
Category learning is the process of establishing the 
memory traces necessary to organize objects and events 
in the environment into separate classes. Researchers 
have long debated the existence and qualitative nature 
of various category-learning systems. If any consensus 
has emerged from this debate, it is that categorization can 
occur by a process of explicit hypothesis testing (Allen & 
Brooks, 1991; Ashby, Alfonso-Reese, Turken, & Waldron, 
1998; Erickson & Kruschke, 1998; Folstein & Van Petten, 
2004; Nosofsky, Palmeri, & McKinley, 1994; Regehr & 
Brooks, 1995). According to the multiple learning sys-
tems perspective, a hypothesis-testing system would not 
be ideally suited for all category-learning tasks. Instead, 
a hypothesis-testing system is thought to be primarily re-
sponsible for learning rule-based tasks where accuracy is 
maximized by first learning which stimulus dimensions 
are relevant and then learning the placement of decision 
criteria along the relevant dimensions (Ashby et al., 1998; 
Ashby & Ell, 2001). Not surprising, computational mod-
els implementing a hypothesis-testing system have fo-
cused on how the decision criteria are updated in response 
to trial-by-trial information (e.g., the stimuli, corrective 
feedback; Ashby et  al., 1998; Busemeyer & Myung, 
1992; Erickson & Kruschke, 1998; Kac, 1962; Kubovy 
& Healy, 1977; Maddox, 2002; E. A. C. Thomas, 1973). 

Many models of categorization and decision making also 
emphasize the effect of variability in the representation of 
the decision criterion, or criterial noise (e.g., Ashby et al., 
1998; Ashby & Lee, 1993; Benjamin, Diaz, & Wee, 2009; 
Dorfman, Saslow, & Simpson, 1975; Erev, 1998; Mueller 
& Weidemann, 2008; Treisman & Williams, 1984). Al-
though criterial noise is thought to have a negative effect 
on categorization accuracy, few studies have examined 
how criterial noise effects might interact with the demands 
of rule-based category-learning tasks.

To begin, consider the categories in Figure 1A. Each 
point represents the spatial frequency and spatial orienta-
tion of a Gabor pattern (i.e., a sine wave grating in which 
contrast is modulated by a circular Gaussian filter). The 
optimal strategy involves learning the single unidimen-
sional (1UD) decision criterion denoted by the solid verti-
cal line. On each trial, the participant is presented with a 
single Gabor pattern and is instructed to assign the stimu-
lus to Category A or B. Corrective feedback is provided 
immediately following the response, and the participant 
uses this feedback to learn the correct category assign-
ments through trial and error. Thus, to learn this rule-
based task, the participant needs to learn the placement 
of the most accurate (i.e., optimal) decision criterion on 
the spatial frequency dimension (i.e., the vertical lines). 
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For the category structures in Figures 1B and 1C, learn-
ing proceeds in a similar fashion, with the exception that 
criterial learning demands are increased, because, in Fig-
ure 1B, two unidimensional (2UD) decision criteria and, 
in Figure 1C, three unidimensional (3UD) decision criteria 
must be learned. Criterial noise, as well as variability in 
the representation of the stimulus (i.e., perceptual noise) 
will affect learning, but our emphasis will be on criterial 
noise (we will return to the issue of criterial versus percep-
tual noise in the Discussion section).

Suppose that the representation of the decision crite-
rion in Figure 1A is noisy and modeled by a zero-mean 
diffusion process (e.g., Ashby, 2000; Ratcliff, 1978). This 
implies that, with time, the representation of the decision 
criterion will naturally drift away from its mean posi-
tion, thereby slowing the learning rate. Including addi-
tional decision criteria, as in Figures 1B and 1C, should 
increase the impact of drift on categorization accuracy. 
To verify this intuition, we developed and simulated the 
behavior of a model that used the optimal decision cri-
teria (i.e., the solid lines in Figures 1A–1C). The goal of 
these simulations was to use a relatively simple model 
to provide a context in which to compare the impact of 
drift on categorization accuracy for the categories in Fig-
ures 1A–1C. Following previous approaches to modeling 
criterial noise (Erev, 1998; Mueller & Weidemann, 2008), 
drift was modeled by assuming that there is within-trial 
variability in the representation of the decision criteria, 
with increased variability implying increased drift. On 
each trial, i, of the simulation, decision criterion xi was 
randomly shifted, such that xi 5 xopt 1 ec, where xopt is 
the position of the optimal decision criterion and ec is cri-
terial noise. The criterial noise, ec, was modeled as a sto-
chastic process with M 5 0 and variance 5 tσ2, where t is 
time (in seconds; e.g., Cox & Miller, 1965). The amount 
of drift in the decision criterion is determined by σ and t, 
with smaller values of σ resulting in a lower drift rate 
and smaller values of t resulting in lower overall drift. 
Accuracy predictions were generated by averaging over 
1,000 replications for 1  σ  5 and t 5 1 and are plotted 
in Figure 2A. When the drift rate is low (approximately 
σ  2.5), there is little impact of the number of decision 
criteria (one, two, or three) on accuracy. As the drift rate 
increases, however, increasing the number of decision 
criteria has an increasingly negative impact on accuracy 
(i.e., the 2UD and 3UD categories).

