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Abstract

In comparison to the basal ganglia, prefrontal cortex, and medial temporal lobes, the cerebellum has been absent
from recent research on the neural substrates of categorization and identification, two prominent tasks in the
learning and memory literature. To investigate the contribution of the cerebellum to these tasks, we tested patients
with cerebellar pathology (seven with bilateral degeneration, six with unilateral lesions, and two with midline
damage) on rule-based and information-integration categorization tasks and an identification task. In rule-based
tasks, it is assumed that participants learn the categories through an explicit reasoning process. In
information-integration tasks, optimal performance requires the integration of information from multiple stimulus
dimensions, and participants are typically unaware of the decision strategy. The identification task, in contrast,
required participants to learn arbitrary, color-word associations. The cerebellar patients performed similar to
matched controls on all three tasks and performance did not vary with the extent of cerebellar pathology. Although
the interpretation of these null results requires caution, these data contribute to the current debate on cerebellar
contributions to cognition by providing boundary conditions on understanding the neural substrates of categorization
and identification, and help define the functional domain of the cerebellum in learning and memory.
(JINS, 2008, 14, 760–770.)
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INTRODUCTION

The past decade has seen a surge in research investigating
the neural substrates of category learning, that is, the pro-
cess of establishing the memory traces necessary to orga-
nize objects and events in the environment into separate
classes. The basal ganglia, prefrontal cortex, and medial
temporal lobes have been the primary focus of this work,
with these studies informed by both theoretical models and
empirical considerations of how these structures contribute
to learning. One subcortical structure that is notably absent
from this work, however, is the cerebellum. Given the exten-
sive connectivity between the cerebellum and prefrontal
cortex (Middleton & Strick, 2001), in addition to the well-

established role of this structure in learning, it would seem
imperative to explore if and how the cerebellum might con-
tribute to the complex processes underlying category learn-
ing. These questions form the basis for the current study.

The role of the cerebellum in cognition has engendered
considerable debate (Schmahmann, 1997). Several studies
have examined whether damage to the cerebellum disrupts
learning on cognitive tasks, similar to that observed in stud-
ies of motor learning. For example, Fiez et al. (1992) sug-
gested that cerebellar damage impairs error-based learning
on a range of tasks such as paired-associate learning and
semantic retrieval (but see Helmuth et al., 1997).

With respect to category learning, however, studies have
shown that patients with pathology restricted to the cerebel-
lum perform similar to matched controls on category learn-
ing tasks (e.g., Maddox et al., 2005). These null results
stand in contrast to the work of Canavan and colleagues
who reported that patients with cerebellar pathology were
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impaired in learning arbitrary associations between six color
stimuli and their unique response labels (Bracke-Tolkmitt
et al., 1989; Canavan et al., 1994; see also Drepper et al.,
1999). This task can be viewed as a form of an absolute
identification task, where each stimulus defines a unique
category. Researchers have long argued that identification
and categorization involve a similar decision process (Ashby
& Lee, 1991; Nosofsky, 1986; Shepard et al., 1961) given
that the primary difference is in the nature of the stimulus-
response mapping (many-to-one in category learning vs.
one-to-one in identification). These tasks are also similar to
discrimination learning in which several stimuli must be
separated into categories containing just one member.

There are at least two reasons for these seemingly con-
flicting results. First, the contribution of the cerebellum to
identification is controversial. Several studies have found
impairments in associative learning tasks similar to the iden-
tification tasks described above (Timmann et al., 2002;
Tucker et al., 1996). In contrast, lesions of the cerebellum
in nonhuman primates do not affect performance in such
tasks (Nixon & Passingham, 1999, 2000). While this dis-
crepancy might reflect a nonhomologous role of the cer-
ebellum across species, the results from the human studies
are problematic. The sample size has been small (five and
seven patients, in the Bracke-Tolkmitt et al. and Canavan
et al. studies, respectively) with the impairment limited to
only a subset of the individuals. Furthermore, interpreta-

tion of these data is complicated by below average IQ in the
patient samples.

Second, a central idea in the category learning literature
is that categorization is mediated by multiple learning sys-
tems (see Ashby & Maddox, 2005; Kéri, 2003). Although
the specific nature and number of learning systems is con-
troversial, many theorists hypothesize that one is a logical,
hypothesis-testing system that is dependent on working mem-
ory and executive functions (e.g., Ashby et al., 1998; Erick-
son & Kruschke, 1998). This system is assumed to dominate
in so-called rule-based category learning tasks in which the
optimal rule that maximizes accuracy can easily be described
verbally (Ashby et al., 1998).

