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Sixteen patients with Parkinson’s disease (PD), 15 older controls (OCs), and 109 younger
controls (YCs) were compared in 2 category-learning tasks. Participants attempted to assign
colored geometric figures to 1 of 2 categories. In rule-based tasks, category membership was
defined by an explicit rule that was easy to verbalize, whereas in information-integration
tasks, there was no salient verbal rule and accuracy was maximized only if information from 3
stimulus components was integrated at some predecisional stage. The YCs performed the best
on both tasks. The PD patients were highly impaired compared with the OCs, in the
rule-based categorization task but were not different from the OCs in the information-
integration task. These results support the hypothesis that learning in these 2 tasks is mediated
by functionally separate systems.

Categorization is the act of responding differently to
objects and events in the environment that belong to sepa-
rate classes or categories. It is a critical skill that every
organism must possess in at least a rudimentary form be-
cause it allows them to respond differently, for example, to
nutrients and poisons and to predators and prey. There is
recent evidence that human category learning relies on
multiple systems (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Ashby & Ell, 2001, 2002a, 2002b; Erickson
& Kruschke, 1998; Pickering, 1997; Smith, Jonides, &
Koeppe, 1996; Smith, Patalano, & Jonides, 1998; Waldron
& Ashby, 2001). In all cases in which multiple category-
learning systems have been proposed, it has been hypothe-
sized that one system uses explicit (i.e., rule-based) reason-
ing and at least one involves some form of implicit learning.

Ashby et al. (1998; see also Ashby, Isen, & Turken,
1999) proposed that the explicit system is mediated by
frontal-cortical structures (i.e., prefrontal cortex and ante-
rior cingulate) and by the head of the caudate nucleus,
whereas learning in the implicit system is largely mediated
within the tail of the caudate (in the case of visual stimuli).
In this model, dopamine facilitates the operations of both

systems. Parkinson’s disease (PD) causes the death of do-
pamine-producing cells, most notably in the substantia nigra
but also in the ventral tegmental area (VTA). As a result, PD
patients have decreased dopamine levels in the frontal cor-
tex and in the caudate nucleus (and other substantia nigra
and VTA projection sites). For this reason, Ashby et al.
(1998) predicted category-learning deficits in PD patients.
On the other hand, these predictions are complicated some-
what by large individual differences in the amount of dam-
age sustained in these patients within the tail of the caudate,
the head of the caudate, and the frontal cortical areas (e.g.,
van Domburg & ten Donkelaar, 1991, pp. 71–72). In gen-
eral however, of these three areas, damage caused by PD
usually occurs first, and is most severe, in the head of the
caudate (e.g., van Domburg & ten Donkelaar, 1991, pp.
71–72). Thus, Ashby et al. (1998) predicted overall cate-
gory-learning deficits in PD patients, with the most severe
deficits coming in tasks in which some salient explicit rule
determines category membership (i.e., explicit tasks).

Many studies have shown that PD patients are impaired
in explicit category learning (e.g., Brown & Marsden, 1988;
Cools, van den Bercken, Horstink, van Spaendonck, &
Berger, 1984; Downes et al., 1989), and some studies have
reported that PD patients are also impaired in tasks in which
there is no salient explicit rule that determines category
membership (Filoteo, Maddox, & Davis, 2001a; Knowlton,
Mangels, & Squire, 1996; Knowlton, Squire, et al., 1996;
Maddox & Filoteo, 2001). To our knowledge, however, no
studies have compared the performance of the same PD
patients in these two types of tasks. This article reports such
a study. Relative to a group of age-matched controls, we
show that PD patients are more severely impaired when
learning explicit category structures than when learning
implicit category structures. Our results also provide sup-
port for the theory that there are functionally separate ex-
plicit and implicit category-learning systems.
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Two Different Category-Learning Tasks

Much of the evidence for multiple category-learning sys-
tems (summarized in the Discussion section) comes from
two different types of category-learning tasks. Rule-based
tasks are those in which participants can learn the category
structures via some explicit reasoning process. Frequently,
the rule that maximizes accuracy (i.e., the optimal rule) is
easy to describe verbally (Ashby et al., 1998). As a result,
participants can learn the category structures via an explicit
process of hypothesis testing (Bruner, Goodnow, & Austin,
1956) or theory construction and testing (Murphy & Medin,
1985). In the most common applications, only one stimulus
dimension is relevant, and the participant’s task is to dis-
cover this relevant dimension and then to map the different
dimensional values to the relevant categories. Figure 1
shows the stimuli and category structure of a rule-based task
used in our experiment. The categorization stimuli were
colored geometric figures presented on a colored back-
ground. The stimuli varied on four binary-valued dimen-
sions: background color (blue or yellow, depicted as light or
dark gray, respectively), embedded symbol color (red or
green, depicted as black or white, respectively), number of
symbols (1 or 2), and symbol shape (square or circle). This
yields a total of 16 possible stimuli. To create rule-based
category structures, we arbitrarily selected one dimension to
be relevant. The two values on that dimension were then
assigned to the two contrasting categories. In Figure 1, this
process results in a task in which perfect accuracy is
achieved with the following rule: Respond A if the back-
ground color is blue (depicted as light gray), and respond B
if the background color is yellow (depicted as dark gray).
Not surprisingly, participants are usually able to describe
the rule they used in rule-based tasks quite accurately by the
end of training. Virtually all categorization tasks used in
neuropsychological assessment are rule-based, including
the well-known Wisconsin Card Sorting Test (WCST;
Heaton, 1981).