The duration of events in a typical rule-based category-
learning task (i.e., stimulus presentation, response, feed-
back, intertrial interval [ITI]) is often too short for the 
impact of drift in the decision criterion to be observable. 
One solution to this problem is to insert a delay during the 
normal sequence of events. For instance, delaying the de-
livery of corrective feedback following a response would 
be expected to result in poorer learning of the decision 
criterion. We replicated the simulations, letting t repre-
sent the delay between the response and the feedback and 
increasing t to 5 sec. As expected, accuracy decreased for 
all three category structures when the delay was increased 
(Figure 2B). As can be seen in Figure 2C, however, the 
impact of increasing the delay on accuracy was positively 
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Figure  1. Category structures with (A)  one, (B)  two, or 
(C) three unidimensional (1UD, 2UD, and 3UD, respectively) 
decision criteria on the spatial frequency dimension. Each open 
circle denotes the spatial frequency and spatial orientation of 
a Gabor pattern from Category A. Each filled circle denotes 
a Gabor pattern from Category  B. Each open square  de-
notes a Gabor pattern from Category C. Each filled square de-
notes a Gabor pattern from Category D.
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as 10 sec when a single decision criterion is learned (i.e., 
similar to the 1UD categories in Figure 1A) does not re-
sult in an accuracy cost (Maddox, Ashby, & Bohil, 2003). 
The most likely reason for the misprediction is the overly 
simplified model used in the simulations. For instance, 
given that rule-based category learning is highly depen-
dent on working memory (i.e., the active maintenance and 
manipulation of the decision criteria; Ashby & Ell, 2002; 
Maddox, Ashby, Ing, & Pickering, 2004; Maddox, Filoteo, 
Hejl, & Ing, 2004; Waldron & Ashby, 2001; Zeithamova 
& Maddox, 2006, 2007), it is reasonable to assume that 
working memory could slow the drift by stabilizing the 
representation of the decision criterion.1

Interestingly, the drift rates in the simulations in Fig-
ures 2A–2C that predict small accuracy costs for 1UD 
also predict no accuracy cost as the number of criteria in-
creases. Thus, it may be that working memory resources 
are sufficient to stabilize the drift regardless of the number 
of decision criteria. An alternative hypothesis, however, is 
that working memory can slow the drift rate but, because 
working memory has a limited capacity, the system’s effi-
ciency will decrease as the number of decision criteria to be 
represented increases. Thus, the impact of delayed feedback 
on accuracy should increase dramatically once the demands 
of the task exceed working memory capacity limitations. 
Given that there was no effect of delaying feedback when 
participants were required to learn a single decision crite-
rion (Maddox et al., 2003), we opted to investigate this hy-
pothesis by focusing on rule-based category-learning tasks 
with two (2UD) and three (3UD) decision criteria.

Experiment 1

Method
Participants and Design

A total of 105 participants were solicited from the University of 
Texas community and received course credit for participation. The 
participants were randomly assigned to the six experimental condi-
tions as follows: 2UD delay (n 5 24), 2UD immediate (n 5 26), 
3UD delay (n 5 24), and 3UD immediate (n 5 31). No participant 
completed more than one experimental condition, and each session 
lasted approximately 60 min. All of the participants were tested for 
20/20 vision using a Snellen eye chart. In nearly all of our current 
work with two categories, we define a learner as a participant who 
achieves 65% accuracy during the final block of trials. To account 
for lower chance accuracy due to the increased number of categories, 
we lowered the criterion proportionally to 43% accuracy and 32.5% 
accuracy during the final block of trials for the two (2UD) decision 
criteria and three (3UD) decision criteria conditions, respectively. 
The data from participants who did not meet this criterion were ex-
cluded from all subsequent analyses. These criteria resulted in the 
following exclusions: 2UD delay (n 5 6), 2UD immediate (n 5 4), 
3UD delay (n 5 5), 3UD immediate (n 5 6).

Stimuli and Stimulus Generation
In Experiment 1, we used the randomization technique introduced 

by Ashby and Gott (1988). The stimuli (2UD, 81 total, 27 from each 
of the three categories; 3UD, 80 total, 20 from each of the four cat-
egories) were generated by sampling randomly from separate bivari-
ate normal distributions (see Table 1 for category parameters). One 
set of stimuli was generated and the presentation order was random-
ized in each of four blocks of trials for every participant.

The stimuli were computer generated and displayed on a 21-in. 
monitor with 1,360 3 1,024 pixel resolution in a dimly lit room. 

correlated with the number of decision criteria, with the 
accuracy cost being greatest for the 3UD categories.

Although the accuracy cost is generally higher for the 
3UD categories, it should be noted that an accuracy cost 
is predicted for most values of σ for the 1UD and 2UD 
categories as well. Delaying feedback, however, by as long 
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Figure 2. Accuracy predictions as a function of drift rate (σ, the 
standard deviation of the criterial noise distribution) for the ideal 
observer simulations for the three category structures in Figure 1 
(1UD, 2UD, and 3UD). (A) Predicted accuracy for a 1-sec delay 
(i.e., t 5 1). (B) Predicted accuracy for a 5-sec delay (i.e., t 5 5). 
(C) Accuracy cost of increasing the delay (predicted accuracy for 
delay 5 1 sec minus the predicted accuracy for delay 5 5 sec).
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and thus impairs accuracy, but only when the demands of 
the task exceed capacity limitations (i.e., the 3UD catego-
ries). The finding of no accuracy cost in the 2UD catego-
ries (and in the 1UD categories of Maddox et al., 2003) 
suggests that the effect of drift can be overcome, but only 
when the demands on working memory resources are suf-
ficiently low. More specifically, we would argue that the 
working memory demand due to the requirement to ma-
nipulate and maintain three decision criteria when there 
is a 5-sec delay between response and feedback exceeds 
the working memory capacity needed to learn these rule-
based tasks.

Model-Based Analyses
Following Maddox et al. (2003), we applied a series of 

decision-bound models to the data to determine the types 
of strategies that participants might use to solve these 
tasks. Given that observed accuracy was well below as-
ymptote, we cannot assume that the participants were re-
sponding optimally. Thus, it is important to verify that the 
participants were using strategies that assume the repre-
sentation of a decision criterion. Decision-bound models 
were fit separately to the data from each participant and 
each block. When it is informative, we provide informa-
tion about of the all blocks, but, for brevity, we focus on 
the results from the final block of data.

