Setting Up Python on Windows

1. Go to www.python.org.
2. Click on “Downloads.”

Python

& python’ o .

About Downloads Doc'mentation Community Success Stories News Events

All the Flow You’d Expect

Python knows the usual control flow statements that other
languages speak — ° 7, , and — with some

of its own twists, of cours: control flow tools in

Python 3

The product is:

Python is a programming language that lets you work quickly

and integrate systems more effectively. »» Learn More

Python

e python’ .

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.6.1 nload Python 2.7.13

Wondering which version to use? Here’s more about th
between Python 2 and 3.

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Pre-releases

Looking for a specific release?

Python releases by version number:

4. Run the downloaded installer.

http://www.python.org/

5. Click “Install Now" and wait for the installer to finish.

& Python 3.6.1 (32-bit) Setup — X

Install Python 3 6.1 (32 -bit)

Select Install Mow toin
i dixle or disable features.

settings, or choose

¥ Install Now
ChUsers' Justin NMorman'AppDatatLecal\Programs\Python'Python36-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize If

Choose location and features

pgthon

[Install launcher for all users (recommended)

WIﬂdOWS [] Add Python 3.6 to PATH Cancel |

6. Close the installer.

B Python 2.6.1 (32-bit) Setup

python
for
windows

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would

still be Python for DOS.

Mew to Python? Start with the online tutorial and
doecumentation.

See what's new in this release,

@ Disable path length limit

Changes your machine configuration to allow programs, including Python, to

bypass the 260 character "MAX_PATH" limitation.

qﬁ

Setting Up Python on mac0S

1. Go to www.python.org.
2. Click on “Downloads.”

Python

& python’ o .

About Downloads Doc'mentation Community Success Stories News Events

All the Flow You’d Expect

Python knows the usual control flow statements that other
languages speak — ° 7, _, and — with some

of its own twists, of course. More control flow tools in

Python 3

The product is: 384

Python is a programming language that lets you work quickly
and integrate systems more effectively. »» Learn More

Python

e python’ .

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.6.1 nload Python 2.7.13

Wondering which version to use? Here’s more about the difference
between Python 2 and 3.

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Pre-releases

Looking for a specific release?

Python releases by version number:

4. Run the python.3.x.x-macosx10.6.pkg program in your downloads folder.

http://www.python.org/

5. Click continue and carefully read through the license agreement before
accepting it.
‘e Install Python

Welcome to the Python Installer

This package will install Python 3.6.1 for Mac OS X 10.6 or later.
® Introduction
Python for Mac OS X consists of the Python programming language
interpreter, plus a set of programs to allow easy access to it for Mac OS X
users including an integrated development environment IDLE.

NEW: There are important changes in this release regarding network
security and trust certificates. Please see the ReadMe for more details.

IMPORTANT: IDLE and other programs using the tkinter graphical user
interface toolkit require specific versions of the Tel/Tk platform
independent windowing toolkit. Visit https:/www.python.org/download/
mac/tcltk/ for current information on supported and recommended
versions of Tcl/Tk for this version of Python and Mac OS X.

Continue

6. Choose to install python on your boot drive (for this example it's Macintosh
HD).

‘e Install Python

Select a Destination

Select the disk where you want to install the Python
software.

Introduction

® & o

Macintosh HD
150.28 GB available
499.42 GB total

Installing this software requires 105.2 MB of space.

You have chosen to install this software on the disk “Macintosh
HD",

Go Back Continue

7. Click install and enter your password to install the program.

Setting Up the Finch Robot on Windows

1. Go to www.finchrobot.com.
2. Hover over “Learning” and click “Software.”

[ClassSes: X 4 [€OS120-| X ' e Concepts X \E os120 % \E Setup (Fir X ' B Setup (Pr X y I Finch Ret X ' [Finch Pyt X \ﬁ Compilin. X \m Howto T X H = x
<« (&7 ‘ @ www.finchrobot.com b4 ‘ $® ©
52 Apps Game Design || Unity Arcane Fantasiaideas | | Characters || News [| HeroClix Dank Memes | The "Apology” - Exist: | Netflix & Dungeons & Dragon: [E Philosophy Tech Sup; »

Learning ¥ Teaching . Buy. or‘i!qr_rgw v

Getting Started

“ Software

. FI N c H

Raspberry FijExtension

8 £2ROBOT"

Troubleshooting
F

Designed for
Computer Science Education

Buy a Finch Today! R B Whatis

 10% Educational Discount & Free US Shipping! i AEhEIRRER?

Cilmale Dl a2

www.finchrobot.com/software-overview -

¥ Fincheython120.zip ~ Showall | X

Currently Supported Languages or Environments
Grades K-2

al Programmer

http://www.finchrobot.com/

4. Click on “Download” under “Windows."”

é?FI Nc H Learning ¥ Teaching Buy or.Borrow ¥

7 ROBOT

Python

The Finch currently supports Python in two ways. We have a native Python library and we also have access to Finch's Java libraries
through Jython, a variant of Python that allows easy access and importation of Java libraries.

Python

Python is a popular programming languags, written on C. Its syntax allows programmers to write in fawer lines of code, and is easy for new
programmers to learn.

This Python library is brought to you by the efforts of Jay Jin, Justas Sadzevicius, and others.

Downloads
Software Package Linux
FinchPython Download

Documentation
Documentation for the Python APl is available at Python AP| Documentation.

After you have downloaded the Finch Python packags, follow the instructions for compiling and running programs.

10

5. Open the zip file. The contents should look like this.

B Rl

Home Share

A

ED

[m]

Extract Extract
To all

Extract To

« - -1

7 Cuick access
Creative Cloud F #
B Desktop »
; Downloads -
& Dropbox b
L. Google Drive &
Documents b
[&] Pictures o
School Stuff -
Alpha Build1 #
CO5350 b
CO5350
PHI 475
Summer CLA

Trolley Problems
g Dropbox
f@ OneDrive
[This PC

Q Metwork

21 items

Compressed Folder Tools

View | Extract

',f' <« Downloads » FinchPythonl120.zip

Mame

D accelerationExarmpleOne.py
D accelerationExarmpleTwo.py
D alarm.py

D dance.py

D Finch Python AP| Description.pdf

D finch.py

D finchconnection.py
[7 hidapiza.dil

| 7 hidapis4.dil

D lapswimmer.py

| libhidapi.dylib

[libhidapi2.so

| libhidapifd.so

[7 libhidapipi.se

[] LICENSE.&xt

D musicexample. py
D notes.py

D racedriver.py

D tapExample.py

D testfinchfunctions.py
D wanderer.py

FinchPython120.zip

v O Search FinchPython120.zip pel

Type

Pytheon File

Python File

Python File

Python File

WPS PDF Document
Python File

Python File
Application extension
Application extension
Python File

DYLIB File

50 File

50 File

50 File

Text Document
Python File

Python File

Python File

Python File

Python File

Python File

Compressed size

1KB
1KB
1KB
1KB
371 KB
2 KB
KB
21 KB
28 KB
1KB
8 KB
22 KB
24 KB
18 KB
1KB
1KB
2 KB
1KB
1KB
1KB
1KB

11

6. Open a new file explorer (WIN + E) and go to the folder that Python is in. This is
%LOCALAPPDATA%\Programs\Python\ by default. There will be a single folder in the

“Python” folder. Open that.

B Desktop
& Downloads
= Dropbox
L. Google Drive
Documents
[&] Pictures
School Stuff
Alpha Build 1
CO5 330
COS5350
PHI 473

OO O U U

Surmmer CLA
Trolley Problemns

g Dropbox
@& OneDrive
E This PC

|_ﬂ' Metwork

1itemn

I 5 | Python — O
Home Share View
x =] U = « Moveto - | M Delete = T~ 9 L2 EH setect ai
= Wi ¥ [oo select none
Pinto Quick Copy Paste - IE Copy =1l Ra Mew Properties
aCcess Iﬂ i Copy to e folder i jE‘Imrertselectinn
Clipboard Mew Open Select
<« ™ SLOCALAPPDATAS\Programs\Python V| =5 Search Python
ir Date modified Type
7+ Cuick access
. B | Python36-32___2 5/24/201710:31 AM File folder
Creative Cloud F

X
e

12

13

10.
11.
12.
13.

If you are on Windows 10, drag everything from the zip folder to the Python folder. If
you are on Windows 8 or 7, extract the contents of the zip file to the Python folder.
(Optional) Create a new folder anywhere you'd like and drag everything from the zip
folder to that folder.

Close the zip folder.

Go to https://drive.google.com/open?id=0BxZIk0Jh261 pdTBIWGNPQWtrMkk
Download the file.

Open your downloads and drag “finchAPl.py” from downloads to the Python folder.
Close all explorers.

14

Setting Up the Finch Robot on mac05

1. Go to www.finchrobot.com.
2. Hover over “Learning” and click “Software.”

[ClassSes: X 4 [cos120-| x \‘. Concept: X \E os120 % \E Setup (1 X \E Setup (P X / I Finch Ret X ' [Finch Pyt X \ﬁ Compilin: % \m Howto T X ﬂ - x
<« c ‘ @ www.finchrobot.com e ‘ & ©
% Apps [| Game Design [Unity Arcane Fantasiaideas || Characters [| News [| HeroClix Dank Memes | The "Apology” - Exist: | Netflix & Dungeons & Dragon: [E Philosophy Tech Sup; »

Learning ¥ Teaching Buy or Borrow ¥ |

Getting Started

“ Software
. FI N c H

Raspberry FijExtension

8 £2ROBOT"

Troubleshooting
r

Designed for
Computer Science Education

10% Educational Discount & Free US Shipping! the Finch?

