. Instead, they might simply 
delay the time it takes participants to reach such a level 
of performance (e.g., when the optimal decision bound is 
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quadratic vs. linear). In these cases, COvIS predicts that 
varying task difficulty will not cause a shift to explicit 
strategies.

Increasing category overlap also reduces the validity of 
the feedback. In the low and medium-low conditions, each 
exemplar is unambiguously a member of one and only 
one category. Therefore, when a stimulus is presented, 
feedback indicates that a Category A response was cor-
rect, with probability 1 or 0. In the medium, medium-high, 
and high conditions, however, the categories overlapped, 
which means that each stimulus in the overlapping region 
could belong to Category A or B. Thus, for these stimuli, 
the feedback indicates that a Category A response was 
correct with some probability between 0 and 1. Tasks 
such as this, in which the relationship between stimuli and 
category membership is probabilistic, are known in the 
literature as probabilistic classification tasks. Although 
the majority of category-learning studies have used deter-
ministic tasks, probabilistic classification also has a long 
history (Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; 
Gluck & Bower, 1988; Kubovy & Healy, 1977).

Recently, a probabilistic classification task called the 
weather-prediction task has become especially popular 
in the neuropsychology literature (Knowlton, Squire, & 
Gluck, 1994). On each trial of the weather-prediction task, 
participants are presented with one, two, or three out of 
four possible cards and are asked to use this information to 
predict the weather (rain or shine; Knowlton et al., 1994). 
Each card displays a highly discriminable pattern, which, 
by itself, predicts sunshine 75%, 57%, 43%, or 25% of 
the time (in the original application; see, e.g., Knowlton, 
Mangels, & Squire, 1996). As is the case in information-
integration tasks, optimal accuracy (i.e., approximately 
76% correct) can only be achieved by integrating the 
information across the different cards. Even so, partici-
pants can achieve almost optimal accuracy with an ex-
plicit strategy in which they simply respond on the basis 
of the presence or absence of the most informative card 
(i.e., approximately 73% correct). Because the weather-
prediction task is probabilistic, and optimal accuracy re-
quires information integration, it has often been assumed 
that learning in the task is mediated by a single system 
that recruits some implicit, incremental process (Knowl-
ton et al., 1996; Weickert et al., 2002; Witt, Nuhsman, & 
Deuschl, 2002). However, our results suggest that explicit 
strategies should be common in the weather-prediction 
task, because a simple explicit strategy is nearly optimal. 
In fact, recent strategy analyses indicate that, at least ini-
tially, learning in the weather-prediction task is dominated 
by explicit strategies (Gluck, Shohamy, & Myers, 2002). 
This result, together with the results described here, sug-
gests that knowing whether a category-learning task is de-
terministic or probabilistic, by itself, provides little infor-
mation about how people will learn the task. Instead, our 
results show that it is critical to know whether a rule-based 
or information-integration task was used, and in the latter 
case, whether there exists some simple explicit strategy 
that is nearly optimal.
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NOTES

1. The rule-based categories were generated by rotating the Figure 1 
categories 45º counterclockwise—a procedure that guarantees that op-
timal accuracy, within-category scatter, and category coherence were 
equivalent across the rule-based and information-integration tasks.

2. Note that because category overlap was increased by simply de-
creasing the distance between the category means (while equating the 
respective distances between the category boundary), both the optimal 
perceptual-integration strategy and the most accurate explicit strategy 
are constant across conditions. As a result, the regions of stimulus space 
for which explicit and perceptual-integration strategies differ in their 
predictions also remain constant across levels of category overlap.

3. The accuracy rates were obtained by computing the percentage of 
correct classifications predicted by the most accurate explicit strategy in 
the absence of internal noise. Specifically, the most accurate explicit strat-
egy (e.g., the dashed vertical line in Figure 1) assumes that the participant 
sets a single criterion on the spatial frequency dimension at 110 units and 
responds A or B for stimuli less than or greater than this criterion, respec-
tively. Note that there exists a similar explicit strategy defined along the 
orientation dimension that predicts identical accuracy rates.

4. The statistic used for model comparison (BIC; see Appendix B 
for details) tends to favor less complex models (e.g., optimal models). 
Repeating the analysis using a statistic that decreases the penalty for 
model complexity (AIC 5 2r 2 2lnL; Akaike, 1974) did not alter the 
distribution of explicit and perceptual-integration models across the five 
experimental conditions.