Decision-bound models are derived from general rec-
ognition theory (GRT; Ashby & Townsend, 1986), which 
is a multivariate generalization of signal detection theory 
(e.g., Green & Swets, 1966). GRT assumes that there is 
trial-by-trial variability in the perceptual information ob-
tained from every stimulus, no matter what the viewing 
conditions (Ashby & Lee, 1993). GRT assumes that each 
participant partitions the perceptual space into response 
regions by constructing decision boundaries to separate 
the regions. On each trial, the participant determines which 

Each Gabor pattern was generated using MATLAB routines from 
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Each ran-
dom sample (x1, x2) was converted to a stimulus by deriving the 
frequency, f 5 .25 1 (x1/50), and orientation, o 5 x2(π/500). For 
example, the Category A mean for the 2UD category structure was 
converted to a Gabor pattern with frequency f 5 .25 1 (255/50) 5 
5.35 cyc/deg and orientation o 5 125(π/500) 5 0.785 radians coun-
terclockwise from horizontal. The scaling factors were chosen in an 
attempt to equate the salience of frequency and orientation.

Procedure
The participants were informed of the number of categories and 

that each category was equally likely to appear. They were informed 
that perfect performance was possible and were instructed to learn 
about the categories. They were told to be as accurate as possible and 
not to worry about speed of responding. The procedure for a typical 
trial was as follows. The immediate feedback condition consisted of 
a response-terminated stimulus display, a 500-msec mask, 750 msec 
of feedback, and a 5-sec blank-screen ITI. The delayed feedback con-
dition consisted of a response-terminated stimulus display, a 5-sec 
mask, 750 msec of feedback, and a 500-msec blank-screen ITI.

The mask was a Gabor pattern that subtended approximately 11º 
of visual angle and was of a random frequency and orientation from 
within the range of stimulus values.

Results and Theoretical Analyses

Accuracy-Based Analyses
Inspection of the average accuracy data in Figure 3 

shows an accuracy cost when feedback was delayed, but 
only when three decision criteria were learned. To directly 
test this observation, we analyzed the effect of feedback 
delay for the 2UD and 3UD categories using separate 
2 (feedback condition: immediate vs. delayed) 3 4 (block) 
mixed ANOVAs. For 2UD criteria, only the main effect 
of block was significant [F(3,114) 5 58.73, MSe 5 .01, 
p , .001], with both the main effect of feedback condition 
and the interaction yielding Fs less than 1. For 3UD crite-
ria, the main effects of block [F(3,126) 5 66.02, MSe 5 
.009, p , .001] and feedback condition [F(1,42) 5 58.73, 
MSe 5 .08, p , .05] were significant, and the interaction 
was marginally significant [F(3,126) 5 2.40, MSe 5 .009, 
p 5 .07].

These results are consistent with the hypothesis that de-
layed feedback increases the drift in the decision criteria 

Table 1 
Category Distribution Parameters

Condition  Category  μf  μo  σ f
2  σo

2  covf,o

Experiment 1

2UD A 255 125 9 9,000 0
B 285 125 9 9,000 0
C 315 125 9 9,000 0

3UD A 255 125 9 9,000 0
B 285 125 9 9,000 0
C 315 125 9 9,000 0
D 345 125 9 9,000 0

Experiment 2

4CJ A1 260 100 25 625 0
A2 260 200 25 625 0
B 300 100 25 625 0
C 300 200 25 625 0
D1 340 100 25 625 0

  D2  340  200  25  625  0
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Figure 3. Proportion correct for the delayed- and immediate-
feedback conditions of Experiment 1. 2UD, two-unidimensional 
condition; 3UD, three-unidimensional condition.
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ticipant tested with the 2UD categories. We computed the 
percentage of responses accounted for by the best-fitting 
model and found relatively large values, suggesting that the 
model comparisons are valid (delayed: hypothesis testing, 
73%, SD 5 15; information integration, 72%, SD 5 17; 
immediate: hypothesis testing, 72%, SD 5 15; information 
integration, 82%, SD 5 4). As predicted, the percentage of 
participants using hypothesis-testing strategies was high 
for both immediate- (82%) and delayed-feedback (83%) 
conditions, and the accuracy rate achieved by these par-
ticipants was also high (73% and 75% for the immediate- 
and delayed-feedback conditions, respectively). Thus, the 
majority of participants were using hypothesis-testing 
strategies, and, consistent with the accuracy analyses, 
their performances were similar for the immediate- and 
delayed-feedback conditions.

For the 3UD categories, we fit the hypothesis-testing 
and information-integration models to each participant’s 
data on a block-by-block basis.2 In the delayed-feedback 
condition, the percentage of observers using a hypothesis-
testing strategy was high in all four blocks (90%, 78%, 
79%, and 78% in Blocks 1–4, respectively). A similar 
pattern held in the immediate-feedback condition (84%, 
88%, 84%, and 80% in Blocks 1–4, respectively). On 
the other hand, the accuracy rates for these participants 
were lower in the delayed- than in the immediate-feedback 
condition in Blocks 1–3 (delayed, 34%, 47%, and 52% 
in Blocks 1–3, respectively; immediate, 43%, 59%, and 
64% in Blocks 1–3, respectively) but were equivalent 
in Block 4 (67% in both the immediate- and delayed-
feedback conditions).

To identify the locus of the delayed-feedback effect on 
rule-based learning during the first three blocks of trials, 
we examined the parameter estimates from the suboptimal 
spatial frequency model. We computed the absolute devia-
tion between the observed decision criteria and the optimal 
criteria for each of the three criteria and averaged those 
absolute deviations. Large absolute deviations are associ-
ated with highly suboptimal decision criterion placements 
and, thus, with poor learning, whereas small absolute de-
viations are associated with more nearly optimal decision 
criterion placement and, thus, with good learning. Focus-
ing only on the participants whose data were best fit by 
a hypothesis-testing model, the median for the absolute 
deviation measure was 35.2, 9.7, and 12.9 for the delayed-
feedback condition in Blocks 1–3, respectively, and was 
17.7, 5.7, and 5.1 for the immediate-feedback condition 
in Blocks 1–3, respectively, suggesting that the decision 
criteria of participants in the delayed-feedback condition 
deviated more from optimal than did those of participants 
in the immediate-feedback condition.