Consider a set of four-dimensional stimuli that vary in
shape, numerosity, color, and background color (Fig-
ure 1a). A rule-based task here might require the subjects
to learn to categorize the stimuli based on one of these
dimensions (background color in the example), while ignor-
ing variation on the other three dimensions. Thus, the
participant’s task is to identify the relevant dimension and
then map the different dimensional values to the relevant
categories. Note that this task is very similar to the Wis-
consin Card Sorting task (WCST; Grant & Berg, 1948),
one of the standard tools for assessing executive function.

In contrast, an implicit, procedural-based system is
assumed to dominate learning in information-integration
category learning tasks in which accuracy is maximized

Fig. 1. A: Category structure of a rule-based category-learning task. The optimal rule is: Respond A if the background
color is blue (depicted as light gray), and respond B if the background color is yellow (depicted as dark gray). B:
Category structure of an information-integration category-learning task. In this example, shape is irrelevant. For the
three relevant dimensions, one level is arbitrarily assigned a numerical value of11: symbol color of green (depicted as
black), background color of blue (depicted as light gray), and numerosity of two. The other levels are assigned a
numerical value of 0: symbol color of red (depicted as white), background color of yellow (depicted as dark gray), and
numerosity of one. If the sum of the values on the relevant dimensions is greater than 1.5, the stimulus is assigned to
Category A; if less than 1.5, the stimulus is assigned to Category B. Copyright © 2003 by the American Psychological
Association. Reproduced with permission: Ashby, F.G., Noble, S., Filoteo, J.V., Waldron, E.M., & Ell, S.W. (2003).
Category learning deficits in Parkinson’s disease. Neuropsychology, 17, 115–124. (The use of APA information does
not suggest endorsement by APA.)
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when information from two or more dimensions is inte-
grated at some predecisional stage (Ashby et al., 1998).
For the task shown in Figure 1b, participants must evalu-
ate stimulus information on three of the dimensions and
ignore the value on the fourth, irrelevant dimension (shape
in the example). Unlike rule-based tasks, participants have
difficulty verbalizing the optimal decision strategy in
information-integration tasks, despite being able to success-
fully learn the categories (Ashby et al., 1998).

Theoretical and empirical evidence suggests that quali-
tatively different systems are engaged during category learn-
ing in rule-based and information-integration tasks (Ashby
& Maddox, 2005). At the neural level, the hypothesis-
testing system thought to dominate learning in rule-based
tasks has been associated with lateral prefrontal cortex, ante-
rior cingulate, the basal ganglia (the head of the caudate
nucleus and associated dopaminergic projections), and
medial temporal lobes. The procedural-based system, in con-
trast, has been associated with high-level association regions
(e.g., inferotemporal cortex in the case of visual stimuli),
the basal ganglia (the body and tail of the caudate nucleus
and associated dopaminergic projections), and premotor cor-
tex (Ashby et al., 1998; Ashby & Valentin, 2005).

Although the cerebellum has not been central to theoriz-
ing about the neural substrates of category learning, it is in
a position to influence learning in both rule-based (by con-
nections with prefrontal cortex; Kelly & Strick, 2003; Ram-
nani, 2006) and information-integration tasks (by indirect
projections to the basal ganglia via the pedunculopontine
nucleus; Hazrati & Parent, 1992; Lavoie & Parent, 1993).
Only a few studies have investigated the role of the cerebel-
lum in category learning. Daum et al. (1993) investigated
WCST performance in patients with cerebellar pathology.
An impairment (relative to matched controls) was observed,
but only for patients in which the damage extended into the
brainstem (see also Fiez et al., 1992; Schmahmann, 1991).
Maddox et al. (2005) investigated performance on a rule-
based categorization task in a group of Parkinson’s disease
patients and a group of patients with cerebellar pathology.
Although Parkinson’s patients were impaired, the perfor-
mance of patients with cerebellar pathology was compara-
ble to matched controls.

The Daum et al. and Maddox et al. studies used rule-
based tasks, however, the classification of a third study
involving patients with cerebellar pathology is more prob-
lematic (Witt et al., 2002). Witt et al. investigated perfor-
mance on the weather prediction task, comparing a group
of patients with Parkinson’s disease and a group of patients
with cerebellar pathology. Parkinson’s patients were im-
paired, but the patients with cerebellar pathology per-
formed similarly to matched controls. While participants
can achieve optimal accuracy in this task by integrating
probabilistic cue-outcome relationships, near optimal per-
formance can also be achieved with a variety of explicit
strategies (e.g., memorization, rule-based strategies; see
Ashby & Maddox, 2005; Gluck et al., 2002). Moreover, as
noted, individuals with Parkinson’s disease have been shown

to be impaired on the weather prediction task, but perform
similarly to matched controls on the Figure 1b information-
integration task (Ashby et al., 2003b).

