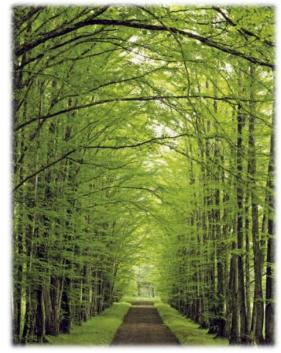
A low cost, easy to use, & powerful platform for using weather data in farm decisions

Farm Response to Changing Weather session Maine Ag Trade Show Maine Climate and Agriculture Network January 17, 2019

Glen Koehler University of Maine Cooperative Extension Pest Management Office THE UNIVERSITY OF MAINE Cooperative Extension


Contents

I. Incentive & Ingredients

Excel as database, analysis, & publishing tool.

II. Recipe

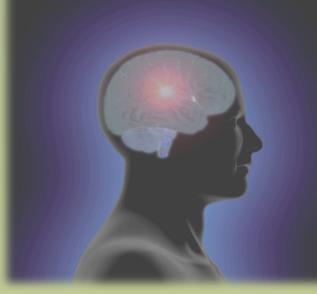
How the automated system works.

Wikimedia commons

III. Lunch is served! Examples & Potentials.

Love makes the world go 'round But weather makes the crops grow

The best tool you need, you already have.



Climate impacts are felt closest to home.

Farmers need timely, place-based information on their particular risks and impacts to make informed decisions.

That requires delivery systems to help users incorporate new knowledge into their decision making.

Adapted from: Ellen L. Mecray. Regional Services, Moving from R20 to R2S. October 5, 2016. Climate Diagnostics and Predictions Workshop, Orono, ME. http://www.cpc.ncep.noaa.gov/ products/outreach/CDPW41/Mecray-CDPW41.pdf

Ag-Radar

- *** MAINE
- ME-Monmouth
- (UMaine Highmoor Farm)
- ME-Auburn
- ME-Cumberland Center
- ME-Fairfield
- ME-Gorham
- ME-Hebron
- + many other sites

https:// extension.umaine.edu/ipm/ ag-radar-apple/

Or just Google " maine apple ag-radar "

User driven, User oriented, User inspired, Problem focused

Information for decision-makers

Partnerships, collaboration, can't do it alone

Environmental Intelligence

Co-production of knowledge

Actionable Science

Adapted from: Ellen L. Mecray. Regional Services, Moving from R20 to R2S. October 5, 2016. Climate Diagnostics and Predictions Workshop. Orono, ME. http://www.cpc.ncep.noaa.gov/products/outreach/CDPW41/Mecray-CDPW41.pdf Ingredients

 PROs for Excel as an automated database, presentation interface,
 & publication engine

Wikimedia commons

2) CONs

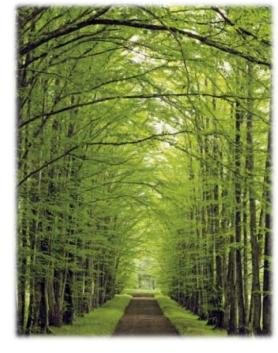
3) More PROs

The PROs win!

The great question Is Excel up to the job?

of using Excel instead of a database query system

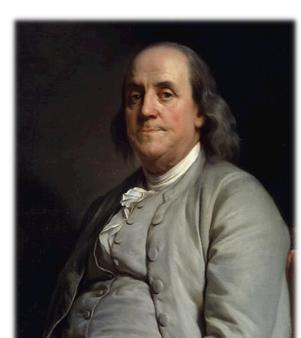
- Direct access for model definition You just do it.
- Low overhead. Off the shelf software
- > **No limits on calculation** *OR* presentation options
- Direct access for model verification and tweaking

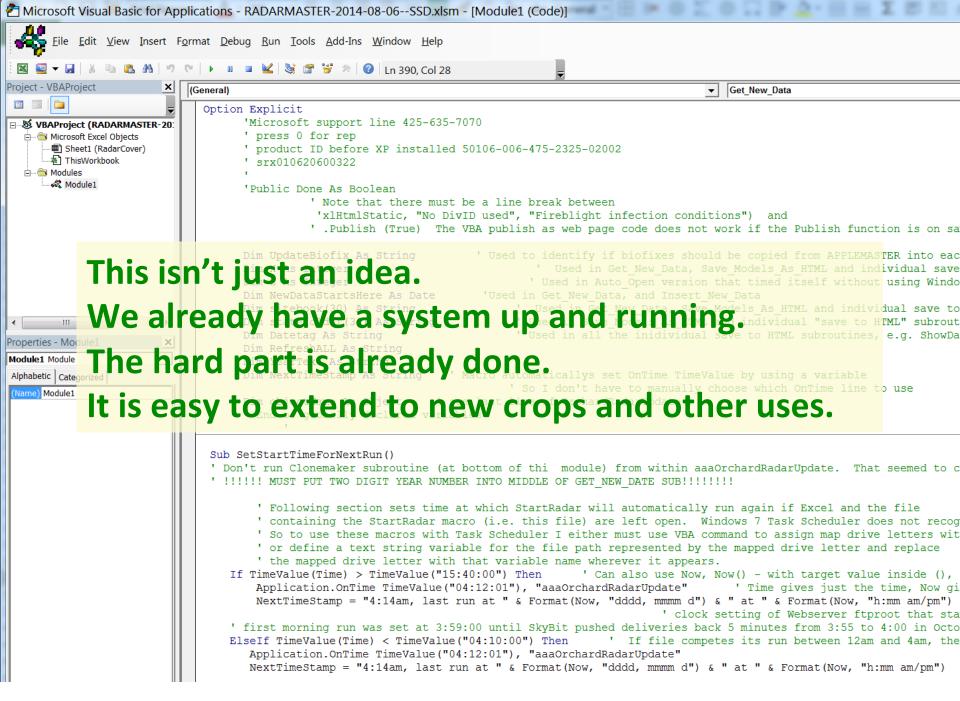


Zorba the Greek, the original "Just Do It" guy

Recipe

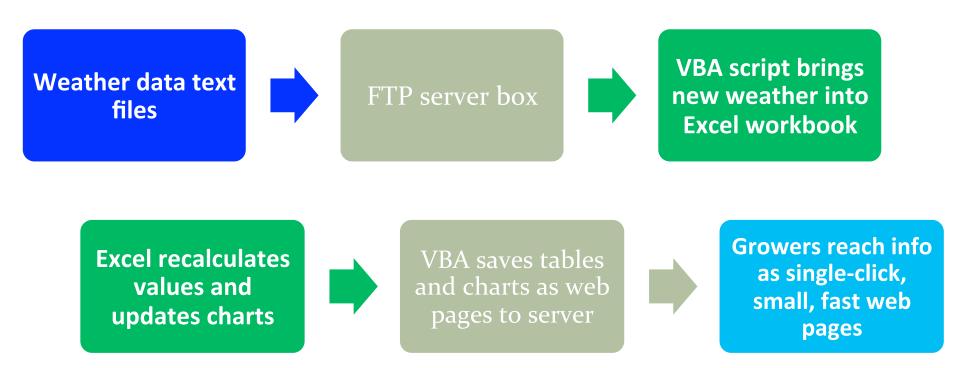
 How it works: Flow path
 Data → Info → Knowledge


2) Visual Basic for Applications



Wikimedia commons

(VBA and) "Beer is living proof that God loves us and wants us to be happy"


~ Ben Franklin

Visual Basic automation is the special ingredient that makes it all happen

Each update cycle for 37 sites takes ~ 45 minutes

3 update cycles per day.

♣ = Primary apple orchard sites with on-farm biofix observations.
 Biofixes for other sites based on estimates from nearby orchards.