In addition, we examined the noise standard deviation 
from the same model. The noise standard deviation is a 
measure of the memory and the consistent application of 
the learned decision criteria, as well as the memory of 
the perceptual representation of the stimulus (with lower 
values representing less criterial and perceptual noise). 
The median for the noise measure was 10.6, 6.8, and 5.7 
for the delayed-feedback condition in Blocks 1–3, re-
spectively, and was 8.2, 4.7, and 4.7 for the immediate-

region the percept is in and then emits the associated re-
sponse. Despite this deterministic decision rule, decision-
bound models predict probabilistic responding because of 
trial-by-trial variability that occurs as a result of percep-
tual and criterial noise. Two different classes of decision-
bound models were fit to the data (see Ashby, 1992a, for a 
more formal treatment of these models; Maddox & Ashby, 
1993). One type is compatible with the assumption that 
the participants used an explicit hypothesis-testing strat-
egy, and one type assumes an information-integration 
strategy.

Hypothesis-testing models. 2UD rule-based mod-
els were applied. The unidimensional, spatial frequency 
model assumes that the participant sets two (2UD catego-
ries) or three (3UD categories) criteria along the spatial 
frequency dimension. For the 2UD categories, the model 
uses the rule respond A if the spatial frequency is low, 
respond B if the spatial frequency is intermediate, re-
spond C if the spatial frequency is high. This model has 
three (2UD) or four (3UD) free parameters: one param-
eter for each decision criterion and one noise variance. A 
special case of this model assumes that participants use 
the optimal decision strategy (i.e., the vertical decision 
bounds in Figure 1B or 1C) with noise variance being the 
only free parameter.

Information-integration model. The minimum dis-
tance classifier assumes that there are three units, one as-
sociated with each category, in the frequency–orientation 
space. On each trial, the participant determines which unit 
is closest to the perceptual effect and gives the associ-
ated response. Because the location of one of the units 
can be fixed and since a uniform expansion or contrac-
tion of the space will not affect the location of the result-
ing (minimum distance) decision bounds, the model for 
the 2UD categories contains four free parameters (i.e., 
three that determine the location of the units associated 
with Categories A–C and one noise variance). The model 
for the 3UD categories includes an additional parameter 
determining the location of the unit associated with Cat-
egory D. This model is assumed to make categorization 
decisions by combining information across the spatial fre-
quency and orientation dimensions, rather than by setting 
decision criteria on the spatial frequency dimension, as 
is the case with the hypothesis-testing models (Ashby & 
Waldron, 1999).

Model fits. The model parameters were estimated using 
maximum likelihood (Ashby, 1992b; Wickens, 1982), and 
the goodness-of-fit statistic was AIC 5 2r 2 2lnL, where 
r is the number of free parameters, and L is the likelihood 
of the model given the data (Akaike, 1974; Takane & Shi-
bayama, 1992). The AIC statistic penalizes a model for 
extra free parameters in such a way that the smaller the 
AIC, the closer a model is to the true model, regardless 
of the number of free parameters. Thus, to find the best 
model among a given set of competitors, one simply com-
putes an AIC value for each model and chooses the model 
associated with the smallest AIC value.

Using AIC, we determined which of the model types—
hypothesis testing or information integration—provided 
the best account of the final block of data for each par-
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and the orientation is shallow, respond C if the frequency 
is intermediate and the orientation is steep, respond D 
if the frequency is high. Because we want to compare 
performance directly between the 3UD condition from 
Experiment 1 and the 3CJ condition from Experiment 2, 
we equated immediate-feedback performance between the 
conditions. We did this by conducting a series of small 
pilot studies to determine the appropriate category distri-
bution parameters to achieve this goal.

Method
Participants and Design

Fifty-six participants were solicited from the University of Texas 
community and received course credit for participation. The partici-
pants were randomly assigned to the two experimental conditions 
as follows: 3CJ delay (n 5 28) and 3CJ immediate (n 5 28). No 
participant completed more than one experimental condition, and 
each session lasted approximately 60 min. All of the participants 
were tested for 20/20 vision using a Snellen eye chart. A learning 
criterion of 32.5% correct during the final block resulted in the fol-
lowing exclusions: delayed (n 5 5) and immediate (n 5 4).

Stimuli and Stimulus Generation
The stimuli, stimulus generation, and experimental procedures 

were identical to those in the 3UD condition of Experiment 1, with 
the exception that different parameters were used to generate the 
categories (see Table 1).

Results and Theoretical Analyses

Accuracy-Based Analyses
Average accuracy from the delayed- and immediate-

feedback conditions for the 3CJ and 3UD (replotted for ref-
erence) conditions are displayed in Figure 5. As can be seen 
in Figure 5, there was no effect of delay on rule-based learn-
ing when the participant was required to learn two decision 

feedback condition in Blocks 1–3, respectively. Thus, the 
delayed feedback effect early in rule-based learning for 
the 3UD categories appears to be due primarily to poor 
learning of the placement of the decision criteria and to a 
slight increase in criterial and perceptual noise.

Experiment 2

The results of Experiment 1 support the hypothesis that 
the increase in working memory demand associated with 
learning three decision criteria leads to an accuracy cost in 
rule-based category learning. We would argue, however, 
that there is nothing special about three decision criteria. 
For instance, it may simply be more difficult to maintain 
the representation of three decision criteria defined along a 
single dimension, relative to distributing the criteria across 
multiple dimensions. Work in absolute identification—a 
closely related paradigm in which participants are asked to 
assign a unique response to each unique stimulus—shows 
that identification performance improves as the number 
of dimensions relevant to solving the task increases (Att-
neave, 1959; Garner, 1962; Miller, 1956; Pollack, 1952). 
For example, participants have great difficulty learning to 
identify nine lines of different lengths but have little dif-
ficulty learning nine lines constructed from the factorial 
combination of three line lengths with three line orienta-
tions. Miller hypothesized that the multidimensional bene-
fit emerges because information transmission is increased 
(i.e., an increased correlation between the stimulus input 
and identification response) when identifying multidimen-
sional, relative to unidimensional, stimuli. If the decision 
criteria are also considered to be input to the decision pro-
cess, it seems reasonable to assume that the multidimen-
sional benefit observed in absolute identification should 
generalize to rule-based category learning. Such a finding 
would also be consistent with research arguing that identi-
fication and categorization involve a similar decision pro-
cess (Ashby & Lee, 1991; Maddox, 2001, 2002; Nosofsky, 
1986; Shepard, Hovland, & Jenkins, 1961), given that the 
primary difference is in the nature of the stimulus–response 
mapping (many-to-one in category learning versus one-to-
one in identification).