Buy a Finch Today! R B Whatis

Cilmale Dl a2

www.finchrobot.com/software-overview -

¥ Fincheython120.zip ~ Showall | X

3. Click on “Python/Jython.”

Other Software Available: CREATE Lab Visual Programmer, Javascriot, Scala, C, C++, C#, Visual Basic

Currently Supported Languages or Environments

Grades K-2

TE Lab Visual Programmer

Levels Three and Four

s Scratch

Grades 10+

15

http://www.finchrobot.com/

16

4. Click on “Download” under “Mac OSX."

Firwobe) £am o L]

’.J
r’;’?}-’{l—r‘, il Lewrring m

Tra Finch comamly suppors Peron s teo wayn. We hes a nathve irery pnd we afan hpve soreer o Finch'e pvs bbramas
thizeagh o i it of Python thal illown sy ecowms and imsertation el Java Rorane

J....- hion

Pyihar is & popular programmng lnguige, weitken on T i syl aloso geogramman Lo siite in kewee nes of cock, ind i ey o 5w

[PAGH] T T2 1. 10 B3,

This Python liorary i brougng oo you by e effons of o Justs Sachwsiciug, and o,
Deswnloads

Seftware Packages Windoa Lira

FircchPython

Docwmentation

Drrcurninkalion ko S Python AP is s bbb at
Ader wid havae dioverdnad sd sha Finch Python package, folow the

Imiportant Fies and Folders

Tray dnilorwing films ard foldan arm common to el Python dowelosds:
finch gy - The Firch AP) sousos fil
Techonmmaction. ry - Uiisdd bey lisach. pry bor dsncngieciivieeg data orear LSS

hiclapn 3384 Al Mindowal, [bhidap dedit (Mac), Bhtedap 3064 e {Linus) - Castaing e HOAR Rhoary,

5. Remove the downloaded file from your “Downloads” folder, and place it on
your Desktop.

6. Go to https://drive.google.com/open?id=0BxZIk0]h261pdTBIWGNPQWtrMKk,
download the file.

7. Drag the file from your downloads to the FinchPython120 folder.

8. Close any finders.

https://drive.google.com/open?id=0BxZlk0Jh261pdTBlWGNPQWtrMkk

Using IDLE

What is IDLE

IDLE is the interactive development environment (IDE) that is used by default with
Python. An IDE is a text editor specifically made for programming. It often comes with other
tools, like a shell, a debugger, and a packager. Don’t worry, though: IDLE is simple and easy
to use.

To open IDLE, go to the folder that Python is in and open the file “pythonw.” Or, simply
search your computer for it and open the first file that shows up.

Using the Shell

| & Python 3.6.1 Shell - O X

.File Edit Shell Debug Options Window Help]
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright"™, "credits™ or "license()" for more information.
>>> |

The first window you will see is the shell. A shell is a programming interface that allows
code to be input line-by-line. The “>>>" indicates that the user can start entering code that
the shell will run. It will also maintain any data you put in for the lifetime of the shell.

[Python 3.6.1 Shell — | X
File Edit Shell Debug Optiens Window Help

Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits™ or "license()" for more information.

>>> X = "Hello, World"

>>> print (x)

Hello, World

>>> |

17

For example, the above code created a variable and printed it out. It's not important that
you understand what this is yet. Just remember that the shell can run code line by line. If
you are tasked with doing some simple coding, you can just use the shell.

Try it yourself: type print (“Hello, World!”) into the shell and press enter.

Creating a Program

The shell is useful, but you will want to create entire programs that can be ran again and
again. To create a new program, go to the headers and select File -> New File. You can also
do this by pressing [Cmd] + [N] on macOS and [Ctrl] + [N] on Windows.

W:m shell | gy,
File Edit Shell Debug Option

- NewfFile Ctri+N

i Window Help
giF \JUS LIl NOLIAIN\UOCWIEN LD \OUIUUL DLULL \SUIMIEL CLANJUIK.PY —
tint take? string

Open DI

Recent Files 4

Class Browser Alt+C ishJustin Norman\Documents\School stuff’\Summer CLA\Junk.py =
Path Browser jut in Python? print()\

Save Ctrl+5

Save As... Ctrl+ Shift+5

Save Copy As... Alt+Shift+5 [5\Justin Norman\Documents\School Stuff\Summer CLA\Junk.py =
Print Window Ctrl+P ut 1n Python? print()

Close Alt+F4
B @A Is\Justin Norman\Documents\School Stuff\Summer CLANJunk.py =

This will open a blank text editor. This is where you will type the code for your programs.
You can treat this like a regular file. Anything you would normally do, like open, close, save,
save as, etc., can all be done under File. To save the file, you can also press [Cmd] + [S] on
macOS and [Ctrl] + [S] on Windows. The standard file extension for Python programs is .py.
All Python programs will be named “[name].py”.

Try it yourself: create a new program in IDLE and save it as “Hello World.py".
Writing a Program

To program, all that you have to do is write text. Of course, this text must be accurate, so it
may be hard to read and write. To help you with this endeavor, many IDEs, including IDLE,
allow you to put comments in the code. These are explanatory lines of text that tell the
reader what certain parts of the code does or how it's intended to work. To insert a
comment, place a “#" before the text you mean to comment.

18

To help you program, IDLE also colors text to indicate its significant. The conventions for
commenting are as follows:

e Red: comments

Blue: definitions
Green: strings
e Purple: built-in functions, like the print function

Try it yourself: write the line print (“Hello, World!”) into the IDLE program, next
we will run it. As a comment, write #print (“this will not print!”) under the line.

Running a Program

Let’s say you've created a program, and you want to run it. To run a program, go to the top
of the editor and select Run -> Run Module. You can also press [f5] on your keyboard. If
your keyboard has a function key (fn, usually), press [fn] + [f5].

atsh School Stuff\Summer CLAN unk.py (3.6.1)

Run Optiocns Window
Python Shell

nput in Python? ")

BC odule t+
: Check Module Alt+X

JOIRIN. | pyn Module F5
~>]se:
print ("Wrong

1

T

Try it yourself: run the program you just wrote.

19

20

Concepts

Programming is Problem Solving

Programming is the process of creating a solution to a problem. A programmer is a little
like a TV chef. The computer, in this case, is represented by the viewer. As the TV chef, you
provide an exact instruction set for the viewer to follow in order to create the dish. Instead
of using ingredients, detailed descriptions, and cooking implements, programmers use
program syntax, comments, and the documentation for the coding language. Every
program ends up being a recipe for the computer to follow.

A program is a coded behaviour that a computer can execute. Programs are the machines
devised by programmers to solve problems. Often, these programs are meant to be
applied to specific tasks. In these cases, the program is referred to as an application. This
course will teach the basics of programming and allow you to create simple programs and
applications.

Algorithms

A program is executed by a computer in a step-by-step manner. When these individual
steps are combined to carry out a specific task, they produce what is referred to as an
algorithm. An algorithm is the step-by-step solution to a problem, but it is not necessarily
the coded solution. For example, a baking recipe is an algorithm: the recipe is made up of a
series of steps, and carrying out each step of the recipe results in a final product (hopefully
the correct dish). There are a number of steps that you go through to bake cookies: laying
out the dough on a pan, preheating the oven to 350 degrees, placing the pan in the oven,
waiting 20 minutes, and pulling the pan out. Of course, this algorithm can be more or less
specific. We might say “laying out the dough on a pan” as one of our steps, but the process
might actually be more involved, such as laying down tinfoil, pulling apart the dough, and
separating them evenly. The important part is that the directions are specific enough so
that they can be followed exactly and the problem can always be solved.

Literalism

Before you start programming, you should understand literalism. Literalism is an
adherence to the explicit meaning of a given text. Computers interpret programs literally.
This means that computers will only do exactly what you tell them to.

21

If the computer falters in some way, it is a problem with the program rather than with the
computer itself. This is known as a bug in the program. Much of programming is really a
process of fixing the errors in the code. This process is known as debugging.

Often, the prevalence of bugs, and thereby literalism, frustrates new programmers. But,
literalism is actually a benefit to programmers. Because of literalism, programmers can
trust that the computer will always obtain the correct solution with the correct program;
they can be sure that their programs will always function exactly as written. Once a
program solves a problem, that program will solve the problem always and everywhere.

Syntax

Programs have to be written in a very specific way. The specific way code is written is
known as the code’s syntax. For example, in some other programming languages every
line has to end with a semicolon and every function in programming needs to end with
parentheses, Python on the other hand does not use either. If the programmer forgets this,
the program will no longer run. These requirements are known as syntactical
requirements. Different programming languages have different syntactical requirements,
just like different spoken languages. For example, in English, the subject of the sentence
must always come before the verb, but in Latin, the subject can be placed anywhere in the
sentence.

A bug can be a syntax error. This type of error is when the programmer mistypes some
piece of code. For example, a variable or function might be named helloWorld, but the
programmer could accidentally type helloworld. The coding language won't recognize it
because helloworld is not actually defined, even though helloWorld is defined
(programming languages are often case-sensitive). Syntax errors are the most common for
programmers.

Semantics

Programs are interpreted in a literal way. The interpretation is known as the program'’s
semantics. Different pieces of code that perform that same exact task are called
semantically equivalent. These pieces of code can even be in different languages, but
their meaning is identical. Again, this is similar to spoken languages. For example, the
English phrase “l came; | saw; | conquered” and the Latin phrase “Veni, vidi, vici” are
semantically equivalent because they mean the same thing.