*** MAINE	*** CONNECTICUT
♦ <u>ME-Monmouth</u> (UMaine Highmoor Farm)	<u>CT-Southington</u>
♦ ME-Auburn	*** MASSACHUSETTS
ME-Cumberland Center	♣ MA-Amherst
★ <u>ME-Fairfield</u>	MA-Belchertown (UMass Cold Spring Orchard)
ME-Gorham	MA-Belchertown (Phoenix)
ME-Hebron	MA-Brookfield
♣ <u>ME-Hope</u>	★ MA-Deerfield
♣ <u>ME-Levant</u>	MA-Easthampton
ME-Limerick	♣ MA-Groton
ME-New Gloucester	MA-Leominster – halted 11/1
ME-Newport	MA-Northboro
ME-Old Town (UMaine Rogers Farm)	MA-Westhampton
ME-Presque Isle	*** NEW BRUNSWICK
ME-Sabbatus	MB-Fredericton – halted 10/3
ME-Sanford	*** NEW YORK
ME-Skowhegan	Private sites: Geneva and Highland
ME-South Bridgton	*** RHODE ISLAND
ME-Sweden	& <u>RI-Greenville</u>
ME-Thorndike	<u>RI-Middletown</u>
ME-Vassalboro	*** VERMONT
	♦ VT-Cornwall
	VT-Dummerston
	★ <u>VT-South Burlington</u> – halted 11/1 (UVM Hort. Farm)

https://extension.umaine.edu/ ipm/ag-radar-apple/

Or just Google "maine apple ag-radar"

South Burlington VT	Apple Pest Monito
---------------------	-------------------

Apple Calendar – Early season

oring Pocket Guide

Apple Calendar – Late season

Jump down to sections:

Scab

Fire blight Flyspeck

Insects & Mites

Horticulture

Weather archive

* CURRENT WEATHER *

3 Day Weather Chart 7 Day Weather Chart

30 day Temperature Chart 30 day Rain Chart

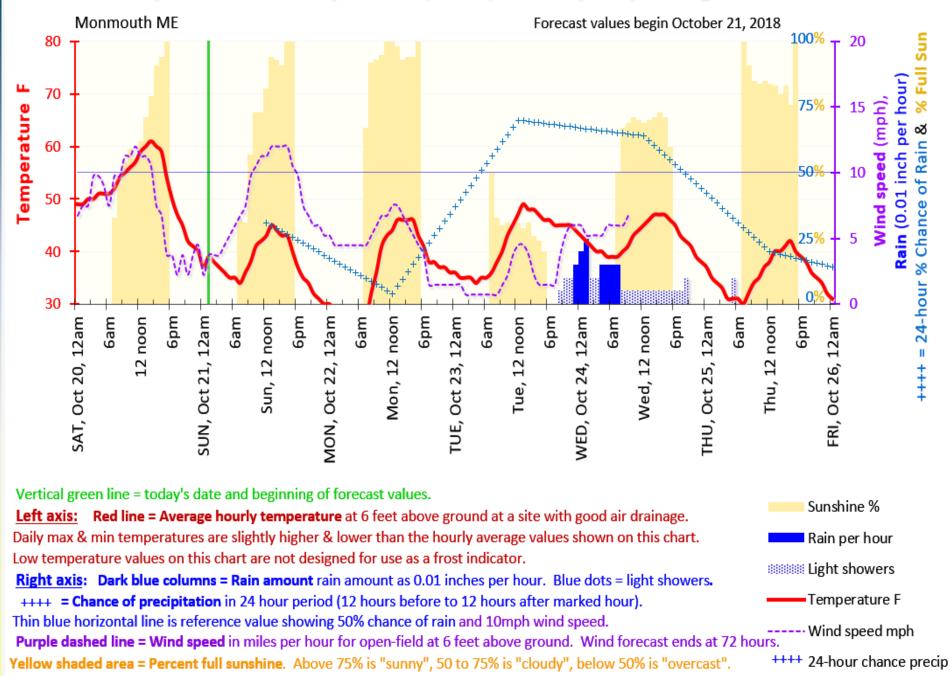
Hourly Forecast Table – NEXT 10 days Hourly Observations Table – PAST 7 days Weather archive is at bottom of this page.

* APPLE SCAB *

Apple Scab – KEY DATES

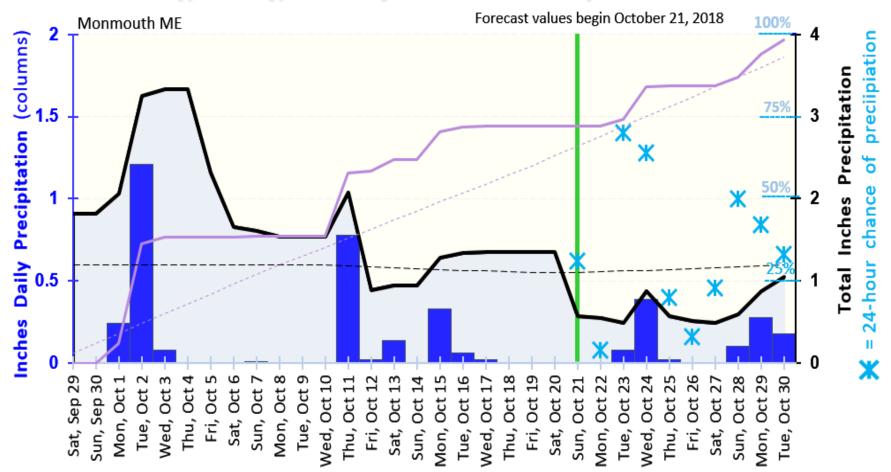
SCAB BIOLOGY DAILY PRIMARY SCAB Infection Chart

Comprehensive estimate of relative primary scab infection risk. Absolute risk depends on infec Daily primary scab infections in TABLE format


CUMULATIVE PRIMARY SCAB potential and release

Scab ascospore maturity chart - Less useful than comprehensive ratings shown above.