Increased information transmission is likely to have 
many benefits for cognition, but we hypothesize that one 
indirect benefit would be reduced working memory de-
mand. Thus, when the decision criteria are distributed 
across two dimensions, relative to all criteria being de-
fined on a single dimension (i.e., the 3UD categories), 
working memory resources would be available to slow 
the drift rate on the representation of the decision criteria, 
resulting in a reduction in the effect of delayed feedback. 
We tested this prediction in Experiment 2 using the cat-
egory structure in Figure 4. We refer to this as the 3CJ 
condition, since the decision rule requires a conjunction 
of three decision criteria across both spatial frequency and 
orientation. The optimal strategy requires the participant 
to set two criteria on spatial frequency and one on spatial 
orientation using the following rule: Respond A if the fre-
quency is low, respond B if the frequency is intermediate 
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Figure 4. Category structure from Experiment 2. Each open 
circle denotes the spatial frequency and spatial orientation of 
a Gabor pattern from Category A. Each filled circle denotes a 
Gabor pattern from Category B. Each open square denotes a 
Gabor pattern from Category C. Each filled square denotes a 
Gabor pattern from Category D. 3CJ, three-decision-criteria con-
junction condition.
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the hypothesis that distributing the criteria across multiple 
dimensions increases the availability of working memory 
resources that can be used to overcome the effect of drift 
resulting from criterial noise.

Experiment 3

The data from Experiments 1 and 2 are consistent with 
the hypothesis that working memory can be used to slow 
the drift rate of the decision criteria. This interpretation, 
however, is based on the claim that working memory de-
mand is greater in the 3UD categories than in the 3CJ cat-
egories. To test this hypothesis directly, in Experiment 3, 
we used a dual-task procedure as a probe for working 
memory demand during the learning of the 3UD and 3CJ 
categories (Maddox, Ashby, et al., 2004; Zeithamova & 
Maddox, 2007).

On each trial in Experiment 3, the participant catego-
rized, received 500 msec of feedback, and then completed 
a single four-item memory-scanning task. The idea is that 
performance of the memory-scanning task will prevent 
normal feedback processing and, consequently, will im-
pair accuracy in categorization tasks with high working 
memory demand. Indeed, the memory-scanning task has 
been shown to be diagnostic of working memory demand 
in categorization tasks (Maddox, Ashby, et  al., 2004; 
Zeithamova & Maddox, 2007)—a result that is consistent 
with dual-task paradigms in which the secondary task, 
stimulus presentation, categorization response, and feed-
back are all coincident (e.g., Waldron & Ashby, 2001; 
Zeithamova & Maddox, 2006). Importantly, the degree 
to which the memory-scanning task will interfere with 
category learning should be directly proportional to the 
working memory demand associated with learning the 
task. Therefore, if the 3UD task taxes working memory 
to a greater extent than does the 3CJ task, categoriza-
tion accuracy should be lower in the 3UD than in the 3CJ 
categories while the participants perform the memory-
scanning task.

Method
Participants and Design

Fifty participants (25 in each task) were solicited from the Univer-
sity of Texas community and received course credit for participation. 
No participant completed more than one experimental condition. 
All of the participants were tested for 20/20 vision using a Snellen 
eye chart. Each participant completed one session with a duration of 
approximately 60 min.

Stimuli and Stimulus Generation
Category learning. The category-learning stimuli were identical 

to those outlined in Experiment 1.
Memory scanning. On each trial, four digits were sampled ran-

domly (without replacement) from the set of single-digit numbers 
(0–9). The four selected digits were displayed for 500 msec in 48-
point type in a horizontal array, each separated by 100 pixels and 
vertically centered on the screen. A blank screen was then displayed 
for 1,000 msec. Next, a single digit was sampled randomly, with 
.5 probability of being sampled from the memory set. The selected 
digit was displayed centered on the screen along with the question, 
“Was this item in the memory set?” The observer then responded yes 

criteria along the frequency dimension and one along the 
orientation dimension (3CJ). To compare this result with 
that for the 3UD rule-based task, we must demonstrate that 
accuracy was equated in the immediate-feedback condi-
tions. We demonstrate this by comparing performance on 
a block-by-block basis. In all four blocks, performance did 
not differ (all ps . .05), suggesting that we were successful 
at equating immediate-feedback performances across the 
two rule-based conditions. To determine whether delayed 
feedback affects 3CJ category learning, a 2 (feedback con-
dition: immediate vs. delayed) 3 4 (block) mixed design 
ANOVA was conducted on the accuracy rates. Only the 
main effect of block [F(3,135) 5 77.88, MSe 5 .010, p , 
.001] was significant, with both the main effect of feedback 
condition and the interaction yielding Fs less than 1. As was 
the case in Experiment 1, the majority of the participants 
in the immediate- (84%) and delayed- (81%) feedback 
conditions were using hypothesis-testing strategies during 
the final block. The results of the analysis of the accuracy 
data were unchanged when only those participants were 
included that were best fit by a hypothesis-testing strategy.