As reviewed above, a few studies have investigated cat-
egorization and identification in patients with cerebellar
pathology. This literature, however, lacks a systematic com-
parison in a single sample. Moreover, previous observa-
tions of impaired accuracy on identification tasks were
obtained with small samples (e.g., Bracke-Tolkmitt et al.,
1989). In the current study, we repeated this study in a
larger sample. We also tested the same individuals on rule-
based and information-integration categorization tasks. While
previous work indicates that cerebellar pathology does not
affect rule-based category learning (Maddox et al., 2005),
it is important to test the generality of that null result. More-
over, computational models suggest distinct processes asso-
ciated with rule-based and information-integration forms of
category learning. As such, a direct comparison with a com-
mon set of stimuli allowed us to determine whether cerebel-
lar pathology selectively affects one type of categorization
task. To date, there have been no studies that have looked at
the effect of cerebellar pathology on information-integration
categorization, let alone directly compare these two forms
of category learning.

The inconsistencies in the existing literature make it dif-
ficult to generate strong predictions; as such, this study is,
in large part, exploratory. Given that the online mainte-
nance and manipulation of information is important for both
identification and rule-based tasks, an impairment on these
tasks may be expected based on claims that cerebello-
prefrontal pathways are part of a working memory circuit
(Ben-Yehudah et al., 2007; Desmond et al., 2005). On the
other hand, information-integration tasks are thought to
depend upon a procedural learning system (Ashby et al.,
2003a). If the cerebellar contribution to cognition were
restricted to its role in working memory, then we would not
expect impairment on the information-integration task. There
is, however, a substantial literature implicating the cerebel-
lum in various forms of procedural learning, at least with
respect to motor tasks (Gomez-Beldarrain et al., 1998; Shin
& Ivry, 2003; Torriero et al., 2004). If the cerebellum plays
a general role in procedural learning, then we might also
expect impairment on the information integration task.

METHOD

Participants and Design

Fifteen patients (three female) with damage to the cerebel-
lum (CB) were either referred to the study by neurologists
at an outpatient clinic at the VA Medical Center in Mar-
tinez, California, or recruited at meetings of ataxia support
groups in the San Francisco Bay Area (Table 1). The CB
group included eight patients with focal lesions due to tumor
(n 5 3) or stroke (n 5 5). The pathology was restricted to
one side in six of these patients and spanned the midline in
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Table 1. Participant demographic information and neuropsychological assessment

WAIS-III ICARS

ID
Age at

Test ED MMSE VIQ PIQ WM
Years
Post Path

Posture0
Gait Ataxiaa Speech Occulomotor

RB
Errors

II
Errors

ID Total
Errors

ID Errors0
Trial

Cerebellar Patients
AC01 57 18 30 125 122 113 4 ATRO 11.3 5.7 4.3 2.3 3 39 6 .3
AC06 65 17 26 88 75 78 45 ATRO 12.8 11 5.5 2.5 25 107 221 1.5
AC07 38 16 29 101 90 94 5 SCA2 11.8 10 3.3 1.5 0 33 8 .4
AC08 51 14 29 104 92 94 9 ATRO 6.8 3 3.3 4.8 40 48 85 1.6
AC09 65 20 27 101 110 94 4 ATRO 4 4 3.3 2.5 44 30 54 .6
AC10 74 12 29 90 94 92 44 ATRO 19.8 9.2 4.8 2.3 27 39 206 2.2
AC11 43 16 30 89 80 73 14 SCA6 20 8 4 3 18 4 9 .4
LC01 54 13 29 113 92 130 6 CVA(L) 1.8 6.8 1.5 0 2 43 32 1
LC02 67 14 28 91 86 84 12 CVA(R) 1.3 1 1 1 0 94 68 1.2
LC03 59 12 30 87 80 73 12 TUM(L) 7.5 6 5 3.8 90 16 167 1.3
LC04 46 18 30 110 106 111 3 CVA(R) 3 5 0 3 3 12 3 .2
LC05 48 16 30 98 91 94 6 TUM(R) 10.5 15.3 3.5 3.5 4 10 31 .8
LC06 78 17 29 106 106 95 12 CVA(R) 17.5 10.5 3 3 78 76 37 .5
MC01 39 18 30 124 111 109 11 TUM — — — — 83 31 8 .4
MC03 49 18 30 — — — CVA 12 2.5 1 2 0 69 37 1.2

Mean 55.5 15.9 29.1 101.9 95.4 95.2 10.0 7.0 3.1 2.5 27.8 43.4 64.8 .9
SD 12.3 2.4 1.2 12.7 13.7 16.1 6.3 3.9 1.7 1.2 32.4 30.7 73.6 .6
Control Participants