Scab ascospore maturity table


i onnaia bai

5 day forecast - Temperature, Rain, Wind speed, Sunlight

					-9-	
		Precip.			Avg.	Percent of
		inches			Wind	Possible
	Hourly	(blank = zero,	Leaf	Rel.	speed	Sunlight
Date and Hour	Temp.	"chance" = chance	Wetne	Humidit	(miles per	(clear sky = 100%,
(night hours shaded)	(F)	of showers)	ss	y	hour)	overcast < 60%)
Sun, Oct 21, 12:AM	37		dry	86%	2	
Sun, Oct 21, 1:AM	39		dry	78%	4	
Sun, Oct 21, 2:AM	38		dry	78%	4	
Sun, Oct 21, 3:AM	37		dry	77%	4	
Sun, Oct 21, 4:AM	36		dry	77%	5	
Sun, Oct 21, 5:AM	35		dry	76%	5	
Sun, Oct 21, 6:AM	35		dry	76%	6	
Sun, Oct 21, 7:AM	34		dry	75%	7	33%
Sun, Oct 21, 8:AM	36		dry	68%	8	31%
Sun, Oct 21, 9:AM	38		dry	61% 53%	10 11	57%
Sun, Oct 21, 10:AM Sun, Oct 21, 11:AM	42		dry dry	49%	11	73%
Sun, Oct 21, 12:PM	43		dry	44%	11	82%
Sun, Oct 21, 12:PM	45		dry	40%	12	94%
Sun, Oct 21, 2:PM	44		dry	39%	12	93%
Sun, Oct 21, 3:PM	43		dry	39%	12	91%
Sun, Oct 21, 4:PM	43		dry	39%	12	100%
Sun, Oct 21, 5:PM	40		dry	43%	11	100%
Sun, Oct 21, 6:PM	37		dry	47%	10	
Sun, Oct 21, 7:PM	35		dry	52%	8	
Sun, Oct 21, 8:PM	34		drý	54%	7	
Sun, Oct 21, 9:PM	32		dry	55%	6	
Sun, Oct 21, 10:PM	31		dry	57%	6	
Sun, Oct 21, 11:PM	30		dry	59%	5	
Mon, Oct 22, 12:AM	30		dry	61%	5	
Mon, Oct 22, 1:AM	29		dry	62%	5	
Mon, Oct 22, 2:AM	28		dry	64%	5	
Mon, Oct 22, 3:AM	27		dry	65%	5	
Mon, Oct 22, 4:AM	26		dry	66%	5	
Mon, Oct 22, 5:AM	27		dry	66%	5	
Mon, Oct 22, 6:AM	27		dry	66%	5	0711
Mon, Oct 22, 7:AM	27		dry	66%	5	67%
Mon, Oct 22, 8:AM	32 36		dry	58% 50%	6	92%
Mon, Oct 22, 9:AM Mon, Oct 22, 10:AM	41		dry dry	41%	7	95%
Mon, Oct 22, 10:AM Mon, Oct 22, 11:AM	43		dry	39%	7	100%
Mon, Oct 22, 12:PM	44		dry	37%	8	100%
Mon, Oct 22, 1:PM	46		dry	34%	8	98%
Mon, Oct 22, 2:PM	46		dry	36%	7	93%
Mon, Oct 22, 3:PM	46		dry	37%	6	94%
Mon, Oct 22, 4:PM	46		dry	39%	5	94%
Mon, Oct 22, 5:PM	43		dry	46%	5	100%
Mon, Oct 22, 6:PM	41		dry	53%	4	
Mon, Oct 22, 7:PM	38		dry	61%		
Mon, Oct 22, 8:PM	38		dry	64%	2	
Mon, Oct 22, 9:PM	37		dry	67%	2	
Mon, Oct 22, 10:PM	37		dry	70%	2	
Mon, Oct 22, 11:PM	36		dry	71%		
Tue, Oct 23, 12:AM	36		dry	73%	2	
Tue, Oct 23, 1:AM	35		dry	75%	2	
Tue, Oct 23, 2:AM	35		dry	76%	1	
Tue, Oct 23, 3:AM	35		dry	77%	1	
Tue, Oct 23, 4:AM	34		dry	79%	1	
Tue, Oct 23, 5:AM	35		dry dry	79%	1	
Tue, Oct 23, 6:AM	35 36		dry dry	80% 80%	1	50%
Tue, Oct 23, 7:AM Tue, Oct 23, 8:AM	38		dry dry	76%	1	33%
Tue, Oct 23, 8:AM	40		dry	76%	2	30%
Tue, Oct 23, 10:AM	40		dry	68%	2	31%
Tue, Oct 23, 10:AM Tue, Oct 23, 11:AM	45		dry	64%	4	30%
Tue, Oct 23, 12:PM	47		dry	61%	5	31%

Daily, 10-day, & 32-day Cumulative Precipitation

Left axis: Blue columns = Daily observed and forecast amount of precipitation.

Right axis: Black solid line = Inches precipitation for 10-day period ending at final hour of marked date. **Black straight dashed line** = Climatic average inches precipitation for same 10-day period.

X = Forecast chance of precipitation on that day.

Purple solid line = Observed cumulative precipitation from first date to last date on chart. Purple straight dotted line = Climatic average cumulative precipitation for those dates. Vertical green line marks today's date and beginning of forecast values. Daily observed precipitation

- X Forecast chance of precipitation
- Observed 10-day precipitation
- Observed 32-day cumulative precip
- ---- Climatic average 10-day precip
- ----- Climatic average 32-day cumulative precip

* FLYSPECK *

Background information for flyspeck estimates

Flyspeck control with Pristine – 21 days or 2.5" rain protection Flyspeck – Pristine – 1stCOVER through JUNE spray dates Flyspeck – Pristine – JULY spray dates Flyspeck – Pristine – AUGUST-SEPT. spray dates

Flyspeck control with Group A fungicides (Topsin M, Flint, Sovran, captan + phosphite) - 21 days or 2.0" rain protection <u>Flyspeck – Group A fungicides – 1stCOVER through JUNE spray dates</u> <u>Flyspeck – Group A fungicides – JULY spray dates</u> <u>Flyspeck – Group A fungicides – AUGUST-SEPT. spray dates</u>

Flyspeck control with Group B fungicides (captan, ziram) - 14 days or 1.5" rain protection <u>Flyspeck – Group B fungicides – 1stCOVER through JUNE spray dates</u> <u>Flyspeck – Group B fungicides – JULY spray dates</u> <u>Flyspeck – Group B fungicides – AUGUST-SEPT. spray dates</u>

Flyspeck Growth Hours Chart – Daily and Cumulative

Charts showing flyspeck growth potential between end of protection by final spray date and harvest <u>Pristine – Flyspeck growth between Final spray and harvest</u> <u>Group A fungicides - Flyspeck growth between Final spray and harvest</u> <u>Group B fungicides - Flyspeck growth between Final spray and harvest</u>

* INSECTS *

INSECT DATES (CM, DWB, LAW, MPB, OFM, OBLR, RBLR, SJS, STLM, TPB, WAL) Key life cycle and management dates

<u>Plum Curculio – insecticide depletion Table</u> <u>Plum Curculio – insecticide depletion Chart</u> Experimental only: <u>Plum Curculio activity rating</u>

<u>Codling Moth insecticide depletion table: JUNE</u> <u>Codling Moth insecticide depletion table: JULY</u> <u>Codling Moth insecticide depletion table: AUGUST</u>

Apple Maggot JULY monitoring & respray dates Apple Maggot AUGUST monitoring & respray dates

* MITES *

European Red Mite (ERM) KEY DATES

ERM resample dates – JUNE ERM resample dates – July&August

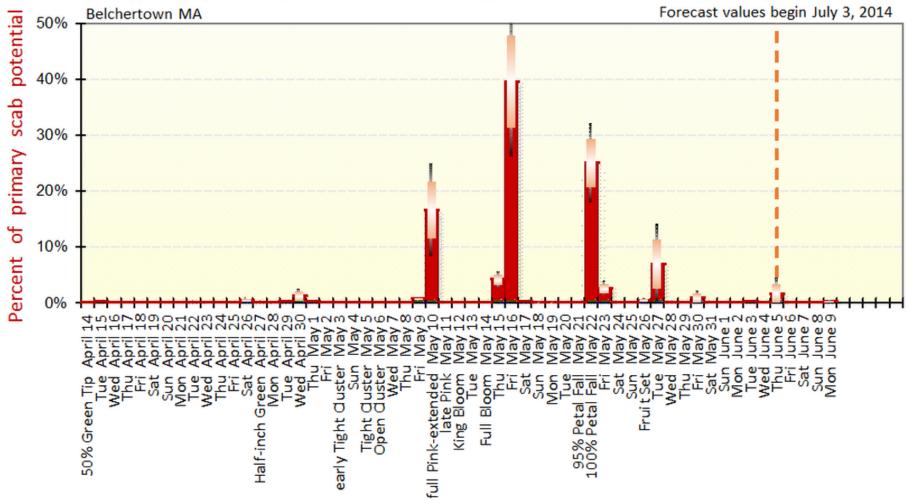
Mite thresholds

Fungicide guidance for Primary apple scab

Find most recent spray date in left column

Columns in same row show estimates for end of protection and start of next infection period