Information-integration tasks are those in which accuracy
is maximized only if information from two or more stimulus

components (or dimensions) is integrated at some predeci-
sional stage (Ashby & Gott, 1988). Perceptual integration
could take many forms—from treating the stimulus as a
Gestalt to computing a weighted linear combination of the
dimensional values.1 In many cases, the optimal rule
in information-integration tasks is difficult or impossible to
describe verbally (Ashby et al., 1998).

Figure 2 shows the stimuli and category structure of an
information-integration task used in our experiment. The
categorization stimuli are the same as in the rule-based task
shown in Figure 1. To create information-integration cate-
gory structures, we arbitrarily selected one dimension to be
irrelevant. For example, in Figure 2 the irrelevant dimension
is symbol shape. Next, one level on each relevant dimension
is arbitrarily assigned a numerical value of 1 and the other
level is assigned a value of 0. In Figure 2, a background
color of blue (depicted as light gray), a symbol color of red
(depicted as black), and two symbols are all assigned a
value of 1. Finally, the category assignments are determined
by the following rule: The stimulus belongs to Category A
if the sum of values on the relevant dimensions is greater
than 1.5; otherwise it belongs to Category B. This rule is
readily learned by healthy young adults, but even after
achieving perfect performance, they can virtually never
accurately describe the rule they used (Waldron & Ashby,
2001).

A conjunction rule (e.g., respond A if the background is
blue and the embedded symbol is round; otherwise respond
B) is a rule-based task rather than an information-integra-
tion task because separate decisions are first made about
each dimension (e.g., symbol is round or square) and then
the outcome of these decisions is combined (integration is
not predecisional). The critical criteria are that this rule is
easy to describe verbally and easy to learn through an
explicit reasoning process. Note that according to this cri-
teria, there is no limit on the complexity of the optimal rule
in rule-based tasks. However, as the complexity of the
optimal rule increases, its salience decreases and it becomes
less likely that observers will learn the associated categories
through an explicit reasoning process. In fact, Alfonso-
Reese (1997) found that even simple conjunction rules have
far lower salience than unidimensional rules. This does not
mean that people cannot learn conjunction rules—only that
they are unlikely to experiment with such rules unless
feedback compels them in this direction. This discussion
should make it clear that the boundary between rule-based
and information-integration tasks is fuzzy. Tasks in which
the optimal rule is unidimensional are unambiguously rule
based (at least with separable stimulus dimensions), and
tasks in which the optimal rule is significantly more com-
plex than a conjunction rule are almost never rule based. In
between, the classification is not so clear-cut. For this rea-
son, the rule-based tasks used in this article all have a

1 Whereas a weighted linear combination of the dimensional
values might be classified as a mathematical rule, in this article we
use the term rule to mean a strategy that is easy to describe
verbally.

Figure 1. Category structure of a rule-based category-learning
task. The optimal explicit rule is as follows: Respond A if the
background color is blue (depicted as light gray), and respond B if
the background color is yellow (depicted as dark gray).
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unidimensional optimal rule, whereas the information-inte-
gration tasks all have three relevant stimulus dimensions.

In the experiment described below, a group of PD pa-
tients learned two rule-based category structures of the type
shown in Figure 1 and two information-integration struc-
tures like the one shown in Figure 2. On each trial, one of
the 16 stimuli was randomly selected and shown to the
participant, whose task was then to assign it to Category A
or B by pressing the appropriate response key. Participants
were then told whether their response was correct or incor-
rect, and learning proceeded until 10 correct responses in a
row were given or until 200 trials from the same category
structure had occurred without the criterion 10 correct re-
sponses in a row. On the first trial after one of these two
criteria was met, the category structure was changed without
warning. Unlike some versions of the WCST, however, all
participants were told at the beginning of the experimental
session that the category structures would change at some
time during the session.