The interpretation of Experiment 2 depends on the as-
sumption that the accuracy rates were equated across the 
3UD and 3CJ immediate-feedback conditions. Accuracies 
did not differ significantly, but 3UD accuracy was numer-
ically higher than 3CJ accuracy. Thus, a task-difficulty 
hypothesis would predict a larger delayed-feedback ef-
fect for the 3CJ categories, which is the opposite of the 
effect observed. Instead, the delayed-feedback effect was 
observed in the easier (i.e., 3UD) task. Thus, consistent 
with the predictions based on the absolute identification 
literature, the absolute number of decision criteria is not 
the critical factor in determining whether drift in the de-
cision criteria will result in an accuracy cost when feed-
back is delayed. Instead, these data are consistent with 
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we inserted a 5-sec delay between the categorization re-
sponse and the delivery of corrective feedback. In Experi-
ment 1, drift during the delay impaired accuracy, but only 
when the demands on working memory resources associ-
ated with maintaining and manipulating multiple decision 
criteria were high. Furthermore, the model-based analyses 
suggest that this impairment was driven by poor learning of 
the placement of the decision criteria and a slight increase 
in noise associated with the representation of the deci-
sion criteria and stimulus. In Experiment 2, building on a 
classic finding in the absolute identification literature—
namely, that performance benefits by increasing the num-
ber of dimensions relevant to solving the task (Attneave, 
1959; Garner, 1962; Miller, 1956; Pollack, 1952)—we 
demonstrated that distributing the decision criteria across 
multiple dimensions decreases the impact of drift during 
the delay. Consistent with the hypothesis that the multi-
dimensional benefit observed in Experiment 2 was due 
to an increase in available working memory resources, 
we showed that working memory demand was lower in 
the multidimensional task. Taken together, these results 
suggest that rule-based category learning is robust to drift 
in the decision criteria as long as the available working 
memory resources are sufficient to slow the drift rate.

The Multidimensional Benefit
The interpretation of Experiment 2 depends on the ex-

tent to which results from absolute identification gener-
alize to category learning. Claiming that there is a link 
between identification and categorization is not novel; 
several researchers have argued that the decision processes 
in identification and categorization are similar (Ashby & 
Lee, 1991; Maddox, 2001; Nosofsky, 1986; Shepard et al., 
1961). To our knowledge, however, this is the first report 
to show that the multidimensional benefit observed in ab-
solute identification generalizes to rule-based category 
learning. We argue that the multidimensional benefit 

or no by pressing one of two keys, which were different from those 
used for categorization.

Procedure
The procedure was identical to that in Experiment 1, with the 

following exceptions. For memory scanning, the participants were 
informed that high levels of performance were possible and that 
they should respond as quickly and accurately as possible. If per-
formances in the memory-scanning task were below 90% accu-
racy at the end of any trial, the participants were told to increase 
their memory-scanning accuracy. These notifications stopped once 
memory-scanning accuracy was above 90%. For category learning, 
there was no longer a delay between the response and feedback, and 
no mask was presented.

Results and Theoretical Analyses

Accuracy-Based Analyses
Memory scanning. The participants performed the 

memory-scanning task with high accuracy, achieving an 
overall accuracy level of 96.9%. There was no significant 
difference in memory-scanning accuracy across the 3UD 
(96.6%) and 3CJ (97.1%) tasks [t(48) 5 0.84, p . .40]. 
Mean correct response time in the memory-scanning task 
was 1,434 msec. There was no significant difference in 
memory-scanning mean response times across the 3UD 
(M  5 1,453  msec) and 3CJ (M  5 1,415  msec) tasks 
[t(48) 5 0.73, p . .50].

Category learning. Recall that we successfully equated 
3UD and 3CJ immediate-feedback performances in Ex-
periment 2. Thus, we can directly compare 3UD and 3CJ 
performances to determine which category structure is 
more difficult to learn when the feedback is followed im-
mediately by a working-memory-demanding task and, by 
extension, which task places a greater demand on working 
memory during learning. Inspection of the average accu-
racy rates in Figure 6 suggests that there was a greater ac-
curacy cost in the 3UD task than in the 3CJ task. A 2 (cat-
egorization task: 3UD vs. 3CJ) 3 4 (block) mixed design 
ANOVA was conducted on the accuracy rates to confirm 
this observation. The main effects of task [F(1,48) 5 
5.48, MSe 5 .064, p , .05] and block [F(3,144) 5 38.70, 
MSe 5 .008, p , .001] were significant, and the interac-
tion [F(3,144) 5 1.68, MSe 5 .008, p 5 .173] was non-
significant. The main effect of task suggested that 3UD 
category learning (36%) was significantly worse than 3CJ 
category learning (45%).3 Consistent with the multidi-
mensional benefit in absolute identification, these results 
support the claim that the working memory demand in the 
multidimensional task (3CJ) is reduced relative to the uni-
dimensional task (3UD). Importantly, these data provide 
strong support for the hypothesis that the effect of drift is 
moderated by working memory demand.

Discussion

In this article, we have reported the results from three 
experiments in which we tested the hypothesis that, in 
rule-based category-learning tasks, the negative impact 
of drift in the representation of the decision criteria and 
stimuli due to internal noise can be overcome by working 
memory resources. To make the effect of drift observable, 
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this correspondence and impairs learning in information-
integration tasks. In contrast to rule-based tasks, the effect 
of delayed feedback should not depend on the working 
memory demand imposed by stabilizing drift in the decision 
criteria and, instead, should be observed in all information-
integration category-learning tasks. To test this prediction, 
we ran information-integration (II) analogues of the 2UD 
and 3UD categories (i.e., the Figure 1B and 1C categories 
rotated 45º counterclockwise) in the delayed- (n2II 5 21, 
n3II 5 21) and immediate-feedback (n2II 5 23, n3II 5 18) 
conditions. In support of COVIS, the accuracy cost due to 
delaying feedback (averaged across participants and blocks) 
was statistically significant in the 2II [M 5 9%, F(1,42) 5 
5.05, MSe 5 .077, p , .05] and 3II [M 5 13%, F(1,37) 5 
14.42, MSe 5 .047, p , .001] conditions.

At first glance, it would seem that the results from the 
rule-based tasks are inconsistent with COVIS. Recall, 
however, that learning in the hypothesis-testing system 
is assumed to be highly dependent on working memory. 
Thus, COVIS predicts that learning should be impaired 
in rule-based tasks if the working memory demand is in-
creased. The results from this study suggest that the work-
ing memory demands of the system were exceeded in the 
3UD condition with a 5-sec feedback delay.