'Protectant fungicide' Respray Dates for Scab Suppression

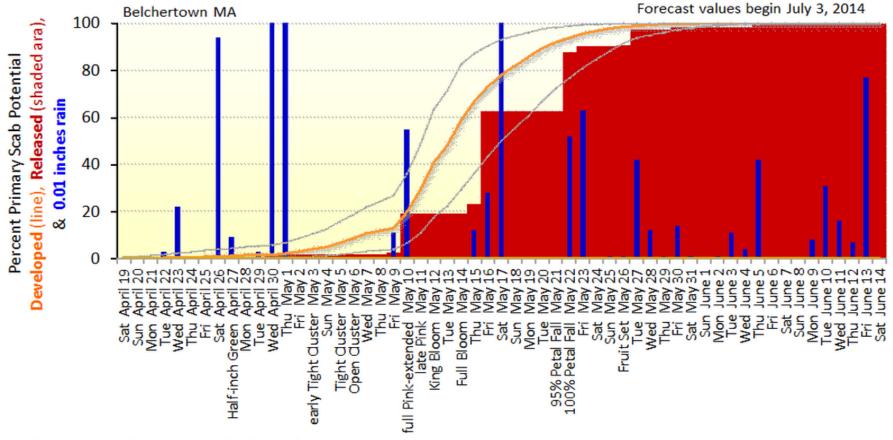

Background Information for this page Return to Apple list for Belchertown MA

> Weather data for Belchertown MA. Forecast values begin July 3, 2014 Final primary scab infection period starts and ascospores depleted on: Thursday, June 5, 5AM.

Full-dose 'Protectant' fungicide (captan, mancozeb, SDHI, Syllit) SPRAY DATE 6am application time assumed	Inches Rain	END of Protectant fungicide residue protection & limiting factor	DEADLINE for next Pre-Infection Application This is the start time for the next infection period that has rain after fungicide depletion time.	Deadline for post-infection fungicide to reach back to start time of subsequent infection period (1 col. to left), or back to depletion time of previous fungicide spray (2 cols. to left), whichever is later. Assumes no scab resistance.
Sat, April 19	0	April 24, 3PM rapid growth	Sat, April 26, 1am	Tue, Apr 29, 1AM
Sun, April 20	0	April 25, 3PM rapid growth	Sat, April 26, 1am	Tue, Apr 29, 1AM
Mon, April 21	0	April 26, 5PM rapid growth	Sat, April 26, 1am	Tue, Apr 29, 5PM If application is after deadline, lesions may start showing May 14.
Tue, April 22	0.03	April 29, 6AM 7 days normal growth	Sat, April 26, 1am	Fri, May 2, 6AM
Wed, April 23	0.22	April 30, 5PM rain removal	Tue, April 29, 11pm	Sat, May 3, 5PM

Daily primary scab infection potential as % of yearly total

Top of wide red bar shows best estimate of primary scab ascospore infection potential.


White-to-light red shaded narrow boxes overlaid on red bars show range expected to contain the true value most of the time (68% confidence interval). Vertical black bars show wider range of 90% confidence interval.

Vertical green line = today's date. Vertical dotted green line = end of forecast range.

Vertical orange dotted line = date of final siginificant primary scab infection period (estimated 99+% cumulative spore release, and 95% chance of at least 95% cumulative spore release).

Infection potential rating is for scab ascospores (i.e. primary scab) only. Uncontrolled infections can produce secondary scab spores that magnify infection risk beyond what is indicated by this chart 9-17 days (depending on temperatures) after the infection period.

Development and Release of Primary Scab Infection Potential

Blue columns show 100ths of inch rain for each date.

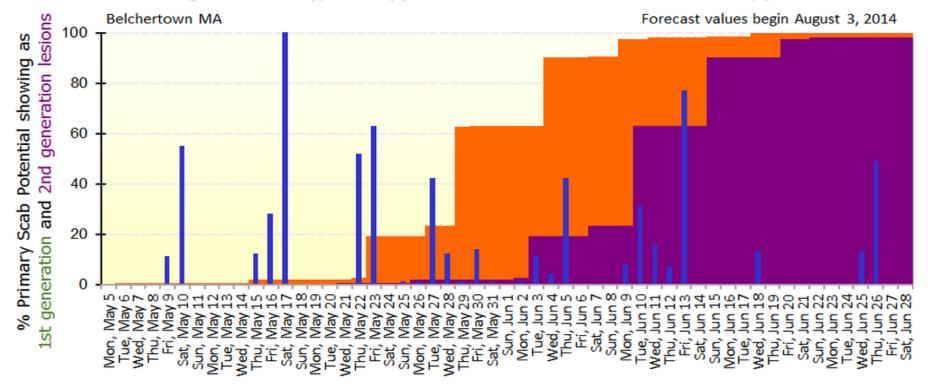
Rising thick orange line = cumulative primary scab infection potential developed by that date.

Rising thin gray lines with triangle markers = 90% high and low error bar values for estimate of cumulative infection potential developed, but not necessarily released, by each date.

Solid red area under orange line shows estimated cumulative percent primary scab infection potential released by end of that date. The red area is below the maroon line unless a warm soaking daytime rain allows full expression of infection potential. Vertical green line = today's date and beginning of forecast values. Vertical dotted green line = end of forecast range. Note: This is a relative, not absolute, measure of scab infection severity. The number of scab ascospores per square meter of orchard is not included in these ratings. A high scab block can have 300,000 times more spores than a very low scab block. In high scab blocks even a small portion of the year's scab potential can cause significant infection! This chart represents risk from primary spore releases only. Secondary spore production from earlier uncontrolled infections can magnify infection potential.

Apple scab: Primary infection period ratings

Background Information for this page


Return to Apple list for Belchertown MA

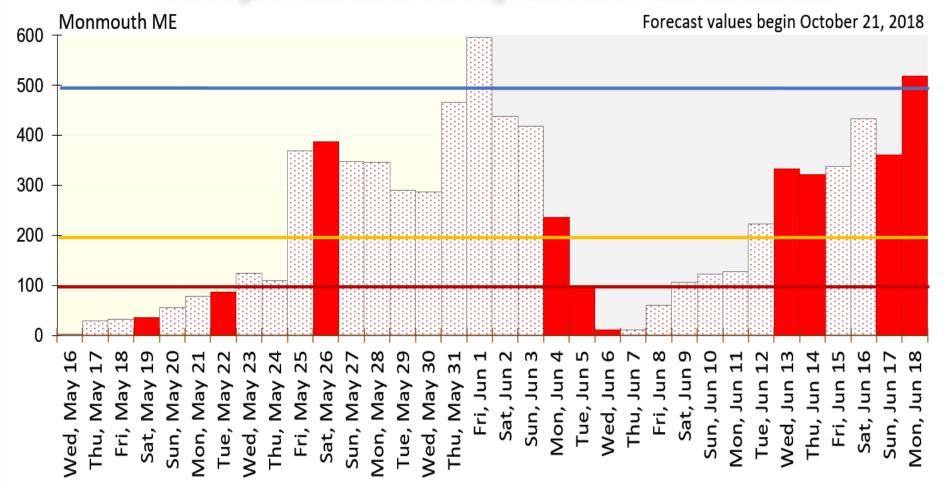
Weather data for Belchertown MA. Forecast values begin July 3, 2014

These ratings are **relative** because they do not account for scab spore population density, which is the **MOST** important factor determining absolute infection risk. Estimates also do not account for any secondary scab spores that might be present from earlier uncontrolled primary scab infection periods.