MP03 54 14 29 119 105 117 3 12 39 1
MP04 57 17 30 143 117 136 44 51 7 .5
MP10 45 12 28 72 76 90 4 43 94 .9
MP15 58 16 30 119 130 111 5 70 17 .6
MP21 43 12 — 98 105 — 81 74 15 .4
OP01 69 16 30 104 121 99 4 6 11 .6
OP08 61 20 30 118 85 87 2 66 59 .6
OP09 65 20 30 124 90 136 1 46 19 .5
OP11 63 16 30 133 136 150 22 53 16 .6
OP15 69 12 28 93 97 — 11 33 171 1.9
OP26 77 20 29 116 110 119 5 70 91 1.3
OP27 72 17 29 117 106 113 7 26 33 1.2

Mean 61.1 16.0 29.4 113.0 106.5 115.8 15.8 45.8 47.7 .8
SD 10.4 3.0 0.8 18.9 17.9 20.6 23.9 22.9 49.1 .4
t 1.25 0.06 0.70 1.78 1.80 2.74
p 0.22 0.95 0.49 0.09 0.08 0.01*

Note. ID5 participant identification code; AC5 atrophy of the cerebellum; LC5 lateral cerebellar damage; MC5midline cerebellar damage; MP5middle-aged participants; OP5 older participants; ED5
years of education; MMSE5Mini Mental State Examination; WAIS-III5Wechsler Adult Intelligence Scale III; VIQ5 Verbal IQ; PIQ5 Performance IQ; FSIQ5 Full-Scale IQ; WM5Working Memory
Index; Years Post5 years post onset0lesion relative to the testing date; Path5 pathology of the cerebellar damage (side of lesion is indicated in parentheses for unilateral patients); ATRO5 atrophy of unknown
origin; CVA 5 cerebrovascular accident; SCA 5 spinocerebellar ataxia (the genetic subtype is indicated in parentheses); TUM 5 tumor resection. The columns labeled Posture0Gait, Ataxia, Speech, and
Occulomotor are ratings (higher scores indicate greater impairment) on subscales of the International Cooperative Ataxia Rating Scale (ICARS, Trouillas et al., 1997).
aAtaxia ratings are either for the impaired limb (unilateral patients) or both limbs (bilateral patients). The average ataxia rating is presented for those participants with a difference between limbs: AC01 (left5
5.5, right5 5.8) and AC10 (left5 8.3, right5 10). All t-tests computed as Controls-Patients.
*Significant difference between Cerebellar and Control groups ( p , .05).
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two patients. Lesion reconstructions for unilateral patients
are provided in Figure 2. We were unable to obtain access
to scans for the two midline patients and, thus, relied on a
review of their radiological records. The remaining seven
patients had a diagnosis of cerebellar atrophy. The diagno-
sis for these patients was based on a combination of clinical
evaluation, radiological records, and, when available, genetic
testing (two patients had confirmed diagnosis). The degree
of atrophy varied in these patients but was evident across
the cerebellar hemispheres.

We did not include patients with more than one signifi-
cant neurological event (focal group) or atrophy patients
with clear evidence of extracerebellar symptomology or
pathology. Patients with evidence of psychiatric impair-
ment or current substance abuse were also excluded.

Twelve (five female) control participants (CO) were
recruited from the Berkeley community (Table 1). The con-
trols were screened for the presence of neurological disor-
ders or a history of psychiatric illness and current substance
abuse, and selected to span the range of the patients in
terms of age and education. The CB and CO groups were
reasonably matched on age and education. All participants
reported 20020 vision or vision corrected to 20020 and nor-
mal color vision.

Participants were monetarily compensated. The study pro-
tocol was approved by the institutional review boards of the
VA Medical Center in Martinez and University of Califor-
nia, Berkeley.

Neuropsychological Assessment

A battery of neuropsychological tests was used to assess
different aspects of cognitive function (Table 1). The Mini-
Mental State Examination was used to screen for dementia.
Subtests of the Wechsler Adult Intelligence Scale (WAIS-
III, Wechsler, 1997) were used to calculate verbal IQ, per-
formance IQ, and full scale IQ. Standardized scores from
the Vocabulary, Similarities, Arithmetic, Digit Span, and
Information WAIS-III subtests generated a prorated verbal
IQ. Standardized scores from the Picture Completion, Matrix
Reasoning, Picture Arrangement, Symbol Search WAIS-III
subtests generated a prorated performance IQ. Scores from
the Digit Span, Arithmetic, and Letter-Number Sequencing
subtests provided an index of working memory function.
As assessed by the Beck Depression Inventory (2nd edi-
tion) (Beck et al., 1996), six of the patients were found to
have mild (n 5 4) or severe (n 5 2) symptoms of clinical
depression. None of the control participants were found to
have symptoms of depression.