Compared with the WCST, we believe the task used here
has several advantages. First, it requires participants to learn
category structures of qualitatively different types (i.e., rule
based and information integration), whereas all category
structures in the WCST are of the same type (i.e., rule
based). Second, the stimulus information is simpler in our
task because the participant sees only a single “card” at a
time. In contrast, the visual display in the WCST always
includes at least five cards, so learning failures in our task
are less likely to be caused by a participant being over-
whelmed by visual information compared with the WCST.

The performance of the PD patients was compared with
the performance of a group of age-matched controls. The
mean age of the PD patients was 66.8 years, so the age-
matched controls could be considered as a group of healthy
elderly people. Relative to a group of young adults however,
we predict some deficits in the elderly control group be-

cause during the course of normal aging dopamine levels in
the human brain decrease about 7% or 8% during each
decade of life (e.g., van Domburg & ten Donkelaar, 1991,
pp. 85–86). It is thought that there are no obvious motor
effects of this decrease until overall dopamine levels are
reduced by about 70%, at which point elderly people begin
to experience symptoms of early PD. In fact, it has been
hypothesized that PD occurs when the normal dopamine
depletion process is accelerated for one reason or another
(Calne & Langston, 1983). For this reason, the data of the
PD and healthy elderly participants presented below will be
compared with data from healthy young adults (run on the
same category structures, but in a different experiment).

Method

Participants

Sixteen patients with idiopathic PD and 15 older controls (OCs)
participated in this study. Patients were diagnosed by a board-
certified neurologist on the basis of the presence of two of the
following symptoms: (a) resting tremor, (b) rigidity, or (c) brady-
kinesia as well as a beneficial response to dopaminergic therapy.
The patients had been diagnosed an average of 9.29 years
(SD � 10.80) prior to their participation in this study. At the time
of their participation, all 16 patients were taking some form of
dopaminergic medication, and 12 patients were also taking an
anticholinergic. Using Hoehn and Yahr’s (1967) rating scale, 3
patients were classified as being in Stage I of the disease, 4 patients
were in Stage II, 8 patients were in Stage III, 1 patient was in Stage
IV, and 1 patient was in Stage V. OC participants were recruited
from the community. All participants were screened for a history
of neurological disease (other than PD for the patient group),
psychiatric illness, and substance abuse. Table 1 shows the mean
age, years of education, scores on the Dementia Rating Scale
(DRS; Mattis, 1988), and scores on the Geriatric Depression Scale
(GDS; Brink et al., 1982) for the PD patients and OC participants.
All PD patients and OC participants had scores of 132 or greater
on the DRS. This score on the DRS represents a one standard
deviation cutoff from the average of controls provided in the DRS
manual. The PD patients did not differ from the OC participants in
terms of age, years of education, scores on the DRS, or scores on
the GDS (all ps � .05). In addition to the PD patients and OC
participants, 109 younger controls (YC) participated in the study.
Unlike the PD and OC participants, however, each YC participant
only learned one type of categorization rule. Specifically, 44 YC
participants learned the explicit rules and 65 YC participants

Table 1
Demographic Characteristics, Dementia Rating Scale
(DRS) Scores, and Geriatric Depression Scale (GDS)
Scores of the Patients With Parkinson’s Disease (PD) and
Older Controls (OCs)

Variable

PD OC

M SD M SD

Age (years) 66.81 9.06 67.87 5.38
Education (years) 17.00 2.80 16.13 1.60
DRS 138.94 3.51 139.57 2.87
GDS 8.13 4.66 5.64 3.34

Note. Groups did not differ significantly on any variable.

Figure 2. Category structure of an information-integration cate-
gorization task. The irrelevant dimension is symbol shape (square
or circle). A background color of blue (depicted as light gray), a
symbol color of red (depicted as black), and two symbols are all
assigned a value of 1. The category assignments are determined by
the following rule: The stimulus belongs to Category A if the sum
of values on the relevant dimensions is greater than 1.5; otherwise
it belongs to Category B.
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learned the information-integration rules. All YCs participated as
part of partial fulfillment of course requirements.

Stimuli and Apparatus

The stimuli and category structures are described above. There
were a total of four possible rule-based category structures, one
corresponding to each of the four binary-valued dimensions (back-
ground color, symbol color, symbol shape, and number of sym-
bols) that constituted the stimuli. There were also a total of four
possible information-integration category structures (correspond-
ing to each of the four possible irrelevant dimensions). In all cases,
there were eight exemplars in Category A and eight in Category B.
The presentation order of both the rule-based and information-
integration category structures was random across participants.

The stimuli were computer generated and displayed on an Apple
Multiple Scan cathode-ray tube (CRT) Model No. M2943 (15 in.,
using a resolution of 832 � 624 pixels) in a dimly lit room. Each
categorization stimulus subtended a visual angle of 9.5 degrees
(300 � 300 pixels). The stimuli were presented on a black back-
ground using Macintosh PowerPC computers running the Psycho-
physics Toolbox software (Brainard, 1997; Pelli, 1997) in the
Matlab (MathWorks, Sherborn, MA) environment.