	Observed & Forecast	McIntosh	1 in 20 chance that daily value	Portion of Annual Primary Scab Infection Potential on this day (cumulative scab infection	1 in 20 chance
Date	Inches Rain	bud stage	than	potential in parentheses)	is more than
Mon, April 28	0				
Tue, April 29	0.03				< 1
Wed, April 30	1.30		0	1% (2%)	2%
Thu, May 1	1.12		0	< 1 (2%)	< 1
Fri, May 2	0				
Sat, May 3	0	early Tight Cluster			
Sun, May 4	0				
Mon, May 5	0	Tight Cluster			
Tue, May 6	0	Open Cluster			
Wed, May 7	0				
Thu, May 8	0				
Fri, May 9	0.11		< 1	< 1 (2%)	< 1
Sat, May 10	0.55	full Pink-extended	8%	17% (19%)	25%
Sun, May 11	0	late Pink			
Mon, May 12	0	King Bloom			
Tue, May 13	0				
Wed, May 14	0	Full Bloom			

1st generation (primary) & 2nd Generation Scab Lesion Appearance

Orange area shows the percent primary scab infection potential from which early-developing 1st generation lesions have had time to begin appearing. Absence of visible scab infections after 100% of primary scab potential has had time to begin appearing as 1st generation lesions is good news, but it is not conclusive verification of successful scab control. Light infestation of 1st generation lesions can be difficult to detect. Infections delayed but not killed by fungicide application, or by partial resistance of older leaves, may appear later.


Purple area shows the percent primary scab infection potential from which early-developing 2nd generation lesions have had time to begin appearing. Absence of visible scab after 90-100% of primary scab infection potential has had time to begin appearing as 2nd generation lesions indicates that primary scab control was successful. However, scab scouting should continue to detect later emerging lesions.

Blue columns show 100ths of inch rain for each date.

Vertical green line = today's date and beginning of forecast values. Vertical dotted green line = end of forecast range.

Open blossom dates for	Cumulative Heat Units	0		
common apple cultivars .	(single day units)	I - No active FB	II - FB active within	III - Fire blight
"Date" is from 8am to 8am the	Inches Rain, &	within one mile of	one mile of orchard	currently active
next day, not midnight to	Leaf Wet Hours	the orchard in last	in last two years,	within one mile of
midnight.	8am to 8am next day	two years	but not this year	orchard.
possible early cultivar	3 HU (3)	Low	Low	Unlikely
King Bloom: May 16	0.0'', 8 hrs	(lack of heat)	(lack of heat)	(lack of heat)
McIntosh King Bloom:	29 HU (26)	Low	Low	Unlikely
Thu, May 17	0.0'', 3 hrs	(lack of heat)	(lack of heat)	(lack of heat)
Fri, May 18	33 HU (4) 0.0'', 0 hrs	Very low (lack of heat & wetting)	Low (lack of heat & wetting)	Unlikely (lack of heat & wetting)
Sat, May 19	36 HU (3)	Low	Low	Unlikely
	0.35'', 15 hrs	(lack of heat)	(lack of heat)	(lack of heat)
Sun, May 20	56 HU (23)	Low	Low	Caution
	0.0'', 8 hrs	(lack of heat)	(lack of heat)	(if wetting)
Mon, May 21	78 HU (48) 0.0'', 0 hrs	Very low (lack of heat & wetting)	Low (lack of heat & wetting)	Caution (if wetting)
Tue, May 22	86 HU (12) 0.01'', 10 hrs	Low (lack of heat)	Low (lack of heat)	Caution
Wed, May 23	125 HU (42)	Low	Caution	HIGH
	0.0'', 5 hrs	(lack of heat)	(dew risk)	(Dew risk)
Thu, May 24	109 HU(7)	Low	Caution	HIGH
	0.0'', 6 hrs	(lack of heat)	(dew risk)	(Dew risk)
Fri, May 25	368 HU (307)	Caution	Extreme!	Exceptional!
	0.0'', 0 hrs	(if wetting)	(if wetting)	(if wetting)
McIntosh 95% Petal Fall on Sat, May 26	387 HU (30) 0.21'', 22 hrs	Caution	EXTREME!	EXCEPTIONAL!

Fire blight heat units vs. High infection risk thresholds

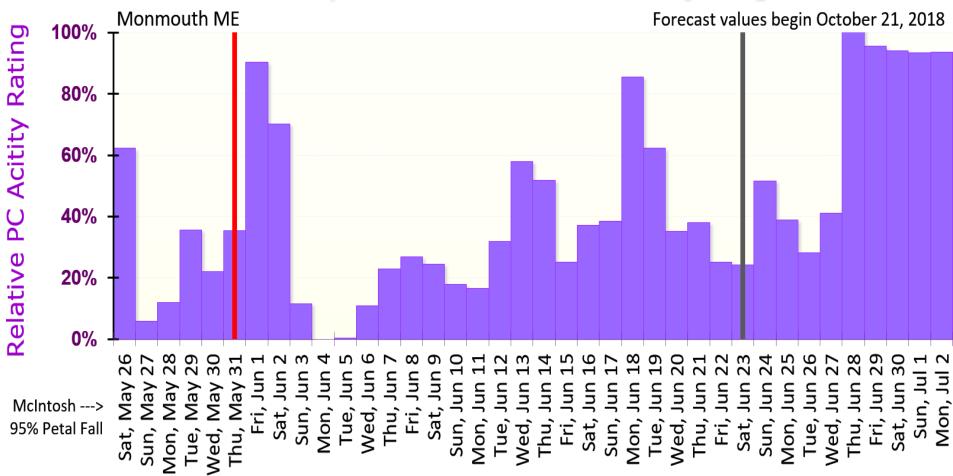
			Pro	Product names in red letters have "Good" rating vs. apple maggot. Product names in blue letters have a "Fair" rating.			
			A	Apple Maggot Emergence after Depletion for Respray Timing			
Full-dose	Estimated %						
Apple Maggot	cumulative		Imidan	Assail	Pyrethroids	Delegate, Sevin	Avaunt, Exirel
insecticide	apple maggot		1.5" rain days 1-7, 1.0"	1.0" rain	1.0" rain	2.0" rain days 1-6,	1.0" rain days 1-6,
application date	trap captures	Rain	rain days 8-14.	days 1-14.	days 1-10.	0.5" rain day 7-10.	0.5" rain day 7-10.
Wed, August 1	22%	0.44	August 8, Wed	August 4, Sat	August 4, Sat	August 7, Tue	August 4, Sat
Thu, August 2	25%	0	August 9, Thu	August 4, Sat	August 4, Sat	August 8, Wed	August 4, Sat
Fri, August 3	28%	0.37	August 10, Fri	August 9, Thu	August 9, Thu	August 9, Thu	August 9, Thu
Sat, August 4	30%	0.8	August 14, Tue	August 14, Tue	August 14, Tue	August 13, Mon	August 13, Mon
Sun, August 5	32%	0	August 14, Tue	August 14, Tue	August 14, Tue	August 13, Mon	August 13, Mon
Mon, August 6	35%	0	August 14, Tue	August 14, Tue	August 14, Tue	August 13, Mon	August 13, Mon
Tue, August 7	38%	0.07	August 14, Tue	August 14, Tue	August 14, Tue	August 13, Mon	August 13, Mon
Wed, August 8	40%	0.02	August 15, Wed	August 14, Tue	August 14, Tue	August 14, Tue	August 14, Tue
Thu, August 9	43%	0.58	August 18, Sat	August 18, Sat	August 18, Sat	August 17, Fri	August 17, Fri

Rough guess at date to clean apple maggot fly traps and count from zero

to compare against threshold for respray decision.

