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Abstract Various regression methods can be used to

quantify the relationships between fish populations

and their environment. Strong correlations often

existing between environmental variables, however,

can cause multicollinearity, resulting in overfitting in

modeling. This study compares the performance of a

regular generalized additive model (GAM) with raw

environmental variables as explanatory variables

(regular GAM) and a GAM based on principal

component analysis (PCA-based GAM) in modeling

the relationship between fish richness and diversity

indices and environmental variables. The PCA-based

GAM tended to perform better than the regular GAM

in cross-validation tests, showing a higher prediction

precision. The variables identified being significant in

modeling differed between the two models, and

differences between the two models were also found

in the scope and range of predicted richness and

diversity indices for demersal fish community. This

implies that choices between these two statistical

modeling approaches can lead to different ecological

interpretations of the relationships between fish com-

munities and their habitats. This study suggests that

the PCA-based GAM is a better approach than the

original GAM in quantifying the relationship between

fish richness and diversity indices and environmental

variables if the environmental variables are highly

correlated.

Keywords Generalized additive model �
Principle component analysis � Fish richness and

diversity indices � Habitat � Ma’an Archipelago

Introduction

Fish community structure plays an important role in the

dynamics of marine ecosystems which often support

valuable fisheries (Liu et al. 2013). Understanding of

the dynamic relationship between fish communities and

environment helps identify the key variables regulating

fish communities and is important in the evaluation of

potential impacts of environmental changes on fish

population dynamics (Araújo et al. 2002; Fischer et al.

2013; Hoeinghaus et al. 2007; Macedo-Soares et al.

2012). Such knowledge is critical for the protection of

species biodiversity and the development of appropriate

conservation priorities (Liu et al. 2013).

Fish community structures are known to be influ-

enced by many factors such as bottom type, temper-

ature, depth, and salinity (Blaber and Blaber 1980;
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Toepfer et al. 1998; Jaureguizar et al. 2004; Love and

May 2007; Sternberg and Kennard 2013; Fortes et al.

2014). Fish diversity tends to be higher in a more

complex habitat (Friedlander 2001). Because of close

relationships between fish distribution and environ-

mental variables, ecologists often develop various

statistical models to study spatial and temporal

dynamics of fish distributions along environmental

gradients (Yee 2006), and environment variables are

often used to explain the distribution and structure of

fish community (Annoni et al. 1997; Akin et al. 2005).

Multivariate statistical methods such as canonical

correspondence analysis (CCA), detrended CCA

(DCCA), partial CCA (PCCA), and principal compo-

nent analysis (PCA) are commonly used in studying

habitat-fish community interactions because of the

multivariate nature of environmental and fish com-

munity data (Ahmadi-Nedushan et al. 2006; Ellis et al.

2006; Barquı́n and Death 2009; Jordaan et al. 2010;

Dubey et al. 2012; Palamara et al. 2012; Jyväsjärvi

et al. 2013). Kleyer et al. (2012) discussed the

adaptability of models at fish population and commu-

nity levels, and suggested that choices of the methods

needed to be data-dependent. Redundancy analysis

and outlying mean index with generalized additive

model (GAM) are considered to be good choices for

modeling of fish community and habitats. Ahmadi-

Nedushan et al. (2006) reviewed different statistical

models widely used in analyzing relationships

between species and habitats, and concluded that the

distribution of species was influenced by multiple

environmental drivers and that multivariable statisti-

cal models, such as ordinary multiple linear regres-

sion, logistic regression, generalized linear models

(GLM), and GAM, were more suitable for modeling

the relationship between fish species and environment.

Because of complex relationships between fish com-

munity and environment, it is difficult to identify

whether the relationship is linear. Thus, models such

as GAM that allow for nonlinear responses may be

more suitable for exploring the relationships between

fish community and environments (Hastie and Tibsh-

irani 1990; Leathwick et al. 2006; Ptacnik et al. 2008;

Chang et al. 2010; Schmiing et al. 2013).