Procedure

Prior to performing the categorization tasks, participants were
shown a series of sample stimuli. During this time the dimensions
that constituted the stimuli (background color, background shape,
number of symbols, and symbol shape) were shown to the observ-
ers. In the experiment, participants classified each stimulus into
Category A or Category B by pressing the appropriate key on the
keyboard after the categorization stimulus appeared on the CRT
display. The stimulus presentation was response terminated. A
brief (1 s) high-pitched tone (500 Hz) was presented if the re-
sponse was correct, and a low-pitched tone (200 Hz) was presented
if the response was incorrect. Participants were given examples of
the high-pitched tone and low-pitched tone prior to the adminis-
tration of the experimental trials. The experimenter did not proceed
to the practice trials until it was evident that the participant
understood which tone corresponded to a correct or incorrect
response. The response–stimulus interval was 1 s. The criterion for
learning the category structures was 10 consecutive correct re-
sponses. After the criterion was met, or if the criterion was not met
within 200 trials, the categorization rule was changed without
warning, although participants were told at the beginning of the
experiment that the categorization rules would occasionally
change during the course of the experiment.

The experiment was conducted over two sessions, separated on
average by less than a week. Over the course of these two sessions
participants learned three explicit rules and two information-inte-
gration rules, never learning the same rule twice. Explicit rules are
generally easier for healthy young adults to learn than information-
integration rules (e.g., Waldron & Ashby, 2001). Consequently, in
an effort to avoid overwhelming the PD patients and OCs during
the first experimental session, participants learned three explicit
rules during the first session and two information-integration rules
during the second session.

All stimuli, category structures, and the general procedures for
the YC participants were identical to those described above. The
only differences were that the design of the experiment in which
the data of the YC participants were collected was between-
participants (i.e., different participants learned the explicit and
information-integration rules) as opposed to the within-partici-

pants design used for the PD and OC groups and that the YC group
learned only two explicit rules (in contrast to the three learned by
the PD and OC groups). To facilitate comparison between all
groups, we analyzed only the first two explicit rules learned by the
PD and OC groups.

Results

Participants were classified as learners or nonlearners on
the basis of their ability to learn the two rules in the two
conditions. If a participant was able to learn both rules in a
condition (i.e., they were able to achieve 10 correct re-
sponses in a row within 200 trials for both rules), they were
classified as a learner for that condition. However, if a
participant was unable to learn at least one of the two rules
in a condition, they were classified as a nonlearner for that
condition. Note that the classification of learner and non-
learner was made separately for the rule-based and infor-
mation-integration conditions. Thus, a participant could be a
learner in one condition and a nonlearner in the other
condition. The proportion of nonlearners for each group and
rule type is shown in Figure 3.

Figure 3 shows a number of results of interest. First,
although the YC group failed slightly more often on the
information-integration categories than on the rule-based
categories, this difference was not significant, �2(1, NII �
65, NRB � 44) � 3.15, p � .12 (where II � information
integration and RB � rule based). The PD patients also
failed equally often on the two types of category structures,
�2(1, N � 16) � 0.00, p � 1.00. In contrast, the OCs failed
more frequently on the information-integration categories
than on the rule-based categories, �2(1, N � 15) � 3.97,
p � .05. Second, in the rule-based categories there was no
difference in the proportion of nonlearners for the YC and
OC groups, �2(1, NYC � 44, NOC � 15) � 1.37, p � .05,
but there were significantly more PD nonlearners than either
YC nonlearners, �2(1, NPD � 16, NYC � 44) � 17.46, p �
.01, or OC nonlearners, �2(1, NPD � 16, NOC � 15) � 4.76,
p � .05. Third, in the information-integration categories the
OC group failed as often as the PD patients, �2(1,
NOC � 15, NPD � 16) � 0.03, p � .50, but both of these
groups failed significantly more often than the YC group:
compared with the OC group, �2(1, NYC � 65, NOC �
15) � 8.90, p � .01: compared with the PD group, �2(1,
NYC � 65, NPD � 16) � 10.07, p � .01.