Stimuli and Stimulus Generation

Identification task

The stimuli were six rectangles that varied in color (black,
blue, green, red, white, yellow). Each stimulus was mapped
to a unique label (i.e., the letters A–F). To avoid a potential

Fig. 2. Lesion reconstructions (in gray) based upon computed tomography or magnetic resonance imaging for the
patients with lateral cerebellar lesions. For each patient, the lesions are presented on a schematic of seven axial sections
from superior (top) to inferior (bottom). LC, lateral cerebellar patients.
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response bias, the stimulus-response label mappings were
pseudorandomly designated for each participant with the
constraint that the response label “B” was not mapped to
the colors black or blue.

Categorization tasks

The stimuli and a representative category structure for the
rule-based and information-integration tasks are presented
in Figure 1. There were a total of 16 stimuli, formed by the
factorial combination of four binary-valued dimensions:
background color, symbol color, symbol shape, and symbol
number. For the rule-based task, there were four possible
category structures defined by the task-relevant dimension.
For the information-integration task, there were four possi-
ble category structures defined by the task-irrelevant dimen-
sion. In both tasks, there were eight exemplars in category
A and eight in category B.

In all tasks, each stimulus was presented on a black back-
ground and subtended a visual angle of 9.5 degrees at a
viewing distance of approximately 60 cm. The stimuli were
generated and presented using the Psychophysics Toolbox
extensions for MATLAB (Brainard, 1997; Pelli, 1997). The
stimuli were displayed on either a 15'' CRT with 1024 3
768 resolution in a dimly lit room or on a laptop LCD of the
same resolution when patients were tested in their home.

Procedure

The participants were tested on the experimental tasks in a
single session. Each session lasted approximately 2 hr,
including an hour of neuropsychological testing. The order
of the tasks was fixed with the exception that the order of
the categorization tasks was counterbalanced across par-
ticipants: categorization task (rule-based0information-
integration), identification task, neuropsychological testing,
categorization task (information-integration0rule-based). The
placement of the identification task and neuropsychologi-
cal testing was intended to minimize any potential inter-
ference effects between the two categorization tasks.

Identification task

At the beginning of the identification task, each participant
was shown all stimuli. On each trial, a single stimulus was
presented and the participant was instructed to verbally iden-
tify each stimulus using the letters A–F. The experimenter
entered the participant’s response by pressing the appropri-
ate key on the keyboard. We used verbal responses to min-
imize the motor demands of the task. The instructions
emphasized accuracy and there was no response-time limit.
After responding, the screen was blanked and auditory feed-
back was provided. Correct responses were indicated by
the presentation of a 500 Hz tone; incorrect responses were
indicated by a 200 Hz tone (for 1 s). Following feedback,
the screen remained blank for 500 ms before the appear-
ance of the next stimulus. Participants were given examples
of the feedback at the beginning of the session and the

experimenter did not proceed until it was evident that the
participant understood the feedback.

Following the procedure of previous studies (e.g., Bracke-
Tolkmitt et al., 1989), a trial was not complete until a cor-
rect response was made. Thus, when an incorrect response
was made, following feedback, the stimulus was presented
again; with this procedure repeating until the correct response
was made. The identification task continued until the par-
ticipant met a learning criterion (10 consecutive correct
responses) or completed 150 trials. The presentation order
of the stimuli was randomized separately for each partici-
pant with the constraints that the same stimulus was not
presented on consecutive trials and that every stimulus was
presented at least once within a window of 10 trials.

Categorization tasks

At the beginning of the categorization task, each participant
was shown a series of sample stimuli and informed that the
stimulivaried in termsofbackgroundcolor,backgroundshape,
symbol number, and symbol shape. On each trial, a single
stimulus was presented and the participant was instructed to
verbally classify each stimulus as belonging to category A
or B. The category-response label mappings were counter-
balanced across participants. The experimenter entered the
participant’s response by pressing the appropriate key on the
keyboard, again in an effort to minimize the motor demands
of the task. The instructions emphasized accuracy and there
was no response-time limit.After responding, the screen was
blanked and feedback was provided in the same manner as
for the identification task. Following feedback, the screen
remained blank for 500 ms before the appearance of the next
stimulus.The participant was told that there were two equally
likely categories and informed that the best possible accu-
racy was 100%.