The relationship between the fish community and

their environments is likely to be complex, and many

environmental variables tend to be strongly correlated

with each other (Pérez et al. 1998; Saraceno et al. 2005;

Ribeiro et al. 2012), resulting in multicollinearity which

often lead to model overfitting, low precision in

predication, and great uncertainty in the selection of

habitat variables in modeling. Correlation analyses and

variance inflation factor (VIF) can be used to identify

high multicollinearity between variables (Emery and

Thomson 2001). To overcome the problem of multi-

collinearity in the explanatory environmental variables,

several approaches can be used for the selection of

appropriate explanatory variables in habitat modeling.

These approaches include removal of predictor vari-

ances, stepwise method, ordinary least squares, residual

and sequential regression, and ridge regression (Toep-

fer et al. 1998; Straka et al. 2012; Kroll and Song 2013).

However, those methods of removal of predictor

variables may miss some important environmental

variables. Stepwise method is often used to identify

main explanatory variables (Francis et al. 2005; Mag-

gini et al. 2006). However, the inclusion of highly

correlated variables in a stepwise modeling can intro-

duce large uncertainty and reduces prediction precision

(Annoni et al. 1997; Francis et al. 2005).

Multivariate statistical methods such as PCA were

suggested for summarizing the environmental vari-

ables prior to their inclusions in habitat modeling

(Afifi and Clark 1996; Buisson et al. 2008). The newly

derived principal components (PCs) for the environ-

mental variables are then used as the explanatory

variables in the GAM analysis. Such a PCA-based

GAM can remove correlations between the explana-

tory variables in GAM and can balance the need of

including all important environmental variables while

removing impacts of highly correlated environmental

variables in habitat modeling. The new explanatory

variables of GAM derived from PCA have better

statistical property (i.e., uncorrelated explanatory

variables; Bierman et al. 2011) and can capture most

information inherent in the original data (Ahmadi-

Nedushan et al. 2006). However, the use of PCs as the

explanatory variables in GAMs may complicate

model interpretations because biological meanings

of PCs may not be as obvious as the original variables.

No studies have been performed to compare the PCA-

based GAM approach with a more traditional GAM

method which uses environmental variables directly

as the explanatory variables.

In this study, we applied a regular GAM with raw

environmental variables as the explanatory variables

(referred to as ‘‘regular GAM’’ in this study) to the data

collected in a coastal marine ecosystem to develop a

298 Aquat Ecol (2014) 48:297–312

123



habitat-fish community model. We then applied a PCA

to analyze the same set of environmental data and used

the resultant PCs as the explanatory variables in the

subsequent GAM (referred to as ‘‘PCA-based GAM’’).

We compared differences in the quantification of

spatial distribution of fish community using the regular

GAM and PCA-based GAM, and discussed their

ecological implications.

Materials and methods

Data collection

The study site, with a total area of 549 km2, is located

at Ma’an Archipelago, Zhejiang Province, China

(Fig. 1). Water depth ranges from several meters to

more than 30 m. The study area includes both natural

and artificial habitats, such as rock reef, sand, mud,

and mussels, and is characterized by spatial heteroge-

neity in the habitat. Main sediments in the center of the

study area are mud and sand, and the surrounding area

tends to be mud. Other sediments in the study area

include rocks and sands.

The data of demersal fish community and environ-

ment variables used for modeling were collected

monthly during 2009 from 24 sampling sites which

were identified roughly through the stratification based

on the sediment types (Fig. 1). The number of

sampling sites in each type of the sediment was set

approximately proportional to the area of the sedi-

ments. A stationary bottom gillnet was used for fishing

(Wang et al. 2012). Two gillnets were set at the center

of each selected site, one with a height of 1.8 m

consisting of four panels of different mesh sizes (25,

34, 43, and 58 mm) with each panel being 15 m long

(a total of 60 m long) and the other with a height of

2.4 m consisting of four panels of different mesh sizes

(50, 60, 70, and 80 mm) with each panel being 30 m in

length (a total length of 120 m). The gillnets were set

for 24 h (mean 23.6 ± 2.5 h) at each sampling site to

eliminate differences in sampling efficiency between

Fig. 1 The study area and

sampling sites
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days and nights. Measurements of body length,

weight, sex, and stomach of each sampled fish were

completed within 24 h after catching the fish. The

global positioning system (GPS) was used to record

the sampling location, and conductivity, temperature,

and depth sensor (CTD) was used to measure the

environmental variables including depth, temperature,

salinity, chlorophyll, turbidity, and oxygen.