Conversely, the ability of COVIS to predict the impact 
of increased working memory demand due to increased 
drift in rule-based categorization is debatable. In previous 
computational implementations of COVIS, the effect of 
increased working memory demand due to the addition 
of a secondary task has been modeled by decreasing the 
likelihood that the hypothesis-testing system is able to 
successfully implement a newly selected decision crite-
rion (Ashby & Ell, 2002; Waldron & Ashby, 2001). This 
approach could reasonably be used to model the effect 
of drift in the present experiments, because, as was pre-
viously mentioned, feedback is assumed to play a role 
in the selection of new decision criteria. This approach, 
however, is not general enough to account for the wide 
range of conditions in which drift in the decision criteria 
would be expected to impair rule-based category learn-
ing. Perhaps a more plausible alternative is to assume 
that the representation of the stimulus and the criteria 
are noisy and modeled by a zero-mean diffusion process 
(e.g., Ashby, 2000; Ratcliff, 1978). Thus, as feedback is 
delayed, the criterion representation will naturally drift 
away from its mean position and slow the learning rate. 
Working memory and attentional resources can be in-
voked to slow the drift rate, but as working memory de-
mand increases, the hypothesis-testing system is less able 
to accomplish this goal. Past computational implementa-
tions of COVIS have not modeled the representation of 
decision criteria as a dynamic process. Such issues should 
receive consideration in future computational implemen-
tations of COVIS.

Related Approaches in the Study  
of Visual Discrimination Learning

Arguably, Gabor patterns have been the stimuli of 
choice for the study of visual discrimination learning. 

shown in Experiment 2 is driven by a reduction in working 
memory demand. To be clear, the classic interpretation is 
that the multidimensional benefit in absolute identifica-
tion is driven by increased information transmission rather 
than by a decrease in memory demand (Miller, 1956). We 
speculate, however, that one by-product of increased in-
formation transmission would be a reduced demand on 
working memory resources. The results of Experiment 3, 
showing that the multidimensional rule-based task has a 
lower working memory demand than does the unidimen-
sional rule-based task, support our conjecture.

How exactly is information transmission increased? 
To our knowledge, there are no data in the categoriza-
tion literature that speak directly to this question. Of 
course, there are a number of ways in which efficiencies 
in information transmission could be achieved. In multi
dimensional, rule-based categorization tasks, it has been 
argued that independent decisions are made on the rel-
evant stimulus dimensions (Ashby & Gott, 1988). It may 
also be the case that efficiencies are gained by recoding 
the multidimensional information as a unidimensional 
decision variable, similar to accounts of visual detection 
and discrimination across multiple stimulus dimensions 
(Gorea, Caetta, & Sagi, 2005; Gorea & Sagi, 2000; J. P. 
Thomas & Olzak, 1996).

Theoretical Implications
In previous work, delayed feedback has been shown to 

have no effect on learning in one-criterion, unidimensional 
(Maddox et al., 2003) and two-criteria, multidimensional 
(Maddox & Ing, 2005) rule-based categorization tasks. In-
terestingly, both studies showed an effect of delayed feed-
back on information-integration category-learning tasks. 
Information-integration categories are typically generated 
by rotating unidimensional, rule-based categories 45º, 
such that optimal performance requires the integration of 
spatial frequency and orientation rather than parsing the 
stimulus space via decision criteria (Ashby et al., 1998; 
Ashby & Ell, 2001). In contrast to the explicit processing 
that is assumed to mediate learning in rule-based tasks, 
learning is assumed to develop implicitly, involving the 
incremental acquisition of associations between stimuli 
and category responses in information-integration tasks 
(e.g., Ashby & Waldron, 1999).

The delayed-feedback results on information-integration 
tasks are predicted by COVIS (competition between verbal 
and implicit systems; Ashby et al., 1998)—a biologically 
plausible, multiple-systems model of category learning. 
COVIS assumes that learning in rule-based tasks is domi-
nated by an explicit hypothesis-testing system that depends 
on working memory and executive attention to learn de-
cision criteria. Feedback serves to modify the relative 
strength of competing decision criteria on a trial-by-trial 
basis. Learning in information-integration tasks, however, 
is assumed to be dominated by an implicit procedural-based 
learning system that depends on a close temporal corre-
spondence among stimulus, response, and feedback in 
order to strengthen the appropriate (stimulus–category) as-
sociations (Ashby et al., 1998). Delaying feedback disrupts 
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hanced (Petrov, Dosher, & Lu, 2006) and impaired (Eck-
stein, Abbey, Pham, & Shimozaki, 2004) performances. 
Thus, it may be the case that delaying feedback would im-
pact perceptual learning as well. It should be noted, how-
ever, that comparisons between perceptual learning and 
category learning may depend critically on the structure 
of the categories. For example, Casale and Ashby (2008) 
found evidence for the perceptual learning of categories 
constructed from dot patterns (Posner & Keele, 1968), but 
only when the participants learned to distinguish between a 
category and random distortions of the category prototype 
(as opposed to two categories of dot patterns).

Limitations and Future Directions
The interpretation of these data focuses on the assump-

tion of variability in the representation of the decision cri-
teria (i.e., criterial noise). This assumption is supported 
by a wealth of empirical and theoretical data and has been 
a common component of computational models of rule-
based category learning and decision making (Ashby, 
1992a, 2000; Ashby et al., 1998; Ashby & Lee, 1993; 
Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Buse-
meyer & Townsend, 1993; Dorfman et al., 1975; Erev, 
1998; Maddox & Ashby, 1993; Mueller & Weidemann, 
2008; Treisman & Williams, 1984). It is also common to 
assume that there is variability in the representation of 
the stimulus (e.g., Ashby & Townsend, 1986; Durlach 
& Braida, 1969; Green & Swets, 1966). Given that the 
effects of delayed feedback are mediated by increasing 
the number and manipulating the distribution of decision 
criteria, it seems reasonable to speculate that our results 
are mediated by criterial noise. In the categorization tasks 
reported in this article, however, it is difficult to dissoci-
ate the effects of perceptual and criterial noise. For exam-
ple, replicating the simulations shown in Figure 2 while 
assuming that there is drift in the representation of the 
stimulus, rather than in the representation of the decision 
criteria, does not change the qualitative pattern of pre-
dicted results. Future research will take advantage of para-
digms that have been developed to dissociate the relative 
contributions of perceptual and criterial noise to category 
learning (e.g., Maddox, 2001).