5. A full description of COvIS’s dynamics is beyond the scope of 
the discussion, but the interested reader should see Ashby et al. (Ashby 
et al., 1998).
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APPENDIX A

APPENDIX B

This appendix briefly describes the decision bound models. For more details, see Ashby (1992a) or Mad-
dox and Ashby (1993).The classification of these models as either perceptual-integration or explicit models is 
designed to reflect current theories of how these strategies are learned (see, e.g., Ashby et al., 1998) and has re-
ceived considerable empirical support (see Ashby & Maddox, 2005, and Maddox & Ashby, 2004, for reviews).

Perceptual-Integration Models
The general linear classifier (GLC). This model assumes that the decision bound between each pair of 

categories is linear and requires the integration of perceived spatial frequency and orientation. The GLC has 
three parameters (slope and intercept of the linear bound and σ2). In the information-integration task of Experi-
ments 1 and 2, a special case of the GLC assumes that participants use the linear bound that maximizes accuracy 
(the diagonal bounds shown in Figure 1). This model has only one free parameter (σ2) and is referred to as the 
optimal perceptual-integration model.

The general quadratic classifier (GQC). A natural extension of the GLC, this model assumes that 
the participant uses a quadratic, rather than linear, decision bound. This model also produces a perceptual-
 integration strategy, but the integration of perceived spatial frequency and orientation is nonlinear. The GQC 
has six free parameters (five describing the form of the decision bound and σ2).

Explicit Models
Two models assumed that participants used an explicit strategy.
The one-dimensional model. This model assumes that the participant sets a criterion on a single percep-

tual dimension and then makes an explicit decision about the level of the stimulus on that dimension (Ashby & 
Gott, 1988; Shaw, 1982). Two versions of the one-dimensional model were fit to these data: One assumed that 
participants attended selectively to spatial frequency and the other assumed that participants attended selec-
tively to orientation. The one-dimensional models have two free parameters: a decision criterion on the relevant 
perceptual dimension and the variance of internal (perceptual and criterial) noise (σ2). In the rule-based task of 
Experiment 3, a special case of the one-dimensional model assumes that participants use the one-dimensional 
decision bound that maximizes accuracy (the vertical bounds shown in Figure 2). This special case has only one 
free parameter (i.e., σ2).

Spatial Frequency Orientation
(Arbitrary Units)  (Degrees From Horizontal)

Experiment 1: Low Condition

 60 100
 50  65
 80  90
 90 105
150 165
120 130
120 160
130 175
100  90
 75  55
105  70
 85  80
160 120
125 115
150 140
180 160

Experiment 3: Medium-Low Condition

108  70
112  80
107  90
113 100
108 110
112 120
107 130
113  140
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APPENDIX B (Continued)

Conjunction models. Although the one-dimensional strategy will maximize accuracy, another type of ex-
plicit strategy available to participants is a conjunction strategy. As is the case with perceptual-integration strat-
egies, conjunction strategies also require the integration of spatial frequency and orientation information. For 
example, a participant might set a criterion along the spatial frequency dimension to determine if the stimulus is 
high or low in spatial frequency and set a separate criterion on orientation, to determine if the angle is shallow 
or steep. The results of these independent decision processes might then be combined to make a response—for 
example, “Respond A if the stimulus is low and shallow.” Although conjunction strategies require integration, 
they differ from perceptual-integration strategies in that the integration is postdecisional. In other words, deci-
sions are made about the stimulus value on each dimension, and the output of these decisions is explicitly inte-
grated to generate a category response. Indeed, recent evidence supports this distinction between conjunction 
and perceptual-integration strategies (Maddox, Bohil, & Ing, 2004).

Conjunction models have three parameters (a criterion on each dimension, and σ2). Based on inspection 
of the data from the individual participants, two versions of the conjunction model were fit to these data. The 
first assumed that individuals assigned a stimulus to Category B if it was high in spatial frequency and low in 
orientation (i.e., the bars are thin and shallow); otherwise the stimulus was assigned to Category A. The second 
conjunction model assumed that a stimulus was assigned to Category A if it was low in spatial frequency and 
high in orientation (i.e., the bars are thick and steep); otherwise the stimulus was assigned to Category B.

Model Fitting
The model parameters were estimated using maximum likelihood (Ashby, 1992b; Wickens, 1982) and the 

goodness-of-fit statistic was

BIC 5 r lnN 2 2lnL,

where N is the sample size, r is the number of free parameters, and L is the likelihood of the model, given the data 
(Schwarz, 1978). The BIC statistic penalizes a model for bad fit and for extra free parameters. To find the best 
model among a set of competitors, one simply computes a BIC value for each model, and then chooses the model 
with the smallest BIC.
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