The 2009 survey data were used to develop the

model which was then used to predict the distribution

of demersal fish community using the environmental

data collected in June, August, October, and Decem-

ber in 2012, and in February and April in 2013. The

study area was divided into 77 sampling grids with a

size of 10 9 10 longitude 9 latitude to collect the

environmental variables for prediction. ArcGIS10 was

used to interpolate and plot the distribution of

predicted fish species richness and diversity indices.

GAM models

In this study, two indices, Margalefs index and Shannon

index, were used to describe the structure of demersal

fish community in the study area (Shannon and Weaver

1948; Margalef 1958). The Margalefs index (Margalef

1958) describes the richness of fish community, and the

Shannon index (Shannon and Weaver 1948) quantifies

the diversity of fish community. A Gaussian error

distribution was used as the logic link function for both

the original GAM and PCA-based GAM approaches.

The original GAM for the Margalefs index or the

Shannon index can be described as follows:

Logit Margalefs index or Shannon indexð Þ
¼ s Lonð Þ þ s Latð Þ þ s tempð Þ þ s salð Þ þ s chlð Þ
þ s oxyð Þ þ s depð Þ þ s turbð Þ þ monthþ type þ e

ð1Þ

where Logit is data transformation; s is spline

smoother; Lon is longitude; Lat is latitude; temp is

temperature; sal is salinity; chl is chlorophyll; oxy is

oxygen; dep is depth; turb is turbidity; month ranges

from January to December; and type is sediments,

including rock reef, sand, mud, mud and sand, mussel,

artificial reef, and aquaculture cage. The VIF was used

to estimate the multicollinearity of environment

variables, and the multicollinearity is considered

severe when VIF values are higher than 10 (Neter

et al. 1996; Graham 2003).

The numerical variables were standardized by

subtracting their respective means and then divided

by their respective standard deviations. For the PCA-

based GAM approach, we first applied PCA to analyze

all the standardized environmental variables except

for sediment (and month) because the PCA may not

work well with categorical variables. The new vari-

ables derived in the PCA are PCs which are the linear

combinations of original environmental variables and

tend to be uncorrelated from each other. The PCA-

based GAM for the Margalefs index or the Shannon

index can be written as follows:

Logit Margalefs index or Shannon indexð Þ

¼ s Lonð Þ þ s Latð Þ þ
Xn

i¼1

sðcomp iÞ þ month

þ typeþ e ð2Þ

where comp i are PCs, n is the number of PCs which are

chosen in the PCA-based GAM. The GAM and PCA

were conducted using the mgcv package (Wood 2011)

in the R2.15.0 software (http://www.r-project.org/).

The significance level was set at 0.05 in the modeling.

Model validation

In order to evaluate performance of the models, we

conducted a cross-validation test, in which 80 % of the

data were randomly selected for building the model which

was then used to make the prediction for the remaining

20 % of the data. This subsampling process was repeated

for 100 times for each cross-validation. The correlation

coefficient between observed and predicted fish commu-

nity indices (i.e., Margalefs index or Shannon index) for

the 20 % of the data (i.e., test data) was calculated for each

run. A simple linear regression model was fitted to the

predicted index (P0) and the observed index (P):

P ¼ aþ b P0ð Þ ð3Þ

where parameter a indicates systematic bias of the

predicted indices, and b is a slope parameter. A value

of parameter b not significantly different from 1

indicates that observed index and predicted index have

similar spatial patterns (Chang et al. 2010).