Key Dates for European Red Mites

Estimated hatch date of overwintered European red mite (ERM) eggs and decline in efficacy of suppression by prebloom oil is Saturday, May 12


Optimum monitoring period for 1st generation ERM: Saturday, May 26 (Petal Fall)

to Saturday, June 2 (early adults ready to lay eggs for 2nd generation)

Optimum monitoring period for 2nd generation ERM: Friday, June 22 (nymphs hatched) to Friday, June 29 (egglaying starts for 3rd generation)

Optimum monitoring period for 3rd ERM generation is: Thursday, July 5 (nymphs hatched) to Saturday, July 14 (egglaying starts for 4th generation)

Experimental Plum Curculio activity rating

Apple Maggot (AM)

Rough estimate for first apple maggot fly trap capture: Friday, July 13.

Estimated 5% AM adult emergence: July 25.

Estimated date for 50% adult AM emergence & trap captures: August 13, Monday Peak weekly AM trap captures: August 19, Sunday 98% adult AM emergence & trap captures: September 6, Thursday AM emergence and cumulative trap catch dates are only general guidelines because local soil type and soil moisture conditions that affect emergence are not included in the calculation.

Borers - Roundheaded Appletree Borer (RAB) & Dogwood Borer

RAB adult emergence begins: June 8. Peak emergence: June 24.

RAB egglaying begins: June 18. Peak egglaying period roughly: July 7 to July 24.

First RAB eggs hatch roughly: July 3. Peak hatch roughly: July 22 to August 13.

First Dogwood borer egg hatch roughly: July 6. Peak hatch roughly: August 11.

Codling Moth (CM)

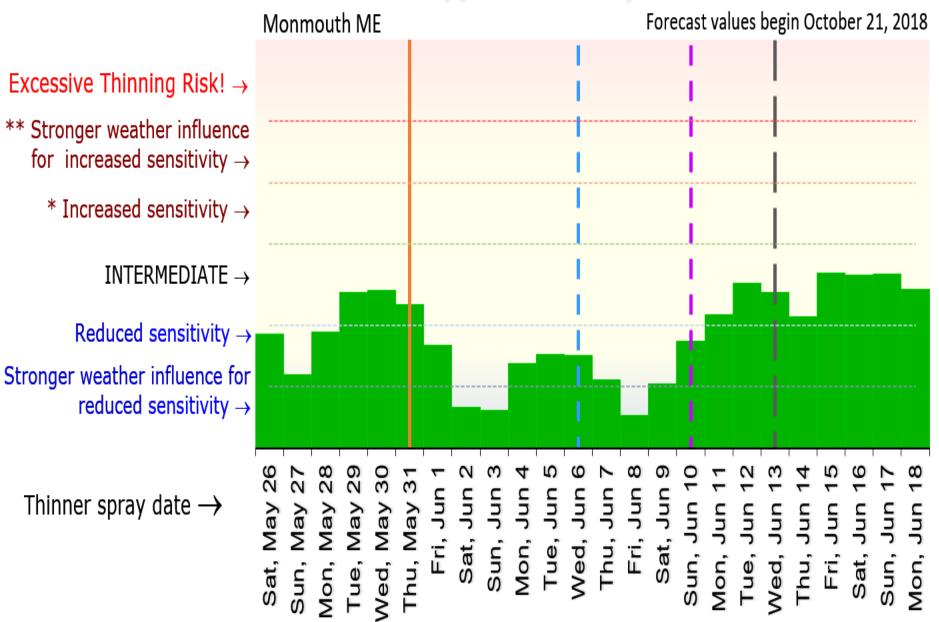
1st generation, estimated first sustained trap catch biofix date: May 27, Sunday.

Codling moth development as of Sunday, October 21:

2nd gen. generation adult emergence at 98% and 2nd gen. generation egg hatch at 91.3704066593409%.

Insecticide targetted against plum curculio and apple maggot may also prevent codling moth damage. If targetted codling moth control is needed, key management dates are shown below.

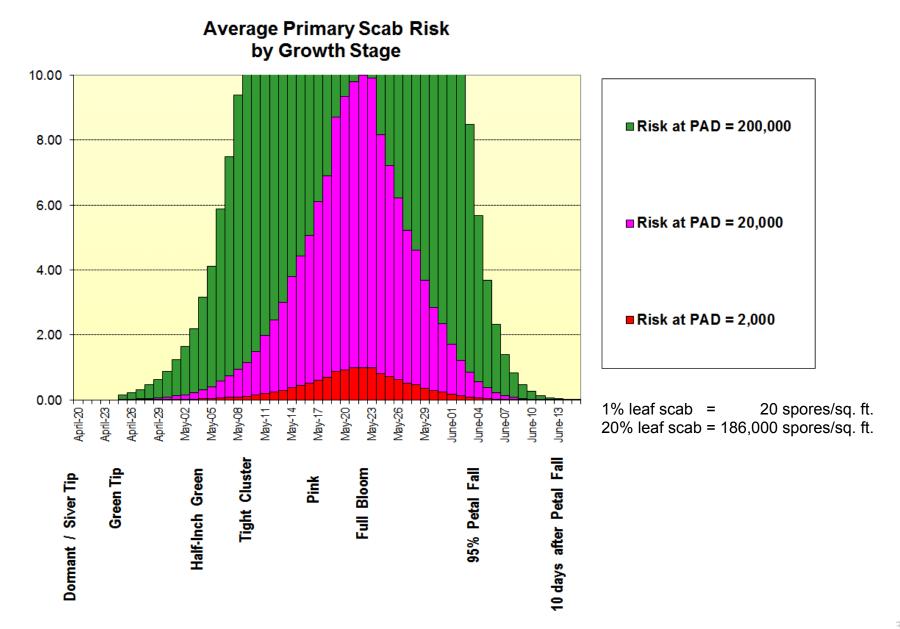
Optimum date to apply RIMON or ESTEEM ovicide/larvicide Insect Growth Regulator (IGR) is shortly before CM egglaying begins (100 CM degree days after start of 1st gen. flight): June 8. Friday.


For INTREPID IGR, the optimum first application timing is just before first hatch (150-200 DD): June 13 to June 16.

U	C C
Date	Early Season Biological Events and Management Activities
Before bud break	Check tractor and sprayer for needed repairs. Replace worn nozzles, weak hoses, damaged or blocked filters, and inaccurate pressure gauges. Check for tank leaks, adequate agitation and pump function. Check commonly used dosage calculations. Review safety guidelines, check safety equipment. Calibrate sprayers, test spray pattern, test pH of spray water source.
April 27, Fri	McIntosh trees at 50% Green Tip (observed) Where copper deficient, foliar application recommended at green tip to 1/4" green. Later application can cause leaf burn and possibly lead to fruit russetting from residue. If monitoring tarnished plant bug , traps should be set by now or as soon as possible. If using traps to monitor leafminers , traps should be set by now or as soon as possible. Cutworm defoliation of emerging buds can be a problem on young trees as early as green tip, especially where there is high ground cover growth near the trees.
May 2, Wed	McIntosh trees at Half-Inch Green Beginning of optimum time window for oil application to smother European red mite eggs before they hatch. More than 3 thrips per fruit bud can decrease fruit set. Effective timing for Lorsban trunk application to get season-long suppression of insect borers.
May 3, Thu	First primary scab infection period on or after Half Inch Green. Infection risk increases as green tissue expands.