The interpretation also assumes that the differential ef-
fect of delayed feedback across the categories is driven 
by an increase in the impact of criterial noise due to an 
increase in the number of decision criteria on a single 
stimulus dimension. In Experiments  1 and  2, a mask  
(a Gabor filter) was presented following the categoriza-
tion response (i.e., prior to the delay). Numerous studies 
have shown that masks interfere with the representation 
of spatial frequency and orientation in visual discrimina-
tion tasks (Bennett & Cortese, 1996; Lalonde & Chaud-
huri, 2002; Magnussen, Greenlee, Asplund, & Dyrnes, 
1991; Zhou, Kahana, & Sekuler, 2004). Thus, the mask 
may have increased perceptual and/or criterial noise by 
interfering with the representation of the stimulus and/or  
decision criterion. Critically, however, the spatial fre-
quency and orientation of the mask was selected at ran-
dom on every trial, and this procedure was identical across 
the category structures. Therefore, although the mask may 

Despite the similar stimuli, there are a number of impor-
tant differences between the research conducted on visual 
discrimination and the present experiments. For example, 
our emphasis is on characterizing the learning of catego-
ries comprised of Gabor filters rather than the discrimina-
tion between Gabor filters. That being said, it could be 
argued that the decision process in the present rule-based 
category-learning tasks is similar to the decision process 
in simultaneous visual discrimination tasks in the sense 
that both assume a comparison between, for example, the 
spatial frequency representation of the current stimulus 
and some other spatial frequency representation (or, in 
a signal detection framework, the comparison would be 
made on an arbitrary decision axis; R. D. Thomas, 1996). 
As we increase the number of decision criteria (from the 
2UD categories to the 3UD categories), we are increasing 
the number of simultaneous discriminations that need to be 
made. Making multiple simultaneous discriminations on a 
single stimulus dimension (i.e., spatial frequency) reduces 
performance in simultaneous discrimination tasks (Mag-
nussen & Greenlee, 1997; J. P. Thomas, Magnussen, & 
Greenlee, 2000); thus, one would expect that accuracy for 
the 3UD categories would be lower than that for the 2UD 
categories in the immediate-feedback condition. The cat-
egories were constructed, however, such that accuracy in 
the immediate-feedback conditions was equated, thereby 
alleviating this potential task-difficulty confound. Given 
that task difficulty is equated, it is unclear how the data 
from simultaneous discrimination tasks would predict the 
interaction between delayed feedback and the number of 
decision criteria.

Moreover, in most visual discrimination tasks, there is 
no category structure. One of the novel contributions of 
our results is that the category structure is a critical ele-
ment in predicting the impact of drift on internal represen-
tations. For example, changing the category structure by 
distributing the decision criteria across three dimensions 
(i.e., the 3CJ categories of Experiments 2 and 3) elimi-
nates the effect of delayed feedback (Experiment 2). Thus, 
although there are important similarities, our results could 
not be anticipated on the basis of research from visual 
discrimination tasks.

The design of the present tasks (i.e., repeated exposure 
of stimuli with similar perceptual representations) would 
encourage perceptual learning, where the improvement in 
performance due to repeated stimulus exposure has been 
argued to be driven primarily by information external to 
the participant (Gibson, 1969) and mediated by relatively 
low-level mechanisms (e.g., Dosher & Lu, 1999). The 
mechanisms involved in perceptual and category learn-
ing likely overlap. For instance, learning may depend on 
changes in both perceptual and criterial representations 
(Wenger, Copeland, Bittner, & Thomas, 2008). In addi-
tion, trial-by-trial feedback is not necessary for perceptual 
learning (e.g., Herzog & Fahle, 1997). Although this is also 
true for rule-based tasks with a single decision criterion 
(Ashby, Queller, & Berretty, 1999), omitting feedback with 
the 3UD categories would likely impair accuracy, given the 
results of delaying feedback. Recent studies of perceptual 
learning suggest that feedback may be related to both en-
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Conclusions
The results of these three experiments suggest that, 

under normal conditions, working memory resources can 
be invoked to slow drift in the decision criteria that would 
be expected, given the common assumption of a noisy 
representation of the decision criteria. Working memory, 
however, is critical for maintaining and manipulating de-
cision criteria during the course of learning. As the num-
ber of decision criteria increases (at least along a single 
dimension), the available working memory resources are 
insufficient to slow the drift rate, and rule-based categori-
zation accuracy is impaired.

The results of these experiments also represent an im-
portant integration of the absolute identification and cat-
egorization literatures. Moreover, these results challenge 
the previously held notion that rule-based tasks are not 
susceptible to the effect of delayed feedback. Instead, we 
demonstrated that the working memory demand associ-
ated with the number of dimensions relevant to solving 
the task moderates the effect of delayed feedback in rule-
based categorization.

A thorough understanding of the impact of criterial 
noise on drift in decision criteria will have an impact be-
yond that of rule-based category learning. For instance, 
criterial noise has been central in the study of visual de-
tection (Treisman & Faulkner, 1985; Treisman & Wil-
liams, 1984), discrimination, and identification (e.g., 
Maddox, 2001; Miller, 1956), as well as that of social 
categorization (e.g., Hall & Crisp, 2005). Thus, given 
the intense interest in the contributions of perceptual and 
criterial noise among researchers in various fields, this 
research will serve as a basis for integrating the respec-
tive literatures.
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1. Attentional processes are likely involved as well (Ashby et al., 
1998). For simplicity, however, we use the phrase working memory to 
refer to both working memory and attentional processes throughout the 
article.

2. Percentages of responses accounted for were again high-ranging, 
from 70%–72% for the hypothesis-testing models when applied to the 
immediate- and delayed-feedback conditions.

3. Recall that although there was no statistically significant difference 
between immediate-feedback accuracy scores in the 3UD and 3CJ tasks 
(see Experiment 2), accuracy in the 3UD task was numerically higher. 
Similar to the pattern of results in Experiment 2, the working memory 
manipulation in Experiment 3 interfered with the easier 3UD task, 
thereby ruling out task difficulty as a plausible alternative hypothesis.
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