To investigate possible differences among the learners in
the PD and control groups further, we averaged the number
of trials to criterion for the two rules in both the rule-based
and information-integration conditions separately. These
data can be seen in Figure 4. A one-way analysis of variance
(ANOVA) of the data in the rule-based condition indicated
that the three groups differed in their averaged trials to
criterion, F(2, 60) � 4.70, p � .05. Follow-up contrasts
using Tukey’s honestly significant difference (HSD) test
indicated that the OC group required a greater number of
trials to criterion than the YC group ( p � .05), whereas the
PD group did not differ from the OC or the YC groups (see
Figure 4). In contrast, a one-way ANOVA of the data in the
information-integration condition revealed that the learners
in the three groups did not differ in their averaged trials to
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criterion, F(2, 67) � 0.38, p � .50. We also estimated
learning curves for each PD and OC learner (i.e., proportion
correct plotted against trial number). These were identical
for the two groups in both the rule-based and information-
integration conditions. Thus, for those participants who
learned both category structures in a condition, there was no
difference between the PD patients and the OC group either
in the number of trials required to reach criterion accuracy
or in the rate at which this categorical knowledge was
acquired.

As a follow-up to the proportional analyses presented at
the beginning of this section, we also contrasted the learners

and nonlearners in the PD and OC groups on several vari-
ables to determine if these subgroups differed. For the PD
group, learners and nonlearners in the rule-based condition
did not differ in terms of age, years of education, Hoehn and
Yahr (1967) scores, or scores on the GDS (all ts � 1.20);
however, there was a trend for nonlearners in the PD group
to have lower DRS scores than learners, t(14) � 2.14, p �
.05. The learners and nonlearners of the explicit rules in the
OC group did not differ reliably on any of the above
variables (all ts � 0.41). The PD learners and nonlearners in
the information-integration condition differed in the number
of years of education, with learners having a greater number

Figure 3. Proportion of nonlearners in each group for both types of category structures. Error bars
represent standard errors of proportions. YC � younger control group; OC � older control group;
PD � Parkinson’s disease group.

Figure 4. Trials required of learners to reach criterion (i.e., 10 correct responses in a row) for each
group with both types of category structures. Error bars represent standard errors of mean trials to
criterion. YC � younger control group; OC � older control group; PD � Parkinson’s disease group.
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of years than nonlearners, t(14) � 3.15, p � .01, but the two
groups did not differ on any of the other variables (all ts �
1.22). The OC learners and nonlearners did not differ on any
of the above variables (all ts � 0.75). Finally, to determine
if performance in the two categorization tasks was associ-
ated with disease severity, we correlated trials to criterion in
the two conditions with the Hoehn and Yahr (1967) scores
of the PD learners. The results of these correlations were not
significant ( p � .50 for both correlations).

Discussion

The results clearly indicate that, as a group, the PD
patients were severely impaired, relative to the OC group,
when learning rule-based category structures but not when
learning information-integration category learning. In fact,
fully half of the PD group failed to learn at least one of the
two rule-based category structures, despite the apparent
simplicity of the rule-based categories and the extensive
experience participants were allowed (i.e., 200 trials). In
contrast, only 14% of the OC group failed on at least one
rule-based category structure. On the other hand, there was
no difference between these two groups in the more difficult
information-integration condition, either in the proportions
who failed to learn both structures or in the performance of
those who did learn. Thus, compared with the OC group,
our results show that the PD patients were selectively im-
paired on the simpler rule-based category structures.

A comparison of the YC and OC groups yields a different
conclusion. The OC group failed more frequently than the
YC group on the difficult information-integration catego-
ries, but they were just as successful as the YC group on the
rule-based categories. Thus, compared with the YC group,
the OC group was selectively impaired on the information-
integration categories. This conclusion must be interpreted
with caution, however, because of the small, but possibly
important, design differences under which the two groups
were run (i.e., see the Method section).

Our results also indicate that there may be distinct sub-
populations of PD patients, a possibility that has been sug-
gested by other investigators (El-Awar, Becker, Hammond,
Nebes, & Boller, 1987; Filoteo et al., 1997; Maddox, Filo-
teo, Delis, & Salmon, 1996; Mortimer, Jun, Kuskowski, &
Webster, 1987). In the rule-based condition, half the PD
patients were nonlearners but the other half (i.e., the PD
learners) performed no worse than the OC group. The PD
nonlearners in the rule-based condition scored marginally
worse on the DRS than the PD learners ( p � .05), so one
possibility is that the nonlearners had more pathology than
the learners, and given that damage to frontal-subcortical
systems might underlie cognitive alterations in PD (e.g.,
Dubois & Pillon, 1997; Owen et al., 1992), it is possible that
the PD nonlearners had more pathology in these brain
regions. As we will show shortly, there is strong evidence
that the frontal cortex is critical in rule-based category
learning (especially the prefrontal cortex and the anterior
cingulate).

