Python Guide

Terminology

Application - A program that is applied to some specific task.

Argument - Data that is input and used in a function. These go in the parentheses after a
function. For example, the print () function takes a string as an argument, like
print (“Hello World”), where “Hello World” is the argument.

Assignment - The process of giving a variable some value.

Boolean Expression - See “Truth Statement.”

Boolean Value - A value that is either True or False.

Bugs - Flaws in the code. These can be syntax errors or semantic errors.

Camelcase - A naming convention for variables where words within the name are
capitalized: helloWorld, pleaseExcuseMyDearAuntSally, camelCasinglsUseful.

Conditional - Code that is only execute if some condition is true. These come in two parts:
if and else. The code written in i f are executed if the condition is True, and the code
written in else are executed if the condition is False. These are written in Python using
the if and else keyword. These are also known as if/else statements.

Constants - A variable whose value never changes once it is assigned. For example,
GRAVITY = 9.8.

Counter - See “Iterator.”

Decrementing - A looping technique that decreases the value of an iterator to some
minimum value. When the iterator is at or below the minimum, the loop quits.

Flag - A variable that has a boolean value that signals some condition in the code.

For Loop - A type of loop the executes for some range of numbers or items. It uses a
counter variable to maintain its position in the range, known as an iterator. These are
written in Python using the for keyword.

Function - A separate piece of code that can be called and executed from anywhere in the
main body of code. In Python, these look like name (argumentl, argument2,
argument3).

if/else statement - See “Conditional.”

Incrementing - A looping technique that increases the value of an iterator to some
maximum. When the iterator is at or above the maximum, the loop quits.

Infinite Loop - A loop that does not end; this will stall the program forever and can crash
your computer. These should always be avoided.

Input - Externally generated data that is caught by the program. This can be anything from
text input by a user to sensory data obtained from a robot.

Interactive Development Environment (IDE) - A specialized text editor that is built
specifically for making programs. IDLE is an IDE.

Iteration - The process in which code is repeated one or more times. Loops use iteration.

Iterator - A variable used to determine the current place in the loop, usually as a number.
Typically, these are used as part of for loops. For example, in the code for i in range(0, 10),
the variable jis an iterator. This is also referred to as a counter.

Literalism - The explicit adherence to a given text. Computers interpret programs literally.

Loop - Code that is executed one or more times using iteration. This can be while some
condition is true or for some range of numbers.

Nesting - Putting conditional or looping code within other conditional or looping code.

Output - Anything that the computer does to interface with the outside world. This can be
text, images, lights, movement, etc. For example, the print function outputs text to the
shell.

Parameter - The required input of a function. These are specified in the definition of a
function. For example, in the function def hello (x), x is a parameter.

Program - A coded behaviour that a computer can execute.

Semantics - The meaning of a piece of code. This can apply to single lines or entire
programs.

Semantically Equivalent - The meaning of two pieces of code are the same. A is semantically
equivalent to B if the semantics of A and B are identical.

Semantic Error - A bug that exists because the code is not interpreted by the computer as
intended.

Shell - A programmer’s interface that allows code to be ran line-by-line. IDLE opens to a
shell.

String - A data type representing a sequence of characters, such as “Hello”.
Syntax - The specific way code is written.

Syntax Error - A bug that exists because the code does not obey the syntax requirements of
the programming language.

Syntax Requirements - The specific way code must be written.

Truth Statement - Code that checks for some condition and evaluates to a boolean value.

While Loop - A type of loop the executes while some condition is true. These are written in
Python using the while keyword.

Variable - A representation of a number, string or other piece of data.

Syntax

Variables and Literals
e “[value]” - creates a string with the value. For example, “Hello” creates a string with
the value, Hello.
e Xx =V -setsthevariable, x to the value, v. For example, foo = 7 sets the variable,
named foo, to the value, 7.

X +Yy - adds the values of xand y; for strings, this put them together (“h" + “i" = “hi")
X -y - subtracts the value of xby y

x *y - multiplies the values of xand y

x /'y - divides the value of xby y

X %y - gives the remainder of x divided by y

x **y - performs ¥/

Truth Statements
X >y -istrueif x is greater thany

e Xx>=y-istrueifxis greater than or equaltoy

e Xx<y-istrueifxislessthany

e Xx<=y-istrueifxislessthanorequaltoy

e x==y-istrueifxisequaltoy

e Xx!=y-istrueifxisnotequaltoy

e Xxiny-istrueifxissomewhereiny

e Xxandy-istrueifboth xandy are true

e Xxory-istrueif either xandy are true

e not x-is true if x is not true; x can be a truth statement in parentheses
Conditionals

e if v:-executes the indented code below it if the value, v, is true
o else: - executes the indented code below it if the value, v, is false. This must
be placed directly after the indented code below if (v).

Loops
e while v: - executes the indented code below it as long as the value, v, is true

Functions
o def name(arg1, arg2, ...) - creates a function with the name, name, that takes the
arguments, arg1, arg2, and so on.
e returnv -returns the value, v, from the function it is coded within and exits the
function

Predefined Functions

print(arg) - prints the value of arg

int(arg) - converts the argument to an integer
float(arg) - converts the argument to a decimal number
str(arg) - converts the argument to a string

Finch Movement Functions

forward() - moves the Finch forward continuously

forward(inches) - moves forward approximately the number of inches
forward(inches, delay) - moves forward approximately the number of inches. If
delay is True, waits for the movement to finish. If delay is False, the program
continues while the movement is happening.

backward() - moves the Finch backward continuously

backward(inches) - moves backward approximately the number of inches
backward(inches, delay) - moves backward approximately the number of inches. If
delay is True, waits for the movement to finish. If delay is False, the program
continues while the movement is happening.

turnRight() - turns the Finch clockwise continuously

turnRight(angle) - turns the Finch clockwise for approximately that angle
turnRight(angle, delay) - turns the Finch clockwise to approximately that angle. If
delay is True, waits for the movement to finish. If delay is False, the program
continues while the movement is happening.

turnLeft() - turns the Finch counterclockwise continuously

turnLeft(angle) - turns the Finch counterclockwise for approximately that angle
turnLeft(angle, delay) - turns the Finch counterclockwise for approximately that
angle. If delay is True, waits for the movement to finish. If delay is False, the
program continues while the movement is happening.

setWheels(left, right) - sets the left wheel's movement to the left value and the
right wheel's movement to the right value

stop() - stops the Finch's wheels

Finch Output Functions

light(color) - turns the Finch's nose the specified color. Color must be a string.
light(r, g, b) - turns the Finch’s nose to the color specified by the components.r, g,
and b are the red, green, and blue color components, respectfully.

buzz(duration, frequency) - makes the Finch play a sound at the specified
frequency for the specified duration. The program does not wait for the buzz to
finish.

delayedBuzz(duration, frequency) - makes the Finch play a sound at the specified
frequency for the specified duration. The program waits for the buzz to finish.

Other Finch Functions

halt() - stops everything the Finch is doing