A bug can be a semantic error. This type of error is when the programmer codes
something with the intention of doing one thing while the code actually means to do
another. For example, a programmer might make a piece of code that divides a number by
2, but instead, the program multiplies the number by 2. In this case, the code is
syntactically correct (because it completed the task given), but is semantically incorrect

20

because it did not function as intended. If the code does not behave correctly, but still runs,
look out for semantic errors.

Exercises

1. Write an algorithm for the instructor to make a PB&J". Have the instructor carry out
the algorithm literally. Debug the algorithm until a successful algorithm is made.

' Adapted from
http://static.zerorobotics.mit.edu/docs/team-activities/ProgrammingPeanutButterAndJelly.pdf

23

24

Hello, World and Variables

“Hello, World!”

The most basic program in any language (Python included) is often considered to be the
“Hello, world!” statement. As it's name would suggest, the program returns the phrase
“Hello, World!". In Python, this is done with the following line of code:

print ("Hello, World!")
Which will display the following on the screen:

Hello, World!

print () will display what is in the parentheses. In this case a string; the text encased in
quotation marks in the parentheses. A string, is a piece of text (letters, numbers, spaces,
and punctuation) that the computer stores exactly as you type it, but does not try to
understand. The computer knows it is a string because it is enclosed in quotation marks.
For example, “Hello” is a string of “H”, “e”, “I", “I", and “0".

Computers can store information in many different ways, but we will only use 4 of them:
string, int, float, and bool. We will talk about int, float, and bool more later.

String: piece of text (letters, numbers, spaces, and punctuation
Int (Integer): whole numbers

Float (Floating point numbers): Decimal numbers

Bool (Boolean): True or False

Try it yourself: print some strings.

print () can display numbers as well. unlike strings, the computer understands numbers,
so we do not need the quotation marks. They can be printed as follows:

print (10)
10

We can also print out two strings “added” together:

print ("spam"+"eggs")
spameggs

23

It may seem like it would be easier to put “spameggs” as the string to print, and in this
example it would be, but once we start working with variables, it will become very useful.

print () is an example of a function, which is code that does some predetermined thing.
These will be covered in depth later, but functions will come up early and often during your
programming. For now, remember that they are always written as a name followed by
parentheses, sometimes with items inside the parentheses. We shall refer to these items as
input. So, “print” is the name of the function and it writes whatever it supplied to it as
input. This is one of the primary examples of program output. It is incredibly valuable for
the vast majority of programs.

Try it yourself: write a line of code that will print out your name by combining a string
for your first name and a string for your last name.

Variables

Another valuable tool for programming is the variable. A variable is a representation of a
number, string, or other piece of data stored for future use. The representation is a letter
or word that is assigned the given data with the = operator:

x = 10
y = "Hello, World!"

10 is now stored in x and the string “Hello, World!" is stored in y.

Think of a variable as a jar that you use to put something in:

26

x = 10 can be thought of as “10 goes into the jar called x". In other words, jar x now
contains 10. Similarly, y = “Hello, World!” is “Hello, World! goes into the jar called y".

Notice that when Hello, World! is stored in y, it does not contain quotation marks. Also
notice that a SINGLE equals sign (=) means ASSIGNMENT: 10 is ASSIGNED to the jar called
x, and Hello, World! is assigned to the jar called y. A DOUBLE equals sign (==) is used to
denote EQUALITY: 10 == 10.

Variables can be used in place of the data for the same effect:

print (x)

10

print (vy)
Hello, World!

In the program above, the program “prints the contents stored in jar x”, which is the integer
10, and then “prints the contents stored in jar y”, which is the string Hello, World! Notice
that we do not put quotation marks around y when we print it because we used them
when we stored it.

Some variables do not contain a string or a number, but instead contain either True or
False. These are known as boolean values:

}: s
print (x)

True

Booleans are particularly useful as Flags (variables that are checked, like a flag on a
mailbox) which can be used with Conditionals (question statements) and Loops (repeats),
which will be covered in detail later.

There are also rules for variables in Python:

The name must start with a letter or an underscore:
o Bothhello and _world are valid names for a variable
o 10hello is not, since it starts with the number 1
e After that, the name may contain letters, numbers and underscores, but only letters,
numbers and underscores:
© h3llo_wOrld is avalid name
o Hello-worldis not, since”-"is not a legal character
e Variable names are case sensitive:
o helloworld and HelloWorld will be treated as two different variables
e Variables are assigned left to right:

7

o x = 10 works
o 10 = x will give you an error
e \Variables can be reassigned at any time with the = operator:
o Ifyousay x = 5andthen x = 10, x will be considered to be 10 until you
reassign it
e Some words can't be used as variable names, since Python uses them for other
purposes.

o As ageneral rule, if the word changes color, such as print, don't useit as a
variable name.

There are also some common conventions for variable names in most programming
languages:

e Constants, which are variables that never change value while the program is
running, are usually written in all caps: GRAVITY =-9.8.

e Variables that are not constants are usually written in camelCase or
with_underscores. camelCase uses all lowercase letters except when there would
be a space, we skip the space, and capitalize the next letter: Player one score would
be stored in playerOneScore or player_one_score.

These conventions make it easier for programmers to read each other's code, but they are
not rules of the language. You can break them any time you want, and your code will still

run; it is just a good idea to follow them to make your code readable for yourself and
others.

Variables can also be assigned as answers to equations:

And even as answers to equations that include themselves:

M=

X = x*37
print (x)
6

While addition, subtraction work the same way that you are likely already familiar with,
there are some other different operands that it you should be familiar with:

e To divide, we use 18/6 rather than 18+6 or 6718

28

print {18/6)

[#3]

4D
Multiplication works the same way in Python as you are familiar with, but Python
uses the * symbol.

print {5*4)
20

Exponents use ** ie. 2**3 =23 =8,

print {(Z2**3)

The Modulus operator, also known simply as mod, is represented as x % y. Modulus

is basically a remainder operator. It gives the remainder of x /'y, while dropping the
quotient.
o 10%5=0,since 10/5=2R0
o 11%5 =1,since 11/4=2R1
print {10%5)
0
print {11%5)
3 |
e Addition and subtraction work as you would expect: 2+3 =5, 4-7 = -3
print {243)
print {(4-7)

|
%]

29

e Order of operations works too (good old PEMDAS), but it is a good idea to use

parentheses to make things explicit; 2+3*4 is 14, but it is easier to read if you write it
as 2+(3*4)

print {243*%4)
print {24+ (3*4))
14

Try it yourself: use variables and math to multiply your age by your birth month, and
divide by your shoe size. Then use the print function to display it on the screen.

Key Points

e Strings are denoted using quotations marks. “Hello”, “Goodbye”, “Spam” and “4
eggs” are all examples of strings.

e print() displays data on the screen; print (“Hello”) displays “Hello” on the
screen.

e \Variables store data. Data is assigned to a variable using a single equals sign (=) ; x

= 4andy = “Hello” are examples of how data is assigned to and stored in
variables.

e Constants are variables that never change their values. Constants are traditionally
written in all uppercase letters.
e Boolean values are values assigned to a variable that are either True or False.

Exercises: Choose and complete one or more of the following
exercises.

1. Consider the following code snippets and give the results for each:

= 5% 3
=% + 5
=% -6
= xX**2
print (x)

A - -

30

i1

[L
|
g G WS o -
M~ 4+ o@
- S S S

1
H

(z)
Use variables to store each of your names (first, middle, and last) and print them out
in the following orders:

a. First, Middle, Last

b. Last, First, Middle

c. Middle, First, Last

Find and print the slope for the lines created by each pair of coordinates .
Remember that slope = %

a. (1, 4),(2,6)

b. (5,10),(3,12)

c. (34.5,65.2),(81.6,19.1)

k14

Movement and Other Qutput

Setting up a Finch program

Before you begin programming the Finch, there are a couple of things you'll need to do
before you can start. First, your program will always need the following line at the top of
the program:

- finchAPI import *

This statement brings in the resources that you need. This statement looks up the file
“finchAPl.py” and imports all of the code from the file into the current program. Don’t worry
about understanding the specifics of this: all that you need to know is that it allows you to
access many of the resources that you'll need.

When you run a program that has this line at the top, you may get a message that says
“Finch is not plugged in". If you see this, check that the Finch is securely connected to your
computer and restart the program. You may also get a red error message. It probably
means that your program can't find the file “finchAPI.py”. Make sure that your program is in
the same directory as the file “finchAPIl.py". If you have any further questions, refer back to
the Setting Up unit.

Try it yourself: place Tro™ FinchAPT " into a program and run it. If
you get any error messages, ask your instructor for help. If nothing happens, you are free
to move ahead..

Moving the Finch

The first thing you might want to do with any robot is to make it move. To move the Finch,
use the functions forward (), backward (), turnLeft (), and turnRight (). forward()
moves the Finch forward, backward () moves the Finch backward, turnLeft () turns the
Finch counterclockwise, and turnRight () turns the Finch clockwise. Each of these will
continuously move the Finch once the call is made. The code will continue to execute while
the Finch is moving. To stop the movement, use stop (). stop () halts both wheels,
stopping any movement that is currently happening.