Each participant then completed five practice trials before
beginning the experiment. The categorization task contin-
ued until the participant met a learning criterion (10 con-
secutive correct responses) or completed 200 trials. The
presentation order of the stimuli was randomized (offline)
separately for each participant with two constraints. First,
the same stimulus could not be presented on consecutive
trials. Second, in the information-integration task, the learn-
ing criterion of 10 consecutive correct trials could not be
met by using a unidimensional strategy (e.g., respond accord-
ing to background color only).1

Within each categorization task, the category structure
was changed once the participant reached criterion or after
200 trials if the criterion was not met. This change involved
the replacement of the current category structure with a
different one (i.e., new relevant dimension in the rule-based
task and new irrelevant dimension in the information-

1More specifically, following the randomization of the presentation
order, models assuming that the participant attended to a single dimension
(four total) were simulated. If any of the simulated models met the learn-
ing criterion, the presentation order was re-randomized. This procedure
was repeated until the presentation-order constraint was satisfied.
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integration task). This change occurred without warning,
although the participant was instructed at the beginning of
the experiment that the rule would change at some point.
Preliminary analyses revealed no difference in perfor-
mance between the two category structures for either task
on any of the dependent measures discussed below.2 Thus,
all subsequent analyses are restricted to the first category
structure.

RESULTS

Identification Task

As described above, a trial was not complete until a correct
response was provided. Thus, it was possible for a partici-
pant to commit multiple errors within a single trial. For this
reason, we analyzed both the number of total errors as well
as the number of errors-per-trial. These data are plotted in
the top and bottom panels of Figure 3, respectively. On both
measures, we failed to observe a group difference: [number
of errors: t(25) 5 .69; p 5 .5; d 5 .27; errors-per-trial:
t(25)5 .3; p5 .77; d5 .12].3 Given that this is a null result,
it is important to consider if the failure to find an effect was
related to the small sample size. A power analysis revealed
that the observed difference between groups would be sig-

nificant with a substantial increase in sample size (i.e., to
2110group for the number of errors).4

As can be seen in the individual participant data, the
mean difference in terms of the number of errors was driven
by three poorly performing patients (AC06, AC10, and LC03;
see Table 1), although even these data points fall within
three standard deviations of the group mean, a convention
frequently adopted to exclude outliers. These patients were
the only participants who did not meet the learning crite-
rion of ten consecutive correct responses. When these three
patients were excluded from a secondary analysis, the mean
number of errors was actually larger for the controls com-
pared with the cerebellar group (CB: M5 41.9, SE512.6;
CO: M5 47.7, SE5 14.2).

Categorization Tasks

Inspection of the mean number of errors in the categoriza-
tion tasks indicates that the information-integration task was
much more difficult for both groups (Figure 4). When ana-
lyzed in a group (controls vs. cerebellar)3 task (rule-based
vs. information-integration) ANOVA, the effect of task was
significant, [F(1,25) 5 9.44; p , .01; MSE 5 737.17; hp

2

5.27]. However, neither the effect of group, [F(1,25) 5
.94; p5 .34; MSE5 479.5; hp

25 .005] nor the group3 task
interaction [F(1,25) 5 .95; p 5 .34; MSE 5 737.17; hp

2 5
.04] were significant. Although the mean data would sug-
gest a trend toward a group difference on the rule-based
task, the control and patient groups were within 1 standard
error of each other. A power analysis performed on these
data indicated that 64 participants would have to be tested
in each group for the interaction effect to become reliable.

2For example, there was no difference in the number of errors com-
mitted in the two category structures of either the rule-based [t(14)5 .43,
p5 .67; CO2 t(11)52.03, p5 .98] or information-integration [t(14)5
.76, p5 .46; CO2 t(11)5 .21, p5 .84] tasks.

3A similar proportion of participants in both groups met the learning
criterion (i.e., 10 consecutive correct responses) in both the rule-based
(CB: 13015; CO: 11012) and information-integration (CB: 12015; CO:
9012) tasks. An analysis of the trials-to-criterion data for those partici-
pants that met the criterion mirrored the analysis of the error data.

4All power analyses were performed at a criterion of 12b5 .8 using
G*power 3 (Faul et al., 2007).

Fig. 3. Mean data from the identification task for the cerebellar
patients (CB) and control participants (CO). The patient data are
further broken down into two subgroups, patients with unilateral
(UN) or bilateral (BI) pathology.

Fig. 4. Mean data from the categorization tasks for the cerebellar
patients (CB) and control participants (CO). The patient data are
further divided into two subgroups, patients with unilateral (UN)
or bilateral (BI) pathology.