aι

Date	Late Season Biological Events and Management Activities
July 7, Sat	Plum curculio egglaying begins natural decline. If using Surround repellence instead of insecticide mortality to prevent PC damage, coverage should be maintained from Petal fall until at least this date.
June 29, Fri	Start of 2nd generation Spotted tentiform leafminer flight
July 4, Wed	Glyphosate (Roundup) herbicide application more than 45 days after full bloom to soil around apple trees with root suckers, especially young trees, poses increased risk of damage from systemic uptake through root suckers into the trunk and root system. Apple trees without root suckers may also become more sensitive to trunk contact by glyphosate with late season application, especially trees under drought or other stress.
July 1, Sun	Japanese beetle adults begin feeding on foliage (rough guess). Honeycrisp apples seem to be one of their favorite foods.
July 13, Fri	Date by which 2nd generation lesions from the final primary scab infection period have had time to begin appearing. Finding fewer than 5 leaves with fresh lesions per 100 fruit clusters and vegetative shoots after this date indicates that scab control has been successful. Finding more than 5 leaves with fresh scab lesions per 100 clusters/shoots at this time in a commercial orchard suggests that fungicide selection and spray intervals need to be adjusted to suppress spore production, and to protect fruit and foliage for at least 4 weeks until active scab lesions exhaust their supply of spores.
July 3, Tue	If using pheromone traps to estimate populations and time treatment for Oriental fruit moth larvae, time to set traps. First trap capture expected in 7 days.
July 5, Thu	Where preventive control of small Obliquebanded leafroller larvae is needed, date for first application of Assail, Calypso, Intrepid, SpinTor, a Bt product, or other insecticide effective against OBLR.


Weather Influence on Apple Sensitivity to Chemical Thinners

PEOPLE with pest answers Connecticut <u>Massachusetts</u>	"Background" links also serve as reference pages for monitoring guidelines, thresholds etc. Example below shows early season mite thresholds						
Maine							
New Hampshire	Presence/Absence Chart for Threshold of 1 mite per leaf or 30% of leaves infested Petal fall to June 1 in NY, Petal fall to June 15 in Maine. Collect sample leaves from middle of fruit clusters.						
Rhode Island	(Stop limits higher thres		amples of 40-80 leaves are not directly from NY i	recommendations but are extrapolated from charts for			
Vermont	Number of	column 1:	column 2:	column 3:			
New England Region-wide	leaves not used for early examined season samples if number of infested leaves is < or = to value in this column, then mites are estimated to be BELOW threshold						
	40 6 24						
	60 11 30						
FEEDBACK	80 16 30						
	100		29	30			
About PRO							

Forecasting

Models can provide unexpected insight

Shocking revelation!

Farm management is less than perfect!

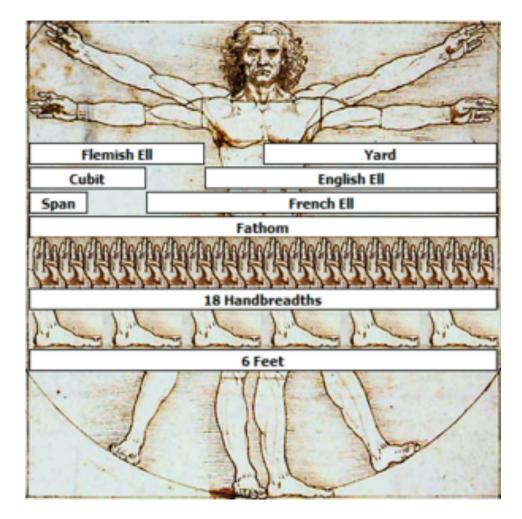
Different fungicides, Different equipment, Different trees,same old decision process

Using Pest Forecasts to Enhance IPM

• Models are reference tools, not the "Truth"

- They are there to help, not to dictate *'Hammers don't build houses, and models don't make decisions'* ~ Tim Smith, Washington State Univ.
- Current system provides guidance for timing and typical pest pressure.
 Adding on-farm observations would allow site-specific absolute estimates.

Personalized Decision Support


User Data

Intelligent Services

Future agricultural adaptation will occur in a decision environment characterized by high complexity and the increasing pace and intensity of climatic change. ~ USDA, 2012

Image Credit: Samsung Corp. investor update http://aod.teletogether.com/sec/20131106/eng_view.asp

"If you can't measure it, you can't manage it."

→ "If you measure it, You <u>can</u> manage it better." Combining grower records with site specific models = Customized Farm-specific Guidance

Ky

Fusion Power

Farm specific guidance increases capacity for Farm management **Documentation**

Context for farm management records Examples: <u>Needs Justification</u> for use of irrigation water, fertilizer & pesticide applications.

Records of time and resource inputs combined with demonstrated need improves:

Evaluation – Diagnose why problems occurred.

Planning – A foundation to build on for next year.

Farm specific guidance increases capacity for Farm management <u>Measurement</u>

Example: Pesticide optimization

- Part 1. Effective "Protected when needed" (number of days needing protection that actually had it, 0 - 100%)
- Part 2. Efficient "Only when needed" (number of days with pesticide residue that actually needed it, 0 - 100%)

Effective % X Efficient % = Optimization Score

Can be compared between different years, farms, crops. **Provides a way to track performance, and a measurable goal to aim for.**

Key Points

- Excel provides database, analysis, presentation, & publishing.
- ✤ Visual Basic (VBA) automation.
- Clear guidance in text and graphic formats.
- Many applications for farm decisions
 - Creates new insights
 - Increase farm management capacity

Wikimedia commons

Leftover slides

Leftover slides

* HORTICULTURE *

McIntosh BUD STAGES

Thinning Weather Chart Thinning weather table

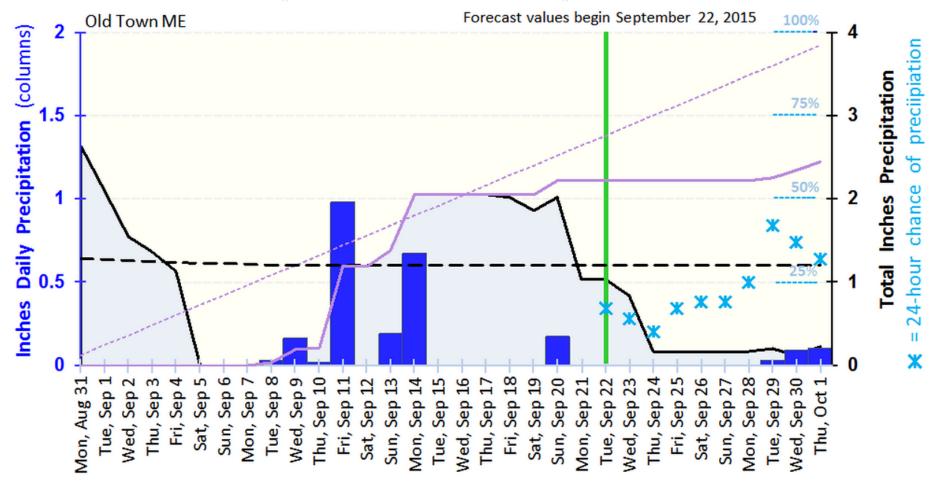
<u>Rough estimate of McIntosh HARVEST dates</u> (estimates begin after Full bloom). <u>Preharvest weather influence on Storability, Drop, Color, and Scald risk</u>