33

forward () #Moves the Finch forward

backward () #tMoves the Finch backward
turnLeft () #Turns the Finch counterclockwise
turnRight () #Turns the Finch clockwise

stop () #Stops all movement

Each of the above functions can also take an argument to specify the amount of
movement. forward () and backward () take a number of inches to move. turnLeft ()
and turnRight () take an angle in degrees to turn. Unlike before, supplying the inches or
angle will make the function wait for the movement to complete. Code will not continue to
execute until the movement is finished. This offers an advantage of chaining movement in
a simple way. The following code will move the Finch forward 100 inches, then backward
100 inches.

forward (100} $Mowves forward 100 inches
backward (100) fMoves backward 100 inches

The speed of the Finch’'s motors are initially set to % of its full speed. This is to ensure the
accuracy of its movement. You can change the speed of the Finch by using setSpeed ().
setSpeed () takes a single number as an argument, from 0 to 1. At 0, the Finch will not
move at all. At 1, the Finch will move at top speed. Note that the real physical issues of
moving, like motor force, wheel slippage, friction, and air resistance, results in less actual
gain in movement than is programmed. The difference between .75 and 1 is not actually a
25% increase in movement speed.

setSpeed (0] #Not moving at all
setSpeed(.25) fMoving at 1/4 speed
setSpeed(.5) fMoving at 1/2 speed
setSpeed(.75) ftMoving at 3/4 speed
setSpeed(l) #tMoving at full speed

If you find yourself needing to control each wheel manually, you can use setWheels ().
setWheels () takes two numbers as input. This is unlike the functions you've seen
previously where you only input a single input. Any function that takes multiple inputs
must have those arguments separated by commas to tell the function which input is
which.The inputs must also be put in a specific order within parentheses. As illustrated by
the setWheels () example functions below, the value for the left wheel is first argument
(on the left) and the value for the right wheel is second input (on the right). These values
range from -1 to 1. At -1, the wheel is moving backwards at full speed. At 1, the wheel is
moving forward at full speed. This also overrides the set speed because it manually

34

controls the wheels.

setWheels (-1, -1} #tMoving backwards at full speed
setWheels (-.5, —.5) #Mowving backwards at half speed
setWheels (1, 1} #Moving forwards at full speed
setWheels (.5, .5) #tMoving forwards at half speed
setWheels (1, -1} #Turning right in place
setWheels (-1, 1) #Turning left in place
setWheels (1, .5) #Turning right gradually
setWheels (.5, 1) #Turning left gradually

Notice how the first number and the second number have a comma between them. This
separates the inputs. The parentheses surround both numbers, which indicates that they
are both arguments to setWheels (). Further, the values are distinct. The combination (1,
-1) causes the Finch to turn right while the combination (-1, 1) causes the Finch to turn left.
This is because each input operates on a different wheel.

Try it yourself: move the Finch in a square. Then, move the Finch in a circle. (Hint: you
should be able to use a single line of code to move in a circle). If you feel like you still need
more practice, play around with the movement commands.

Lighting the Nose

Lights are useful indicators on any machine. Most modern computers have several lights to
indicate if it has low battery, if the battery is currently charging, or if the computer is in
sleep mode. The Finch has a single light in its nose that is capable of changing colors. This
light may prove useful in providing a visual indicator of what the Finch is currently doing. To
control the light, use 1ight (). This can be used in one of two ways.

light () can be supplied a single string that tries to match the word you've put in with a
color to display. Light can take any of the following as colors: red, blue, green, cyan,
magenta, yellow, and white. You may also supply the string “o££” to turn off the light.

light ("red") #tturns the light red
light {"blues™) #turns the light blue
light ("green™) #turns the light green
light {("cyan™) #turns the light cyan
light ("purple™) #turns the light purple
light ("yellow™) #turns the light yellow
light {"white") #turns the light white
Tight ("oEE™) #turns the light off

light () can also take three numbers as the red, blue, and green color components of the
light, separated by commas and in that order. If you are familiar with the RGB color model,
this might be interesting, but the above colors should be sufficient for most applications.

35

Tight {255, O, O #turns the light red
light (0, 255, 0) #turns the light blue
1ight«{0; 93 255) #sturns the light green
1ight (0, 255; ‘255) #tturns the light cyan

Tighkt (255, 0, 245) #turns the light purple
light{255; 255,) #turns the light yellow

light {255, 255, Z255)#turns the light white
Lighit {0; O 0) #turns the light off

Try it yourself: create a program that turns the light blue and moves the Finch
forward a foot. When the movement is complete, turn the light red.

Making Some Noise

Like lights, sounds are also useful indicators on machines. While visual cues are excellent,
non-invasive ways of alerting people to some event, sounds draw attention to said event
while alerting people to the event. Fire alarms operate on this principle (imagine if fire
alarms just lit up red). In the context of programming, sounds can be used to signal that
some action has taken place within a program. For this purpose, the Finch has a buzzer
that can generate sounds with frequencies between 20 to 20000 Hz, which is the audible
frequency range for humans (but, you should avoid using sounds above 5000, as those can
hurt your ears). To make a sound with the buzzer, use buzz ().

buzz () takes two numbers as arguments. The first number is the duration in seconds of
the sound you want to play and the second number is the frequency of the sound in Hertz.
These two arguments are separated by a comma syntactically. The following code plays a
sound at the frequency of 1000 Hz for 1 second:

buzz (1, 1000)

buzz () does not wait for the sound to finish. Because of this, the Finch may continue
moving and otherwise acting as it would. If you want to wait for the sound to finish before
continuing, use delayedBuzz () instead. Otherwise, this works exactly as buzz ().

delayvedBuzz (1, 1000}
#Will wait for 1 second

print{"Sound is owver")

The Finch can also play music using it's buzzer. To do so, compose a string of notes
separated by spaces. For example, YA B C A B C”. You can make notes sharp by adding
a “#" and make notes flat by adding a “b", like *A#” and “Eb”. Then, use sing (), placing
that string and the speed you'd like to play it at as the input, separated by a comma. The
speed is how long a note is held for. The Finch will sing the song you've put in at the
desired speed.

36

sing{"A B C A B C", .25)
cing{™A C D €", -5)
sing{"C F¥ Eb", -1)

Try it yourself: create a program that plays a 440 frequency sound for a second
before moving forward a foot. Once the Finch completes the movement, play a 880
frequency sound for a second.

Simultaneous Behaviour

Most robots will do things simultaneously. They'll be moving, checking sensors, playing
sounds, lighting up, and much more, all at the same time. The Finch is also capable of doing
this. Already, you've seen that the movement functions keep running code if no distance or
angle is supplied. buzz () and 1ight () also keep running the code while they're in effect.
You can combine these to make complicated behaviour, like moving while playing a song.

You will also want to move a set distance or angle while doing other things. For example,
you may want to move a certain distance while checking the sensors. To do so, you can add
False as an input to any movement function that has a set distance, separated by a
comma. This simply tells the program not to wait for the movement to finish. It is set to
True by default, which is why the program will wait by default. Note that if you call another
movement after a movement function with False, it will override the previous one. You
can check if the Finch is currently moving by using the flag i sMoving. isMoving will be
False whenever the Finch is not executing a movement function and will be True
whenever the Finch is executing a movement command.

print (isMoving) #Will be False

forward (100, True) #Will wait for the movement to finish

print (isMowving) #Will be False BECAUSE THE LAST MOVEMENT WAITED

forward (100, False) #Will not wait for movement to finish

print (isMowving) #Will be True because the Finch is still moving forward

If you're doing simultaneous behaviour and need to stop everything, use halt (). halt()
will stop everything the Finch is currently doing, stopping all movement, turning off the
light, silencing any noise, etc. This can be useful for an emergency measure.

The use of this will become much more apparent when we start getting data from sensors
continuously. Then, you'll be able to make the Finch respond to its surroundings while
doing other things. For now, know that this is possible and will be revisited later.

Try it yourself: make the Finch move three feet while playing a song.

Key Points

37

To move the Finch, use forward (), backward (), turnLeft (), and turnRight ().
Each can take a number for a distance in inches or an angle to turn. When using a
distance or angle, they an also take a boolean value which determines if the
program should wait for the movement to finish. This is True by default, but adding
False makes the program continue during movement. You can stop any movement
currently happening using stop ().

To light up the Finch’'s nose, use 1ight ().

To use the buzzer, use buzz (). If you want to wait for the sound to finish, use
delayedBuzz (). If you want to play a song, use sing().

To stop everything that the Finch is doing, use halt().

Exercises

38

1.

Move the Finch in a triangle. Before a turn, slow down the Finch’s movement, make
the Finch play a short low noise and make the nose red. Before moving forward,
speed up the Finch’s movement, make the Finch play a short high noise and make
the nose green. It is best to do this in small parts, tackling the movement first, then
putting in the sounds and lights.

Text Input and Conditionals

Text Input

Many programs allow the user to enter information, like a username and password. Python
makes taking input from the user seamless with a single line of code:

input ("How do you get input in Python? ")

input () will print the string you put in the parentheses and wait for the user to respond.
Often, you will use a question as the input string, followed by a space to separate the user’s

text from the output text. In this example, the program will print “How do you get input in
Python? “ and user can then enter text to respond.

How do you get input in Python? By using input{)
o

The user responded with “By using input(),” but right now, that response isn't doing
anything. To catch the response and do something with it, we need to set that to a variable.

x = input("How do you get input in Python? ")

rint {x) .

Ly}

Now, the variable x stores the response from the user.

How do you get input in Python? By using input ()
By using input ()

Try it yourself: ask for your name and store it in a variable, then print the variable.

Strings and Numbers

Suppose you ask the user for a number, such as a pin number. input () gives you the
user’'s response. However, it doesn’t determine whether or not the user entered a number.
Instead, it just gives you a string. So, you can sometimes get errors if you try to treat the
input as a number immediately. If you run the following program, Python will give you an
error.

T b e L, g e]
Enter a number:]

39

Enter a number: 1

Traceback (most recent call last):
File "C:\Users\Justin Norman\Doc
B, in <meodule>
printix + 1)

TypeError: must be str, not int

This is because Python can't add a string and a number together, and input (“Enter a
number: “) is a string. Use the int () function if you want to treat the input as an integer
or the £loat () function if you want to treat the input as a number with a decimal point. If
you are in doubt, just use the £loat () function.

x = input ("Enter a number: "}
x = int (x)
print{x + 1)

Enter a number: 1

To convert a number to a string, use str ().