One surprising result of our study was a failure to find an
information-integration category-learning deficit in the PD

group. There are several reasons why such a deficit is
expected. First, there have been previous reports of deficits
in PD patients in information-integration category learning
(Knowlton, Mangels, & Squire, 1996; Maddox & Filoteo,
2001). Second, as we argue below, there is reason to believe
that information-integration category learning uses the pro-
cedural memory system, which is thought to be damaged in
PD (Soliveri, Brown, Jahanshahi, Caraceni, & Marsden,
1997; Thomas-Ollivier et al., 1999). One possibility is that
such damage exists in the PD group but that our informa-
tion-integration categorization task was not difficult enough
to show any effects of such damage. The other reports of PD
impairment in information-integration category learning
used tasks that were considerably more difficult than the
task used here, either because the rule determining category
membership was more complex (Maddox & Filoteo, 2001)
or because the category assignments were probabilistic
(Knowlton, Mangels, & Squire, 1996). This hypothesis is
supported by the results of Maddox and Filoteo (2001). In
two separate information-integration categorization experi-
ments, they found that PD patients were impaired in the
more difficult task but not in the easier task.2

Single Versus Multiple Category-Learning Systems

An important question we have not yet considered is
whether learning of the rule-based and information-integra-
tion category structures was mediated by separate systems.
Several lines of evidence point in this direction. First, a
wide variety of data collected from younger observers in
rule-based and information-integration tasks support the
multiple-systems hypothesis (for a review, see Ashby & Ell,
2002b). For example, in the absence of trial-by-trial feed-
back people can learn some rule-based categories, but there
is no evidence that it is possible to learn information-
integration categories without feedback (Ashby, Queller, &
Berretty, 1999). Even when feedback is provided on every
trial, information-integration category learning is impaired
if the feedback signal is delayed by as little as 5 s after the
response. In contrast, such delays have no effect on rule-
based category learning (Maddox, Ashby, & Bohil, 2002).
Similar results are obtained when observational learning is
compared with traditional feedback learning. Ashby, Mad-
dox, and Bohil (2002) trained participants on rule-based and
information-integration categories using an observational
training paradigm in which participants were informed of
the category membership of the ensuing stimulus. Follow-
ing stimulus presentation, participants then pressed the ap-
propriate response key. Traditional feedback training was as
effective as observational training with rule-based catego-
ries, but with information-integration categories, feedback
training was significantly more effective than observational

2 The interpretation of this finding is complicated somewhat by
the fact that the optimal rule in the simpler information-integration
task used by Maddox and Filoteo (2001) was easy to describe
verbally. Thus, although accurate responding required integrating
stimulus information at a predecisional stage, it is not clear
whether participants used explicit rules in this condition.
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training. Finally, switching the location of the response keys
after training is complete has no effect on rule-based cate-
gorization, but it impairs information-integration catego-
rization (Ashby, Ell, & Waldron, 2002), thereby suggest-
ing that information-integration category learning is more
closely tied to motor outputs than rule-based category
learning.

One criticism of all these results is that information-
integration tasks are usually more difficult than rule-based
tasks. For example, in our study the performance of the YC
and the OC groups clearly shows that the rule-based task is
simpler than the information-integration task—for both
groups, the proportion of nonlearners and the trials to cri-
terion of learners were lower in the rule-based condition.
Because of this difficulty difference, one concern is that
collectively these studies might show only that there are
many ways to disrupt learning of difficult tasks compared
with simpler tasks. However, several results argue strongly
against this hypothesis. First, as can be seen in Figure 3,
compared with the OC group, the PD patients were more
impaired on the simple rule-based categories than on the
difficult information-integration categories. When a single
learning system is damaged, we expect to see the effects
first in difficult tasks. The opposite pattern of results ob-
served here thereby suggests that learning in the two tasks
was mediated by separate category-learning systems and
that the pattern of results was not due to difficulty per se.

Other evidence against the difficulty hypothesis comes
from an experiment by Waldron and Ashby (2001). In this
study, which used exactly the same stimuli and category
structures as the present study (e.g., as in Figures 1 and 2),
a group of younger adults learned rule-based or informa-
tion-integration categories either under typical single-task
conditions or when simultaneously performing a numerical
Stroop task. On each trial of the dual-task conditions, the
categorization stimulus was flanked by two numbers, which
differed across trials in numerical value and physical size.
Participants were required to maintain this information in
memory until after their categorization response, at which
time they were given a cue to report either the numerically
larger digit or the digit that was physically larger. Results
showed that the concurrent Stroop task dramatically im-
paired learning of the simple rule-based categories but did
not significantly delay learning of the more difficult infor-
mation-integration categories. Such results are highly prob-
lematic for single-system accounts of category learning.

Other evidence supporting separate systems comes from
quantitative modeling of category learning data. For exam-
ple, arguably the most popular single-system model of cat-
egory learning is Kruschke’s (1992) attentional learning
covering map (ALCOVE) model. Ashby and Ell (2002a)
showed that the only versions of ALCOVE that can fit the
Waldron and Ashby (2001) data make the strong prediction
that after reaching criterion accuracy on the simple rule-
based structures, participants would have no idea that only
one dimension was relevant in the dual-task conditions.
Ashby and Ell reported empirical evidence that strongly
disconfirmed this prediction of ALCOVE. Thus, the best

available single-system model fails to account even for the
one dissociation reported by Waldron and Ashby (2001).