766 S.W. Ell and R.B. Ivry



Neuropsychological and Neuropathological
Variables

Although the cerebellar patients were not impaired on the
identification task, it is still important to ask whether IQ
was predictive of performance in the current sample given
the relationship between IQ and performance in previous
work (Bracke-Tolkmitt et al., 1989). Verbal IQ was nega-
tively correlated with identification errors for both groups
[CB: r(14)52.64; p5 .01; CO: r(12)52.57; p5 .05],
suggesting that low IQ is indeed predictive of increased
errors on the identification task independent of the presence
of cerebellar damage. The three patients who performed
poorly on the identification task scored below average on
the IQ indices.

Excluding the two patients with midline cerebellar dam-
age, our sample was split between individuals with bilateral
degeneration (n 5 7) and unilateral lesions (n 5 6). The
error data for the three tasks are plotted in Figures 3 and 4.
Inspection of these data suggests that the patients with bilat-
eral damage performed more poorly on the identification
task than did patients with unilateral damage. However,
separate one-way ANOVAs conducted on the four depen-
dent variables comparing the bilateral, unilateral, and con-
trol groups failed to reveal any group differences [rule-
based: F(2,22) 5 .51, p 5 .61, MSE 5 771.07, hp

2 5 .04;
information-integration: F(2,22) 5 .05, p 5 .95, MSE 5
824.88, hp

2 5 .004; identification total errors: F(2,22) 5
.69, p5 .51, MSE5 4334.5, hp

25 .06; identification errors-
per-trial: F(2,22) 5 .22, p 5 .8, MSE 5 .3, hp

2 5 .02]. A
power analysis again revealed that these differences would
require a significant increase in sample size (i.e., to approx-
imately 52 participants0group for the largest effect) to be
reliable.

GENERAL DISCUSSION

The study of the neural substrates of category learning is
an area of intense research. This work has focused on the
basal ganglia, medial temporal lobes, and prefrontal cor-
tex, in large part because of the role of these regions in
reinforcement-based learning and executive control. Given
the prominent role of the cerebellum in learning and mem-
ory, at least within the domain of sensorimotor skills, the
current study was designed to systemically examine the
effects of cerebellar damage on a set of categorization and
identification tasks. Patients with cerebellar pathology per-
formed similarly to controls on rule-based and information-
integration category learning tasks, as well as on an
identification task.

We recognize that the main conclusion to be drawn here
is a null result. While the interpretation of null results requires
caution, three points should be noted. First, the observed
effect sizes are in the small to moderate range (Cohen, 1977).
Although it is possible that such small effects may be mean-
ingful, it is important to note that, across all three tasks, the
observed differences would only reach conventional signif-

icance levels if the sample size were increased to between
120 and 200 total participants. Thus, we do not expect that
the null results can be easily attributed to a power problem
related to our sample sizes. Moreover, our sample sizes
meet or exceed those used in previous studies of cerebellar
contributions to categorization and identification.

Second, the current results help provide an important
boundary condition on understanding the neural substrates
of learning and memory; that is, observations of impaired
categorization in other patient groups are strengthened by
the finding that these impairments are not a general feature
of neural insult. In particular, the present data suggest that
previous reports of impaired performance in the rule-based
task may indeed be specific to fronto-striatal dysfunction
due to Parkinson’s disease (e.g., Ashby et al., 2003b) rather
than an inevitable consequence of neurological dysfunc-
tion. Furthermore, considered in conjunction with previous
studies (Maddox et al., 2005; Witt et al., 2002), these data
strengthen the claim that the cerebellum is not necessary
for a variety of category learning tasks.

Our null results on the rule-based categorization task are
consistent with previous research (e.g., Maddox et al., 2005).
This study, however, provides the first report of the effects
of cerebellar pathology on an information-integration task.
Previous work has also observed that cerebellar patients
perform similarly to controls in tasks that would seem sim-
ilar to the Figure 1b task (e.g., the weather prediction task;
Witt et al., 2002). It is unclear, however, whether the task
used by Witt et al. is solved by using rule-based strategies
(Ashby & Maddox, 2005; Gluck et al., 2002). Furthermore,
individuals with Parkinson’s disease have been shown to be
impaired on the weather prediction task (Knowlton et al.,
1996), but performed similarly to matched controls on the
Figure 1b information-integration task (Ashby et al., 2003b).