1
= str (x)

print {"This is

oW

(=
¥

This is now a string: 1
Try it yourself: ask for your age, then print what your age will be in one year.

Truth Statements

Once you have a response from the user, you'll want to tell if that response is correct or
not, such as a password that was entered or a button that was pressed. To do so, you'll
need to check a property of the response. In the above example, you'll want to check if the
user enters the correct answer by making sure “input()” is somewhere in the response. To
do this, you'll need to use a truth statement or boolean expression. A truth statement is
a statement that evaluates to, or becomes, a boolean value. Both truth statements and
boolean values use the program to check if a statement is either True or False. Here is an
example of a truth statement:

40

Since x is equal to y, the program displays True.

x == yis atruth statement. The code == checks whether or not x is equal to y. This is
distinct from x = y: x == y checks if x and y have the same value, where x = y sets the
value of x to the value of y. If x and y have the same value, x == y will have the value of
True. If they are not, it will have a value of False. In the example above, x has the same
value as y, so the output is:

True

There are several other types of truth statements, like:

e x > y-istrueif xis greater thany

e x >= y-istrueifxis greater than or equaltoy
e x < y-istrueifxislessthany

e x <= y-istrueifxislessthanorequaltoy

e x !'= y-istrueifxisnotequaltoy

e x in y-istrueifxissomewhereiny

These work for more than just numbers. Often, they'll work for any data type they make
sense for. Just use your intuition: == can check if two strings are the same, < can check if
one string comes before another alphabetically, > can check if one string comes after
another alphabetically, and so on. When in doubt, experiment using the shell.

»»> "Hello™ « "Piz=za™

True

»>>»>» "Fries™ » "French"
True

2> "I am" — "Am I"

False

»>»> "Pizza™ 1in "Pizza Pie"

Trus

You can also combine boolean values, which can be truth statements, using the following
keywords:

e x or y-istrueifxis True, yis True, or both x and y are True
e x and y-istrueifboth xandy is True
e not x -istrueifxisnottrue

41

»>»>» True and False
False

»>>»>» True or False
True

22> not True

Falag

For example:
X input {"Pick a number: ™)
x

= int {x)
print ("It is " + stri{x > 3 and x < 7} + " that the number is between 3 and 7.")

Pick a number: 4
It is True that the number is between 3 and 7.

Using a truth statement, we can check if the user’s response is correct:

% = input{"How do you get input in Python? ")

print{"input () in x)

How do you get input in Python? By using input ()
True

Beware! Keep track of your syntax. A common mistake for programmers is to use = instead
of ==. x = y assigns the value of y to x, butx == y checks if x and y have the same
value. Using the wrong one can break your program. If you use x == y when you mean x
= y, the variable will not be assigned properly.

x =1
Y — x
print (y)
Traceback (most recent call last):

File "C:\Users\Justin Norman'Docu
Junk.py", line 17, in <module>

}? n e x

NameError: name 'y' is not defined
If you use x = ywhenyou mean x == y, the code may break or flags will be assigned
improperly.
wii= A

flag == =1
print (flag)

40

Be sure you're using the right equals sign!

Try it yourself: write a program that asks for your age, and prints True if you are at
least 16 years old.

Conditionals

We can now determine whether the user’'s answer is correct, but now we want to do
something that depends on it. For example, you only want the user to log in if the
password is correct. You can do this using a conditional. A conditional is a command that
takes a True or False value, which can come from a truth statement, and does something
depending on that. This is also known as an if statement.

% = input("How do you get input in Python? ")

The syntax for an if statement is an if followed by any boolean value, which may be a truth
statement, and a colon. The colon after the if statement indicates that a block follows the
statement. A block is a piece of code that is organized together and offset from the rest of
the code. In Python, blocks are indicated by indentation, so all the code in block after an if
statement is indented once. A block is usually executed contingently, based on some other
factor in the code. For if statements, the block of code is executed only if the boolean value
in the if statement is True. In this case, “input () ” in xis True only if “input () ” is
somewhere in x. The line if “input()” in x: checks the truth statement. If it is True,
then it executes the block of code beneath it, which contains only the line

print (“Correct!”).

How do you get input in Python? By using input ()
Correct!

Although this example only uses a single line for a block, blocks can contain any number of
lines, so long as they are all indented. For example:

print{"
print{"

print{"

I
| AR

M m m

Block line
Block line
Block line

[T

43

You will also want to tell the user if his answer was incorrect. You can do this by placing an
else directly after the indented code of the i£. The syntax for the else also needs a colon
after it followed by a block of code, like an i£. As with all blocks, it must be indented. The
block beneath else will run if the condition of the if it is placed after is False.

¥ = input{("How do you get input in Python? ™)
£ "inpuaE{)"
print {"Correct ™)

How do you get input in Python? By using print({)
Wrong!

We now have a working program that asks the user a question and determines whether
they got the right answer! But before you get too carried away, make sure you remember
that indentation is important. If you don't indent correctly, the whole program may crash or
run improperly. For example:

¥ = input {"Hc la you get input in Python? ")
i "_I'l"::”a.,'.t I:I "
print ("Correct!")

This code won't run because Python needs an indented statement after an 1 £ or an else.
If the code did run, “Wrong!” would be printed regardless of the boolean value of the truth
statement. Consider another example:

®x = input ("How d

i b e B
input {}

This code won't run because the code run by the if statement must only be indented one
more than it. In this case, the else is indented 0 times and the print (“Wrong!”) is
indented 2 times, so Python will give an error. Consider one more example:

x = input ("Ho lc you get input in Python? ")
E Tinputs{)™T an =
print {"Coerrect ")
print {"Wrong!")
print {"Try again!"™)

You may want “Try Again!” to print only if the user entered the wrong answer. However, it
will always print because it isn't indented.

How do you get input in Python? By using input ()
Correct!
Try again!

So, always be careful with indentation!

Try it yourself: write a program that asks for a color and tells you if that color is the
same as the your favorite color.

Multiple Conditionals

You may want to check the input against different conditions. With a security program,
there may be several correct passwords, all of which are different from each other and take
you to different places. You can check this using multiple conditionals. Here is an example:

x = input ("What is the password? ")
"Hello™ bt
print{"Hi1")
"Secret™ in x
print {"Shhhh!"
"Flim"™ i
print{"Flam!™}
T -'-' .,._,.ll' rva x S
print{"Zam!")

sword...™)

al
1
II
=
ot
=
)
|'||
it
)]
B
0
it
it
b |
i
£
[

After a password is entered as input, a unique message is displayed on the screen. To have
these unique messages display, we use an elif. elif is a condensed way of writing “else
if” and runs a conditional if statement if the previous conditional statement was False.

In the program above, let’s say the user enters “Secret” as the input. After the input is
entered, the program will check the first if statement. A good technique to guide yourself
through programming conditionals is to think about it as though you were speaking aloud:

if “Hello” is the input:
Print “Hi"
Otherwise (else), if “Secret” is the input:

Print “Shhhh!”

43

Since “Secret” is the input, the program prints “Shhhh!”

elif must be placed after an if, or an elif, and you can use as many as you want within
a block of code. Just like an i£, an elif does not need to have an else after it (although it
can). After the elif comes a boolean value (truth statement) placed inside of parentheses,
with a colon placed after the parentheses. The block of code placed after the elif
statement is then executed so long as the truth statement holds true. The structure of an

elif statement is similar to an if statement:

elif (truth statement):

Code to be executed

What is the password? Hello
Hi

What is the password? Secret
Shhhh!

What is the password? Flim
Flam!

What is the password? Zim
Zam!

What 1is the password? Foo
That's not the password...

Else if is different from having a second if statement, specifically because if the first
conditional if statement is true, the elif statement will not run. Take for example the

program below.

46

X = input("What is the password? ")
" "Hello" in x:
print("Hi™)
"Secret" in x:
print("Shhhh!")
EETAm™ AN o
print("Flam™)
"DeepThought" in x:
print("Fourty Two")

print("That's not the password...")

Using the input “Hello Flim” would produce a different output than the first program:

What is the password? Hello Flim
Hi

Flam

That's not the password...

>>>

Because elif statements were not used, the print statements for both “Hello” and “Flim”
were output. Also, because else only looks at the previous if statement, if “DeepThought”
is not entered, it will always print “That’s not the password...”.

Try it yourself: ask for a name and tell the user if that's one of the programmer’s first,
middle, or last names.

Nested Conditionals

You can put conditionals inside each other to allow for more branching behaviour. Many
programs will layer security by requesting a password, then a pin, then a security question.
This is known as nesting. To nest a conditional, simply place an if statement one more
indentation under another if statement.

47

x = input {"Pick a number between 0 and 1l)
®x = 1nt (=)
y = input ("Pick a number between and 1 .
¥y = 1int (y)
L =4 ¥
T L i i i -
print {"The difference is greater than 5")
print ("The difference 15 less than 5")
f = — v > 5:
print ("The difference 1s greater than 5")
print {"The difference 15 less than 5")

This program determines whether or not the difference between two numbers is greater
than five. To do so, you need to determine which number is larger before performing the
subtraction to avoid negative numbers. So, we first check whether or not x is less than y.
Then, we perform our subtraction based on which number is larger.

Pick a number between 0 and 10: 3
Pick a number between 0 and 10: 7
The difference is less than 5

Pick a number between 0 and 10: 10
Pick a number between 0 and 10: 0
The difference is greater than 5

Again, be careful with indentation. Code run by a statement must be indented one more
than the statement is, regardless of where it is. So, the code inside an if statement needs
to be indented once, and the code inside an if statement nested in another if statement
must be indented twice.