* WEATHER archive *

Weather data – APRIL Weather data – JULY

<u>Weather data – MAY</u>

Weather data – AUGUST


<u>Weather data – JUNE</u>

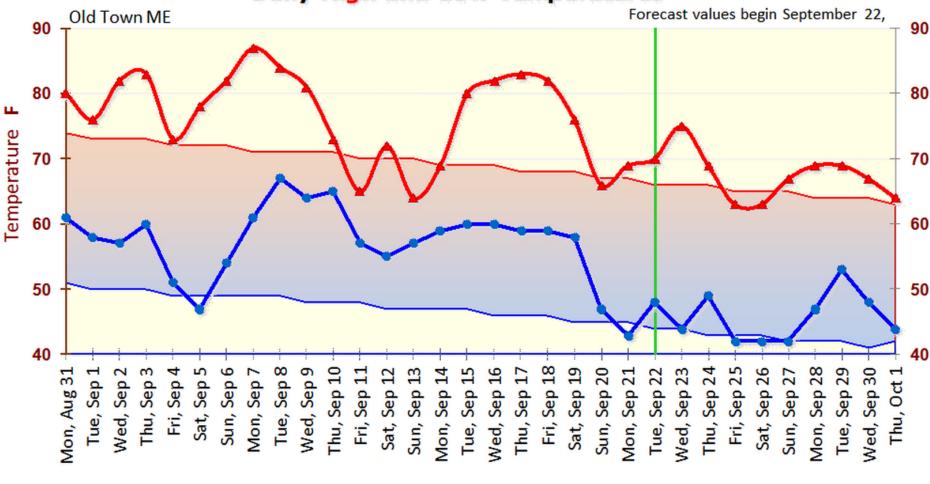
Weather data - SEPTEMBER

Degree day accumulation <u>Degree days – April</u> <u>Degree days – May</u> <u>Degree days – June</u>

<u>Degree days – July</u> <u>Degree days – August</u> <u>Degree days – September</u>

Daily and Cumulative Precipitation

Left axis: Blue columns = Daily observed and forecast amount of precipitation.

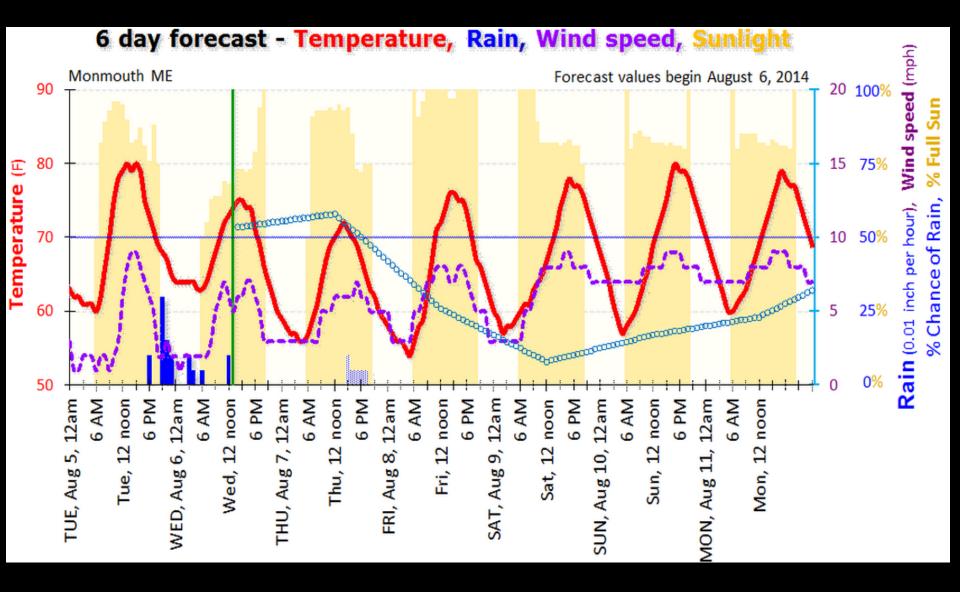

Right axis: Black solid line and light blue shading = Cumulative observed or forecast inches precipitation for 10-day period ending at final hour of marked date.

Black straight dashed line = Climatic average cumulative inches precipitation for same 10-day period.

X = Forecast 24-hour chance of precipitation.

Purple solid line = Observed cumulative precipitation from first date to last date on chart. Purple straight dotted line = Climatic average cumulative precipitation from first date to last date on chart.

Daily High and Low Temperatures



📥 Daily High Temperature 🛛 📥 Daily Low Temperature

Horizontal colored band = Climatic average high and low temperature range for these dates. Vertical green line = Today's date and beginning of forecast values.

Temperature values are for 2 meters (~ 6 feet) above the ground at a site with good air drainage. Low temperature values on this chart are not designed for use as frost indicator.

Active charts and tables for this location were last updated: Tuesday, September 22, 2015 at 5:36 AM

****** Primary Infection Period 1 Details ******

Begin: Tuesday, April 15 at 5 AM ---> Last rain hour: Wednesday, April 16 at 4 AM.
Growth stage at start of period: Between Green Tip and Quarter Inch Green
This infection period accounts for less than 1% of the year's total primary scab risk.
Approximately 1.56 inch rain and 27 leaf wet hours, with 48 F degrees average temperature during wet hours.
Cumulative scab ascospore release by end of this wetting period is roughly < 1%.

Text profiles of Primary apple scab Infection periods

Reliable pre-infection protection during this period expected if full dose + good coverage captan or EBDC fungicide applied since Monday, April 14, 12 AM, or if strobilurin fungicide applied since Monday, April 14, 12 AM.

Wetting period long enough only for ascospores released at night.

Opportunity for surface fungicide kickback ends Wednesday, April 16, at 3 PM.

Opportunity for sterol inhibitor or strobilurin fungicide kickback ends Friday, April 18, at 5 AM.

First generation lesions arising from this infection period would start appearing by Tuesday, May 6. If conidia from 1st generation lesions spread infection, 2nd generation lesions could show as early as Wednesday, May 21.

****** Primary Infection Period 2 Details ******

Begin: Tuesday, April 22 at 8 PM ---> Last rain hour: Wednesday, April 23 at 2 PM.
Growth stage at start of period: Between Green Tip and Quarter Inch Green
This infection period accounts for less than 1% of the year's total primary scab risk.
Approximately 0.25 inch rain and 20 leaf wet hours, with 50 F degrees average temperature during wet hours.
Cumulative scab ascospore release by end of this wetting period is roughly 3%.

Reliable pre-infection protection during this period expected if full dose + good coverage captan or EBDC fungicide applied since Monday, April 14, 12 AM, or if strobilurin fungicide applied since Saturday, April 19, 6 AM.

Wetting period long enough only for ascospores released at night.

Opportunity for surface fungicide kickback ends Thursday, April 24, at 6 AM.

Opportunity for sterol inhibitor or strobilurin fungicide kickback ends Friday, April 25, at 8 PM.

First generation lesions arising from this infection period would start appearing by Saturday, May 10. If conidia from 1st generation lesions spread infection, 2nd generation lesions could show as early as Monday, May 26.

SCAB FUNGICIDE RESPRAY DATES

Primary scab

* For orchards <u>protected by a PROTECTANT fungicide</u> (captan, mancozeb, Topsin, Syllit) These estimates also a best guess for SDHI fungicides (Luna, Merivon, Fontelis).

* For orchards protected by a STROBILURIN fungicide (Flint, Pristine, Sovran, Cabrio).

* For orchards protected by a SULFUR fungicide

These next two tables are only for use in orchards where low scab index was measured the previous fall.

* For Protectant fungicides used in LOW-SCAB orchards

* For Strobilurin fungicides used in LOW-SCAB blocks

Secondary scab

1st and 2nd generation scab lesion appearance dates

Secondary Scab Fungicide Respray Dates

Respray guidelines for transition period between end of primary scab ascospore releases and confirmation of successful scab control.

* FIRE BLIGHT *

Models estimate relative risk. Absolute risk depends on infection pressure, cultivar, rootstock etc.

CougarBlight - blossom infection risk

CougarBlight - blossom infection risk chart

Eastern Fire Blight Model - blossom infection risk

Fire blight - susceptible blossom respray dates