The spared performance on the information-integration
task is of interest given that the cerebellum has frequently
been associated with procedural learning (Gomez-Beldarrain
et al., 1998; Shin & Ivry, 2003; Torriero et al., 2004).
Taxonomic models of memory consistently emphasize a
view in which procedural memory may take many forms
that are associated with distinct neural systems (Squire
et al., 1993). If we were to assume a general cerebellar
contribution to procedural motor skill acquisition, then the
current results would suggest that the processes involved
in procedural cognitive learning involve distinct neural sys-
tems. On the other hand, the term procedural learning may
be best viewed as a heuristic description, encompassing
multiple forms of learning. Specifying the processes under-
lying these forms of learning will be essential for develop-
ing a more computational-based perspective. The current
results help emphasize this point, suggesting that a
procedural-declarative distinction is unlikely to prove fruit-
ful in understanding if and how the cerebellum contributes
to cognitive learning.

The null results on the identification task are perhaps the
most surprising given previous work on this issue (Bracke-
Tolkmitt et al., 1989; Canavan et al., 1994; see also Drepper
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et al., 1999); indeed, we used essentially the same task as
that used in the work of Canavan and colleagues. Procedur-
ally, the only difference was that we used letters as response
labels instead of words (Bracke-Tolkmitt et al., 1989) or
numbers (Drepper et al., 1999). It may be that color-letter
associations are somehow easier to learn than color-word
or color-number associations. If this was the case, however,
the number of errors in our control group should be reduced
relative to previous studies. In fact, this was not the case as
the average number of errors committed by the control group
was similar to previous work (M 5 40.4; range 5 9–96;
Bracke-Tolkmitt et al., 1989).

It should be noted that the sample size was small in these
previous studies of identification (five and seven patients,
in the Bracke-Tolkmitt et al. and Canavan et al. studies,
respectively). While our sample is larger, it is also quite
heterogeneous, including individuals with bilateral degen-
eration and unilateral lesions. It is possible that subgroups
within our cerebellar sample are impaired, but that this effect
was obscured by averaging. A priori, posterior0inferior cer-
ebellar regions that are reciprocally connected with prefron-
tal cortex would be expected to be important for the
identification and rule-based tasks (Kelly & Strick, 2003;
Ramnani, 2006). Similarly, processing in the deep cerebel-
lar nuclei might be essential for feedback-related process-
ing in the dopamine producing neurons of the substantia
nigra (via the pedunculopontine nucleus; Hazrati & Parent,
1992; Lavoie & Parent, 1993) and pathology in these regions
might predict learning impairments on our tasks. Our sam-
ple size of patients with focal lesions is limited for perform-
ing a subgroup analysis. We do note, though, that for five of
six patients with focal lesions, the damage extends into
posterior cerebellum and likely includes some parts of the
dentate nucleus.

The spared performance for the atrophy patients also
argues against the idea that our null results are related to the
variability introduced by averaging across a heterogeneous
patient sample. First, as expected from the diffuse atrophy
found in these patients, the severity of the symptoms of
cerebellar damage was equal to or more extreme than those
observed in the patients with focal lesions. Second, we failed
to find any differences between the focal and bilateral
patients on the identification and categorization tasks (Fig-
ures 3 and 4). Even if the analyses were restricted to the
patients with bilateral degeneration, individuals in whom
the pathology is likely present across the cerebellum, we do
not observe an impairment on any of the tasks.

Previous studies of identification observed mixed results
with heterogenous samples of cerebellar patients (Bracke-
Tolkmitt et al., 1989; Canavan et al., 1994). In Canavan
et al., four of seven patients were impaired on an identifi-
cation task: two of these patients had diffuse bilateral atro-
phy and two had unilateral damage due to tumor resection.
Of these four patients, three had below normal verbal IQ.
The three poorly performing patients in our study (two with
bilateral atrophy and one with unilateral damage due to
tumor resection) also had low verbal IQ scores. Verbal IQ

was also negatively correlated with errors for our controls
suggesting that identification performance, in general, is
sensitive to verbal IQ. Taken together, these results suggest
that previous reports of impairment on identification tasks
following cerebellar damage may actually be related to group
differences in IQ. We cannot say if the cerebellar pathology
contributed to such differences because premorbid IQ data
are not available.

One final noteworthy point is that the current results are
of interest to the on-going debate about how best to char-
acterize cerebellar contributions to cognition. Cerebellar
pathology has been associated with a variety of nonmotor
tasks, including those involving precise temporal discrimi-
nation (e.g., Ivry, 1996), working memory (e.g., Ravizza
et al., 2006), and attention (Courchesne et al., 1994;
Townsend et al., 1999; but see Ravizza & Ivry, 2001). Iden-
tifying such tasks is clearly important, and should prove
essential in developing computational models of cerebellar
function. However, a complete theory of cerebellar contri-
butions to cognition cannot depend solely upon findings of
impairment. Identifying tasks for which the integrity of the
cerebellum is not essential can also prove useful in estab-
lishing the boundary conditions for cerebellar contributions
to cognition.
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