Try it yourself: write a program that asks the user for a password, then a pin
number. If the user gets either wrong, tell the user and quit the program.

Flags in Conditionals

It can be annoying to have to write out a long truth statement every time you want to check
something. You wouldn't want the user to enter their password each and every time they
try to access a website. You can simplify the process by using a flag. A flag is a variable that
holds a boolean value, either true or false, based on something in the code. With a flag, we
can simplify our program one further step:

48

®x = input{"How do you get input in Python? ")
|

correct = input () b4
cCorrect:
print {"Correct!")
print {"Wrong!™)

This will perform the same task as before, except now, we don't need to type “input () ”
in x every time we want to check if the answer is correct. Instead, we can simply check the
value of correct.

How do you get input in Python? By using input ()
Correct!

Try it yourself: change any of the programs you've written to use flags.

Key Points

input () allows users to enter data from the keyboard into a variable.

e Truth statements (which become boolean values) are used to determine whether
something is true or false. For example, (10 == 10) is True, and (8 == 10) is
False.

o Aflagis avariable that is assigned a boolean value. For example, in x = True, x is
considered a flag.

e Conditionals are statements that use if, elif, and else that perform some
behavior so long as a certain condition is True or False.

Exercises: Choose and complete one or more of the following
exercises.

1. Create a program that makes a user go through some fun security checks (i.e. what
is your favorite movie, etc.) before telling him your name.

2. Create a program that asks the user for their birthday and tells them their zodiac
sign.

3. Create a small game of twenty questions (it doesn't actually need to be twenty
questions).

4. Create a small text adventure, where the program presents the user with situations,
asks the user what he or she wants to do, and changes the story accordingly. You
may either provide them with a list of choices to choose from, or you may allow
them to type their choices.

49

30

Responding to the Environment

Checking for Obstacles

So far, the Finch has been moving about wildly, relying on the user to provide a clear path
for the unit to navigate. However, the Finch can check for obstacles on its own. The Finch
uses two infrared obstacle sensors on the front of the unit and an infrared emitter on the
center of the unit towards the front. The obstacle sensors are surrounded by black plastic
and protrude from the ‘face’ of the Finch, while the emitter lies in an indentation above the
‘nose’ of the Finch. These sensors determine if an obstacle is present within 3 to 12 inches
in front of the FInch.

© ° Qe

To check these sensors, use detectObstacle (). Unlike other functions you've seen,
detectObstacle () returns a value instead of doing something. detectObstacle ()
returns “1eft” if there is an obstacle that the Finch sees only on the left side, and returns
“right” if there is an obstacle that the Finch sees only on the right side. The Finch returns
“both” if the Finch detects obstacles on both sides and returns “none” if there are no
obstacles that the Finch can see. You can use this in combination with a conditional to
prevent the Finch from moving. Here’s an example of using a conditional:

(detectObstacle () == "none"):
light ("green")

light {("red")

11

If there are no obstacles present, the above code will turn the nose green. If there is an
obstacle present, the nose will turn red. Remember that the double equals sign in the
above code denotes equality. So, the code above is using the double equals to detect if
detectObstacle () is equal to, or the same as, none.

In addition to detectObstacle (), you can check each obstacle sensor individually, should
you need to determine if the obstacle is on the left or the right. detectObstacleLeft ()
checks the left sensor and detectObstacleRight () checks the right sensor. These two
functions will return True if it detects an obstacle or False if it does not detect an
obstacle.

Try it yourself: check whether or not there is an obstacle. If there isn't, turn the nose
green and move the Finch forward some distance. If there is, turn the nose red and make a
short noise.

Checking Light Levels

The Finch is equipped with light sensors that can determine the brightness of the light at
its location. The two light sensors are above the obstacle sensors. They are hard to see
because they are hidden in small indentations on the top of the Finch.

To read the value from these sensors, use detectLight (). detectLight () returns a
float (a decimal value) between 0 and 1. At O, the Finch is in absolute darkness and at 1, the
Finch is in blindly bright light. Here is an example of code that represents this:

detectLight{) < .2:
light {"white™)

light {"off")

pl4

The above code will turn the light white when the Finch is in relative darkness. If the Finch

is in bright enough light, the light will turn off. Again, you can use detectLight () as
though it is a number.

The finch also allows you to check the light levels on each side individually. To do this you
can use detectLightLeft () and detectLightRight () . These functions return the

same range of values as detectLight () except they only use the light level from one side
of the Finch.

Try it yourself: check the level of light. If there is a large amount of light, make a high
noise and turn the nose green. If there is a low amount of light, make a low noise and turn
the nose red.

Checking the Temperature

The Finch has a temperature sensor that tellsyou how hot the environment is within 2
degrees Fahrenheit. The temperature sensor is in the upper middle portion of the Finch's
face. It looks like a small black dot.

To check this sensor, use detectTemperature (). detectTemperature () returns the
temperature in Fahrenheit.

»>»>» detectTemperature()
74.75

Try it yourself: check the temperature. If it is above room temperature, turn the nose

red. If it is below room temperature, turn the nose blue. Average room temperature is
about 70°F.

23

Checking The Orientation

The Finch has an accelerometer in the center of its shell. This accelerometer determines
the forces applied to the Finch ranging from -1.5G to 1.5G. This allows you to test the
orientation of the Finch. It also allows you to check whether or not the Finch is tapped or
shaken.

The following functions allow you to check the Finch’s orientation.

isOnTail () - returns True if the Finch is standing on its tail. Returns False
otherwise.

isOnWheels () - returns True if the Finch is sitting on its wheels. Returns False
otherwise.

isFlippedOver () - returns True if the Finch is on its back. Returns False
otherwise.

The following functions allow you to determine events that happen to the Finch. These will
be more useful when we cover continuous behaviour. For now, it is okay to know that these
exist and use to use the accelerometer in the meantime.

isTapped () - returns True if the Finch was tapped since the last time you checked
acceleration data. Returns False otherwise.
isShaken () - returns True if the Finch was shaken since the last time you checked
acceleration data. Returns False otherwise.

Try it yourself: check the Finch’s orientation. If it is on its back, turn the nose red. If it
is on its wheels, turn the nose green. If it is on its tail, turn the nose blue.

Key Points

Use detectObstacle () to check for obstacles. Use detectObstaclelLeft () and
detectObstacleRight () to check each obstacle sensor individually.

Use detectLight () to check for light.

Use detectTemperature () to check the temperature in Fahrenheit.

Use isOnTail (), isOnWheels (), and isFlippedOver () to check the Finch's
orientation.

Use isTapped () and isShaken () to check if the Finch was tapped or shaken.

Exercises

1.

M4

Turn the nose green and move the Finch forward a foot. If there is an obstacle at the
end of the movement, turn the nose red, move the Finch backward 6 inches, and
turn the Finch left 90 degrees. Repeat this process 3 times.

29

2. Write a program that changes the led color based on the light level. Make the light
red at 0, yellow at .2, green at .4, blue at .6, violet at .8 and white at 1.

i

Loops and Flags

While Loops

A common task for programmers is repeating the same code over and over, also known as
iteration. There are a couple different ways to do this in Python, but the simplest way is to
use a while loop.

print ("So many loops!"™)

)

While loops will continue running as long as their condition stays True. For example, the
loop above will never end, since its condition never changes to False This type of behavior
is called an infinite loop, and should be avoided to prevent programs from getting stuck or
running forever. If a loop doesn't have an exit condition or the exit condition can never be
reached, the code inside the loop will run forever (or at least until you force-exit the
program — in IDLE you can use [Ctrl] + [C] to exit whatever’s running). To get the loop to exit,
the condition needs to be a variable that changes throughout the flow of the loop.

X =3

] x > 0:
print ("The value of x is", Xx)
X=% =i

print ("The final wvalue of x is", X)

The output of the loop above looks like

The value of x i
The wvalue of x i
The wvalue of x 1is
The final wvalue of x is 0

n

93]
|l S S

Python checks the value of x each time the loop runs, and exits when the condition fails.

If the condition is False the first time through, Python will skip over the loop entirely. If x
was set to 0 instead of 3 in the last example, the output would look like

The final walue of x is 0

37

This type of strategy is called decrementing, where a variable is decreased every time the
loop runs. Another common technique is incrementing, where the variable is increased
every time.

x = 0
A S
print ("The wvalue of x is"™, x)
Er=Txrd
p:i:ti"ihé final wvalue of x is"™, x)

The wvalue of x is 0
The wvalue of x is 1
The wvalue of x is 2
The final wvalue of x is 3

While loops are also useful for user input, such as waiting for a user to enter a command
during a program. The follow snippet of code asks the user to enter the word “red”, then
keeps running until they enter that word.

userInput = ""
' le userInput !'= "red™:
userInput = input ("Enter the word red! ")

i}

print ("The user ent

n

red red!")

This then outputs:

Enter the word red! blue
Enter the word red! orange
Enter the word red! red
The user entered red!

Try it yourself: print out your name 5 times, then change it to print 100 times.
Using Flags With Loops

One problem with while loops is that they only have one conditional. Conditionals can be
combined with operators, but that can create messy code that's hard to read and write.
Especially as code gets more complicated, it can become very handy to use flags to check
conditions throughout the loop.

If a programmer is writing a loop to run diagnostics on a car, the loop might need to run
until it finds a broken component. Writing the loop so that it checks every single
component inside its conditional would be cumbersome and impossible to read through.