Alternative Hypotheses

Our results are consistent with the hypothesis that rule-
based and information-integration category learning are me-
diated by separate systems and that PD causes greater
damage to the system mediating rule-based learning. Even
so, there are two competing interpretations that are impor-
tant to consider. The first is that PD causes a general
impairment in cognition, rather than a deficit in a specific
aspect of category learning such as we have proposed. Note
that this hypothesis predicts that the greatest category-learn-
ing deficits in PD should occur in the most difficult cate-
gorization tasks. Therefore, the finding that our PD patients
were more impaired on the simple rule-based tasks than on
the difficult information-integration tasks is strong evidence
against this general impairment hypothesis.

Another important possibility to consider is that because
each of our categories contained only eight exemplars,
participants might have learned the information-integration
categories by memorizing responses to each individual ex-
emplar. If so, then the rule-based and information-integra-
tion tasks would both depend on explicit memory. The
dual-task results of Waldron and Ashby’s (2001) study,
however, argue strongly against this possibility. Recall that
this study used exactly the same stimuli and category struc-
tures as in the present study. If observers learned the infor-
mation-integration categories by memorizing individual ex-
emplars, they should have experienced massive interference
from the simultaneous numerical Stroop task used by Wal-
dron and Ashby (2001) because the working memory load
imposed by this dual task should have greatly interfered
with active memorization. Therefore, the absence of any
significant interference on information-integration category
learning in the Waldron and Ashby study suggests that
memorization strategies could have played, at most, only a
minor role in the information-integration conditions.

Neural Basis of Rule-Based and Information-
Integration Category Learning

If rule-based and information-integration category learn-
ing are largely mediated by separate systems, then it is
natural to ask about the neural basis of these systems.
Although much more work is needed on this problem, some
strong clues come from neuropsychological and neuroim-
aging studies of category learning. For example, many
studies in addition to ours have shown that patients with
frontal or basal ganglia dysfunction are impaired in rule-
based tasks (e.g., Brown & Marsden, 1988; Cools et al.,
1984; Downes et al., 1989; Janowsky, Shimamura, Krit-
chevsky, & Squire, 1989; Leng & Parkin, 1988; Robinson,
Heaton, Lehman, & Stilson, 1980). In addition, patients
with medial temporal lobe damage are normal in this type of
category learning (e.g., Janowsky et al., 1989; Leng &
Parkin, 1988). Thus, an obvious first hypothesis is that the
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prefrontal cortex and the basal ganglia participate in rule-
based category learning but the medial temporal lobes do
not.

To a remarkable degree, these conclusions agree with
existing neuroimaging data. For example, a functional mag-
netic resonance imaging (fMRI) study of a rule-based task
similar to the WCST showed activation in the right dorsal-
lateral prefrontal cortex, the anterior cingulate, and the head
of the right caudate nucleus (among other regions; Rao et
al., 1997). Similar results were obtained in a recent fMRI
study of the WCST (Monchi, Petrides, Petre, Worsley, &
Dagher, 2001). Converging evidence for the hypothesis that
these are important structures in rule-based category learn-
ing comes from several sources. First are the many studies
that have implicated these structures as key components of
executive attention (Posner & Petersen, 1990) and working
memory (Goldman-Rakic, 1987, 1995), both of which are
likely to be critically important to the explicit processes of
rule formation and testing that are assumed to mediate
rule-based category learning. Second, a recent neuroimag-
ing study identified the (dorsal) anterior cingulate as the site
of hypothesis generation in a rule-based category-learning
task (Elliott & Dolan, 1998). Third, lesion studies in rats
implicate the dorsal caudate nucleus in rule switching (Win-
ocur & Eskes, 1998), which is believed to be an important
aspect of rule-based category learning (Ashby et al., 1998).

Note that these conclusions suggest that the rule-based
deficits seen in PD are due primarily to dysfunction in the
head of the caudate nucleus. This conclusion is consistent
with postmortem autopsy data, which reveal that damage to
the head of the caudate is especially severe in PD (van
Domburg & ten Donkelaar, 1991, pp. 71–72). In fact, be-
cause of its reciprocal connections to the prefrontal cortex,
many of the well-documented “frontal-like” symptoms of
PD might actually be due to damage in the head of the
caudate nucleus (e.g., Owen et al., 1992).