18

To avoid this, the programmer can add a flag to signal that a broken component was
found.

maintenance = False
' > maintenance != True:
1f tirePressure < 25:
print ("Tire pressure too low!")
maintenance = True
idleRpm < &00:
print ("Idle REM too low!")
maintenance = =

Run checks on the rest of the car
print ("This car needs maintenance!")
If the tire pressure was 35 but the idle RPM was only 500, the maintenance check would
fail, and the program would output:

Idle RPM too low!
This car needs maintenance!

Try it yourself: write a program that continuously takes user input until the input
either has a “r", “b”, or “g” in it. It may be easier to do this using a flag.

For Loops

An easier way to decrement or increment in a loop is to use the second type of loops, the
for loop. To write a while loop that executes ten times, we would write

counter = 0

while [{[counter < 10):
print ("The Loop is running")
counter = counter + 1

print ("The loop has finished")

Using a for loop instead, we can do the same thing using the following code
e{10) :

1s running™)

15 finished")

for counter in ran
print ("The 1
print {"The loop

(=]
o @]

=t

ul

Both of these programs will do exactly the same thing; they are semantically equivalent.
The only difference is the way the code runs in the background. The variable counter is
accessible from inside the loop on either one, so we could have them print out the counter

39

with a statement such as print (counter), and both loops would still have the same
output.

For loops use a different kind of approach to incrementing. The loop variable is set to an
element in a list of numbers, which we create using range (), which provides a list of
numbers from the start point to the end point minus 1. You can set the endpoint or the
start and end points using range (max) Or range (min, max), where min and max can be
integers or a variable. In the code above, the variable counter is set to the numbers 0 to 9,
increasing by one on each pass of the loop. It's fine to know that for loops have a counter
variable, a start point (0 by default), and an end point. This list reading allows some more
advanced functionality that you may want to explore on your own later.

A common use of for loops is repeating a chunk of code with different values each time.

range {5, 11):

i
print{i, "to the second wer is", i**2)

L]

The loop above will run through six times, using the values 5, 6, 7, 8, 9, and 10 for i on each
pass. The output looks like

5 to the second power is 25
6 to the second power is 36
7 to the second power is 4§
B to the second power is 64
9 to the second power is 81
10 to the second power is 100

Again, notice that 10 is one less than the maximum value, 11, in the range.

While loops are best for code that needs to wait for something to happen. For loops are best for
code that needs to repeat a certain number of times.

Try it yourself: write a program that counts from 0 to 100.

Nested Loops

Sometimes a task needs to include a loop, but that task needs to be in a loop too. Just as if
statements can be nested inside each other, loops can contain other loops. For loops can
be put inside of while loops, and while loops can be put inside of for loops, but most of the time
it's more common a for loop inside another for loop.

60

i

print {"<", end="")

g n in range{5):
print ("-", end="")})

print{">")

Python runs through the outer loop, prints out an arrow, and starts the inner loop. The inner loop
runs five times and prints a line of dashes. Once it ends, it dumps back to the outer loop, and
moves on to the second pass. The output looks like

(Hint: you can stop Python from starting a new line after printing by adding an extra tag, end=")

Try it yourself: write a program that counts from 1 to 10, 3 times.
Key points

e While loops carry out a specified action so long as a condition remains True. Typically,
if you aren’t sure how many times an action will be iterated, you will want to use a while
loop.

For loops carry out a specified action a predetermined number of times.

Nested loops are loops within loops.

Incrementing a variable consists of adding 1 to its value every time some event occurs

Decrementing a variable consists of subtracting 1 from its value every time some event
occurs

Exercises: Choose and complete one or more of the following

exercises.

1. Write a program that prints out the lyrics to 99 Bottles of Beer on the Wall.
(Hint: you can count down by subtracting the counter from 99)
2. Write a program that asks for your name until you get it right.

61

T4

Continuous Behaviour

Continuous Behaviour

Using loops, you can make the Finch do things continuously. Now, you can make it drive in
a square as many times as you want by simply putting it in a loop. But, this is most
powerful when you make the Finch run until it reaches some exit condition. Here is an
example.

i isTapped() :
forward(10)
turnLeft (90}

This simple program will cause the Finch to travel in a square until you tap it. In this
program, the exit condition is being tapped. Until it is tapped, it will just keep driving
forward 10 inches and turning left 90 degrees.

This method of coding allows you to complex behaviours that occur constantly until the
user decides to quit. Many modern programs operate this way: operating systems require
the user to shut down, browsers say open until they are closed, and your router keeps the
internet on until you shut it off.

Try it yourself: move the Finch in a triangle. At each turn, print out the temperature
and light level. If the Finch is ever on its tail, exit the program.

Combining Conditionals and Iteration

Now that you can make the Finch behave continuously and conditionally, you can create
very complex behaviours by combining them. Putting conditionals in loops allows you to
create a branching behavioural scheme that operates until some condition is met. This
strategy will be incredibly important moving forward. Many programs will use this strategy
to leverage the full power of the Finch. This example demonstrates how you can use this to
continue checking the light until you've moved into a spot where the light is greatest.

63

e've checked
Our initial light level
've checked 4 times

checks = 0 #How many times w
lightLevel = detectLight () ¥
' checks < 4: #Until we
forward(12)
detectLight () > lightLevel:

#If light is greater here, reset
lightLevel = detectLight ()

checks = 0

#If light is not greater here, go back
backward(12)

#Preparing for next check
turnLeft {(20)
checks = checks + 1

The code uses two variables: checks and 1lightLevel. checks is the number of times
you've moved away from our best point. The best point is our initial point at first, so we
initialize 1ightLevel to our current light. We then move from the center, checking the
light. If the light is greater, we make that our new center, 1ightLevel to the light there
and resetting setting checks to 0. If it is not, we move back to our starting point, turn 90
degrees for our next check, and mark that we've checked one more time. We stop the loop
when we've done so 4 times with no improvement.

The result is that the Finch will look for the place with the greatest amount of light in the
room. The Finch will do so until it's convinced, to an accuracy of about of foot, that it has
found the brightest spot in the room. The conditional creates the checking behaviour,
which is how the Finch comes to know the brightest spot. The loop allows the Finch to
perform this check continuously, so that it may check more than just a single spot. By
combining loops and conditionals then, we've created this complex behaviour.

Try it yourself: create a program that finds the place with the greatest temperature in
the room.

Simultaneous Behaviour: Revisited

Recall that you can move the Finch, use the buzzer, and light the nose all at the same time.
The movement functions, forward (), backward (), turnLeft (), and turnRight (), do
not stop the code from executing when they are not supplied with a distance or angle. If

they are, you can continue the code by adding an extra boolean value input to the function
like so:

forward (10, False)
backward {15, False)}
turnLeft (90, False)
turnRight (180, False)

64

Note that calling movement functions that do not wait, one after another, will override
each other, defaulting to the most recent function call. In this case, the Finch will only turn
right 180 degrees. To prevent overriding, you can check isMoving, a flag that is True when
the Finch is moving and False when the Finch is not moving. Particularly, you'll want to use
a loop with a conditional like so:

emergencyBrake =
l= isMoving and not emergencyBrake:
detectObstacle(} != "none":
emergencyBrake =

This technique will also be very valuable. While the Finch is moving and doing other things,
you can check the sensors and make the Finch respond to its environment. Just set the
movement and execute a loop that checks the sensors until isMoving is False.

Try it yourself:turn the nose green. Then, move in a square. Stop if the Finch detects
an obstacle and turn the nose red.

Key Points

e Use |loops to build a continuous behavior.
Combining loops and conditionals allows you to build complex behaviours.
By using movement functions that continue executing code, you can make the Finch
operate while making it respond to its environment.

Exercises

1. Make the finch move along a path with n sides each of length d where the user can
enter both n and d.

Hint: for a square with 4 sides, each turn needs to be 90° = 360° / 4, and a triangle
with three sides, the finch will need to turn 120° = 360° / 3.

2. Make the finch patrol back and forth in a straight line between two points, stopping,
changing the color of the nose light and emit a noise if it detects something blocking
it.

3. Have the finch follow a path, but only in the dark. The finch should wait for darkness
before it tries to move.

63

66

Functions

Functions

In programming there are times when you may want to repeat blocks of code in different
parts of your program in a way that loops or if-else statements can't help. In these cases, it
is often useful to make functions. In fact, you have been using functions like print () and
range () all week.

Think of a function like a recipe. A recipe gives you a list of instructions to follow in order to
make a meal (think back to the PB&J exercise). Afterwards, when you want to make the
same dish, you just need to recall the recipe and do so. Like a recipe, a function contains a
list of instructions for a program to follow, and allows the program to access them over and
over again when the function is called.

- spam() :
print ("eggs")
print ("spam")
print ("eggs and spam")

Functions begin with the def keyword (since you need to define what the function does),
followed by the function name, parentheses, and a colon. The block code indented
underneath it will execute normally when the function is called.

>>> spam/()

eggs
spam
eggs and spam

Like with loops and if/else statements, block indentation is very important. The code in the
function after the de£, name, parenthesis, and colon must be indented, and any code not
indented will be presumed to be the end of the function.

Try it yourself: Write a function that prints your name without a new line at the end.
Use your function to print out “Hello, my name is <your name>, and | wrote this.” Change
your name function to print out a different version of your name (add middle initial, use
nickname, etc.), and run the same “Hello...” code as before. (Hint: remember that the
print(output, end=endCharacter) lets you change how the print function ends.)

67

Parameters and Arguments

Functions can also have their abilities expanded greatly with parameters. Parameters are
variables that the function accepts as input to be used within the function, introduced by
putting variable names within the parenthesis after the function name, like so:

spam (x) :
z = xt9
print(z)

When the above function is called, a number has to be placed inside the parentheses
following it, unlike the previous function. This is because spam (x) has the parameter, x.