Similarly, a wide variety of evidence implicates the basal
ganglia in information-integration category learning. First,
despite the absence of a PD deficit in the present study, there
are a variety of reports that patients with basal ganglia
dysfunction, including both PD and Huntington’s disease
patients, are impaired in difficult information-integration
tasks (Filoteo et al., 2001a; Knowlton, Mangels, & Squire,
1996; Knowlton, Squire, et al., 1996; Maddox & Filoteo,
2001). In contrast, medial temporal lobe amnesic patients
are normal (Filoteo, Maddox, & Davis, 2001b), except
when memorization is a feasible strategy, in which case they
show late-training deficits (Knowlton, Squire, & Gluck,
1994). In addition, there are reports that frontal patients are
impaired in rule-based tasks but not in information-integra-
tion tasks (Knowlton, Mangels, & Squire, 1996). An obvi-
ous first hypothesis, therefore, is that the basal ganglia are
critical for information-integration category learning but
frontal and medial temporal lobe structures are not.

The evidence reviewed here implicates the basal ganglia
in both rule-based and information-integration category
learning. Even so, given the striking difference between the
performance of our PD group on these tasks, it seems
plausible that different regions within the basal ganglia may

be implicated in these two types of category learning. We
argued above that the head of the caudate nucleus is critical
in rule-based learning. Neuroanatomical and behavioral
neuroscience data indicate that the tail of the caudate nu-
cleus may be critical in information-integration tasks (at
least with visual stimuli).

In primates, all of the extrastriate visual cortex projects
directly to the tail of the caudate nucleus, and the cells in
this area then project, via the globus pallidus (the output
portion of the basal ganglia) and thalamus, to the prefrontal
and premotor cortices. These projections place the caudate
in an ideal position to link percepts and actions (e.g., Rolls,
1994; Wickens, 1993), which is one reason many theorists
believe that the basal ganglia mediate procedural learning
(Jahanshahi, Brown, & Marsden, 1992; Mishkin, Malamut,
& Bachevalier, 1984; Saint-Cyr, Taylor, & Lang, 1988;
Willingham, Nissen, & Bullemer, 1989). In support of this
hypothesis, a long series of lesion studies in rats and mon-
keys shows that the tail of the caudate nucleus is both
necessary and sufficient for normal visual-discrimination
learning (e.g., Eacott & Gaffan, 1992; Gaffan & Eacott,
1995; Gaffan & Harrison, 1987; McDonald & White, 1993,
1994; Packard, Hirsh, & White, 1989; Packard & McGaugh,
1992). For example, many of these studies showed that
lesions of the tail of the caudate nucleus impair the ability of
animals to learn visual discriminations that require one
response to one stimulus and a different response to some
other stimulus. Because the visual cortex is intact in these
animals, it is unlikely that their difficulty is in perceiving the
stimuli. Rather, it appears that their difficulty is in learning
to associate an appropriate response with each stimulus
alternative. Technically, such studies are categorization
tasks with one exemplar per category, but it is difficult to
imagine how adding more exemplars to each category could
alleviate the deficits caused by caudate lesions. For these
reasons, Ashby et al. (1998) proposed that information-
integration category learning is dominated by a procedural-
memory based system that is largely mediated within the
tail of the caudate nucleus (see also Ashby & Waldron,
1999; Ashby, Waldron, Lee, & Berkman, 2001).

Taken together, the present results and those of past
studies strongly suggest that different brain systems mediate
different types of category learning. In the case of rule-
based category learning, it is proposed that the prefrontal
cortex and head of the caudate are primarily involved,
whereas in information-integration category learning, the
tail of the caudate may play a crucial role.

Conclusion

To our knowledge, this is the first attempt to compare the
ability of the same PD patients to learn rule-based (i.e.,
explicit) and information-integration (i.e., implicit) category
structures. When compared with a group of OCs, PD pa-
tients were highly impaired when category membership was
defined by an explicit rule but were not different from the
OC group when membership was defined by a rule that was
difficult to verbalize and required integrating information
about the stimulus components at a predecisional stage.
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This dissociation, and especially the fact that the PD pa-
tients were impaired on the easier rule-based task but not on
the more difficult information-integration task, is consistent
with the hypothesis that (a) there are multiple category-
learning systems and (b) the brain regions affected in PD
(i.e., frontal cortex and caudate nucleus) are likely part of
these multiple systems.

We believe these results are intriguing and highly sug-
gestive. Even so, this was a single study with relatively
limited samples of highly educated PD patients and OCs.
Therefore, before any stronger conclusions can be drawn,
replications are needed with other diverse groups of partic-
ipants and with categories containing qualitatively different
types of stimuli (e.g., auditory stimuli or visual stimuli that
vary on different dimensions than those used here). In
addition, calibration studies are needed that directly com-
pare and contrast the task used here with standard neuro-
psychological assessments (e.g., the WCST).
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