> Spami{sS)
14

The inputs of a function are formally called its arguments. In the code above, 5 is the
argument of spam (5) . These seem like similar concepts, but they are distinct: a parameter
is placed within the definition of the function as required input, while an argument is the
actual data input into a function’s call. When talking about a function call, the inputs are
arguments. When speaking of the function itself, the inputs are parameters. In other
words, a function has parameters and a function takes arguments.

If you think you've seen something similar to this before, you have print () is a function
that has a string parameter, and the string you pass to be printed is its argument.

Try it yourself: Write a function that has a string as a parameter and tells you if it is
your name.

The Return Statement

Functions can also be ended with a return statement. The return statement sends data out
to be used as the function caller sees fit, such as a string to be printed, or a number to be
assigned to a variable:

- spam() :
x =7

y = spam()

Try it yourself: write a function that returns your name.

68

Variable Scoping

Another important part of functions is the idea of variable scope. The scope of a variable
is the area of the code in which it can be used. For example, in the above code for

spam (x), the scope of variable z is only within the function. If you were to attempt to use z
in any other part of the code, you would get an error message, since for all intents and
purposes, z only exists inside of spam (x) . Similarly, no variables created outside the
function can be accessed directly by the function without being inserted as a parameter.

Key Points:

Functions serve as reusable blocks of code that can be placed anywhere within a
program.

The heading of a function is: def functionName () :

Each line of code after the “def’ line of the function is indented.

To run a function within your program, you must call the function: functionName ()
Functions can take parameters. Parameters are values within the parentheses of
functions that are taken into account when running a function:

functionName (parameterGoesHere).

When you call a function with a parameter within your program, an argument replaces
the parameter. In functionName(10), 10 is the argument.

Try it yourself: write two functions that both take numbers as input, but return
different values (x * y and x / y, for example). Use the same variable names for both
functions.

Exercises: Choose and complete one or more of the following
exercises.

1.

69

Write a function that uses the Pythagorean Theorem (a® + b? = c?) to find the length
of the hypotenuse when given the lengths of the other two sides of the triangle.
(Hint: the square root of a number can also be found by raising the number to the 1/2
power)

Write a function that when given a name and an age will return a string that says
(“IName] is [age] years old")

Write a function that computes the total cost of an order of food. There are three
food items: pizza which costs $9, sandwiches which cost $6, and macaroni and
cheese which costs $4. For each food item, the user enters how many orders of that
food item he or she would like. The function should display the total cost of the food
order.

70

Using Functions: Navigation

Using Functions

By using functions, you can eliminate a lot of repetitive code. By eliminating repetitive code,
you can create complex behaviours with only a few lines of code and reuse that code
wherever applicable. One of your earlier exercises probably looked something like this:

forward{12, False)
emergencyﬂrake = :
] isMoving and not emergencyBrake:
detectObstacle() !'= "none™:
emergencyBrake = Trus
et 1 emergencyBrake
turnLeft{EG]
forward{12, False)
emergencyBrake = False
isMoving and not emergencyBrake:
detectObstacle({}) != "none™:
emergencyBrake = 1T -
emergencyBrake
turnLeft{EG]forwarqil_, False)
emergencyBrake = False
isMoving and not emergencyBrake:
detectObstacle() != "none™:
emergencyBrake = T :
return emergencyBrake
turnlLeft (90) forward (12, False)
emergencyBrake = False
isMoving and not emergencyBrake:
detectObstacle({}) != "none™:
emergencyBrake = 1T -
emergencyBrake

turnLeft{EG]

This can be painful to look at as a whole. It can also be annoying to repeatedly type that
while loop when it does the exact same thing every time. Instead, you can make a function
that does it for you, giving the code a nice, crisp look.Now, we can just check if the
emergency brake was triggered.

/1

def checkObstacleWhileMowving():
emergencyBrake = False
while isMoving and not emergencyBrake:
1f detectObstacle(} != "none":

emergencyBrake = T

forward (12, False)

i £ checkObstacleWhileMoving () :
stop ()

turnLeft (90)

forward(1l2, False)

1 £ checkObstacleWhileMoving () :
stop ()

turnLeft (90}

forward(1l2, False)

i £ checkObstacleWhileMoving () :
stop ()

turnLeft (90)

forward(1l2, False)

1 £ checkObstacleWhileMoving () :
stop ()

Even after these changes, we have a lot of repeated code. If you look closely, you'll notice
that the above code the same four chunks repeated. You can make yet another function
that will simplify it even further.

def moveForwardandTurni(} :

forward{1l2, False)
if checkObstacleWhileMoving():
stop ()

turnT.eft {90}

Our code for that behavior is now four lines of code.
moveForwardindTurn ()}
moveForwardandTurn ()

(]

()

moveForwardandTurn
moveForwardandTurn

To even further simplify, we can put this in a for loop that automates the repetition for us!

for i in range (0, 4):
moveForwardandTurn ()

72

This is much better. The code performs the intended behavior, is easy to look at and
understand, and is far easier to type out. Functions exist purely for the programmer’s ease.
They are tools that simplify otherwise complicated and messy code. Use functions
whenever you want to make your code easier on the eyes and on your fingers.

Try it yourself: take any exercise or try it yourself you've completed thus far that uses
repeated code or was hard to read at the end. Translate that code to use functions instead.

Responding to the Environment with Functions

The above code was a way to check for obstacles. This was best implemented using
functions because of the complexity involved in avoiding obstacles. The function
implemented above, moveForwardAndTurn (), handles obstacles by truncating the
forward movement and turning in that spot instead of at the end. However, you may want
to handle this differently and not have to retype the code for handling obstacles each and
every time. The same is true of anything else in your environment, like temperature, light,
and position. In fact, you may want to have a whole function dedicated to just responding
to the environment.

checkEnvironment () :
detectLight() > .5:
#do socmething

#do scomehing
detectTemperature () > 70:
#do something

fdo scocmething

etc

=1

This allows you to compact your code that responds to the environment in a concise
manner so you only have to write a single line when you want to do so.

Function Application: Navigation

A navigation system is an example of a real-world application that uses functions. The Finch
has several useful functions that control basic movement, but that alone is hardly enough
to get the Finch to move from point A to point B while avoiding obstacles in between.
Suppose | want to move forward in a line. This seems like it would only involve one step.:.

forward()

/3

However, that only works if you don't have an obstacle in the way. If you do, you will have
to find a way to move around it. To deal with this in an orderly fashion, here is a function
that handles an obstacle in an orderly fashion.

def goAroundObstacle() :

ocbstacle = T
distanceLeft = 0 #Tracking distance
#Going left
il obstacle:
1f not detectObstacle():
cbstacle = False

turnLeft {(90)
forward (&)
distanceleft = distancelLeft + &
turnRight {90)
#At this point, obstacle is no longer in front of us
obstacle = T
#Going forward
Wil obstacle:
forward (g}
distanceForward = distanceForward + €
turnLeft (90)
1T not detectObstacle()}:

ocbstacle = False

turnRight {90)
#Returning to line of travel
forward(distanceleft)
turnRight {90)

Calling this function will cause the Finch to go around a square obstacle. The function first
assumes that there is an obstacle present and enters the first while loop. So long as the
obstacle is still in front of the Finch, the Finch will move left 6 inches and check for an
obstacle. Once it has done that, the Finch will move along the length of the obstacle,
checking if the obstacle is still present to its left. If it's not, the Finch will return to the
original path and return how far it has moved forward to get around the obstacle.

/4

Actual Path

Original Path

Here is an example use of this:

1] isTapped() :
forward()
detectObstacle () :
stop ()
gohroundObstacle ()

This code will continue moving the Finch in a line until it is tapped. If the Finch encounters
an obstacle, it will execute our goAroundObstacle () function to navigate around the
obstacle. Note that goAroundObstacle () assumes that the obstacle is a square. For
irregular shaped obstacles or an unknown environment, more complicated code would be
needed. For now, recognize that this function allows one to navigate around a square
obstacle easily.

Try it yourself: move the Finchin a circle. If it encounters an obstacle, turn in the
opposite direction until there is no longer an obstacle. Then, go in a circle in the opposite
direction.

Key Points

e Functions allow you to make code that is cleaner and easier to use.
e Functions allow you to have systematic ways of responding to your environment.
e Navigation is a complex system that is best implemented using functions.

73

Exercises: Choose and complete one or more of the following
exercises.
1. Write a function that has the Finch write out a letter of the alphabet. Then, write a
function to have the Finch write out the initials of each team member.

2. Move the Finch forward until it encounters a wall. The, move the Finch along the
wall until you tap it.

76

Student Projects

Stay in the Light
Setup: Turn out the lights in the room. Using flashlights, computer screens, and other lights
sources, create patches of light throughout the room.
Task: Create a program that does the following:
e When the Finch is in the light, turns the LED nose green,
e When the Finch is in the darkness, turns the LED nose red,
e If the Finch is in darkness, finds another source of light.

Stay out of the Light

Setup: Turn the lights out in the room. Give students flashlights.
Task: Create a program that does the following:
e When the Finch is in the darkness, turn the LED nose green,
e When the Finch is in the light, turn the LED nose red,
e If the Finch is in the light, the Finch runs away from the light.

Race to the Finish

Setup: Create a small race track using books and other obstacles.
Task: Create a program that does the following:
e Plays three sounds in ascending frequency,
At the end of the last sound, takes off on the race course,
When the Finch detects an obstacle, backtracks and tries another route,
When the Finch is tapped, plays a victory jingle and stops.

Escape the Maze

Setup: Create a maze using books and other obstacles.
Task: Create a program that makes the Finch navigate the maze.

17