Comparison of model performance

The main objective of this study was to compare

performance of the two models, the regular GAM and

300 Aquat Ecol (2014) 48:297–312

123

http://www.r-project.org/


the PCA-based GAM, in predicting the Margalefs

index and Shannon index which were used to quantify

demersal fish community structure in the study area.

We used the following two measures for the compar-

isons: (1) the regression parameters and correlations

coefficient between observed and predicted values in

the cross-validation; and (2) the proportion of the 100

simulation runs in which the same environmental

variables were identified as significant for the regular

GAM or PCA-based GAM. For the second measure, if

the proportion of 100 runs in which an environmental

variable was identified as significant is higher than 0.5,

the variable was considered significant in influencing

fish community. The first measure quantifies the

predictive power of the model, and the second

measure describes the consistency and stability of

the models among the 100 simulation runs for which

different sets of the data were subsampled.

Results

The correlation between environment variables

Strong correlations were found between the environ-

mental variables (e.g., between temperature and salin-

ity and between turbidity and chlorophyll) included in

the study (Table 1). The VIF of numerical variables

was ranged from 4 to 496, indicating high correlations

between these variables. Five variables had VIF values

greater than 10: chlorophyll (36), oxygen (11), turbid-

ity (40), month (496), and habitat type (54). The

correlations and VIFs showed the existence of strong

multicollinearity if these environmental variables were

used as the explanatory variables in GAMs. Temper-

ature showed a clear seasonal change and was highest

in August (Fig. 2). Meanwhile, salinity was lower

during August to October but did not change widely

during a year. Seasonal changes in oxygen showed a

‘‘V’’ pattern, with lower values occurring during June

to October. Depth seemed to be related to habitat types.

The artificial reef habitat tended to have a higher

average depth, compared to the other habitats.

Principal component analysis

Together, the first three PCs explained 85.5 %

(83.5–87.5 %) of variance on average over the 100

simulation runs with the first to third PCs explaining

40.1, 28.4, and 17.0 %, respectively. Seventy-six runs

out of the 100 simulation runs of PCA showed that

temperature had the highest positive loading and

turbidity had the highest negative loading in the first

PC (Fig. 3). Thus, the first PC mainly reflected temper-

ature and turbidity. Salinity and chlorophyll had high

loadings in the second PC, while water depth took the

highest loading in the third PC. Moreover, the rocky reef

habitat mainly had higher loadings of the second PC

compared to the other habitats. The artificial reef habitat

had a high and positive loading of the third PC (Fig. 4).

The general additive models

The deviance of demersal fish Margalefs index and

Shannon index explained in the regular GAM and PCA-

based GAM varied greatly over the 100 simulation runs.

The average deviance of species richness index (i.e.,

Margalefs index) explained was 83.7 % (71.7–90 %)

for the regular GAM model and 80.6 % (68.1–93.4 %)

for the PCA-based GAM, and the Student’s t test

showed a significant difference between the two

approaches (p = 0.006). The average deviance of

species diversity index (i.e., Shannon index) explained

was 83.3 % (73.9–90.5 %) and 80.5 % (68.9–92.1 %),

respectively, for the regular GAM and PCA-based

GAM, and the Student’s t test showed a significant

difference between the two methods (p = 0.0017). The

average AIC of the regular GAM for the richness index

was 3.1 (-86.8 to 45.8), and 22.9 (-39.7 to 49.8) for the

PCA-based GAM. The average AIC of regular GAM for

diversity index was -10.9 (-59.6 to 6.8) and -8.7 (-

58.6 to 9.9) for PCA-based GAM.

Sediment and chlorophyll were identified as the

most significant variables in most simulation runs

([50 %) for the regular GAM of richness index

(Table 2). Month was the only variable identified as

significant in influencing the diversity index for the

regular GAM. The other environmental variables such

as salinity and depth were found significant in some

runs. In contrast, the month and sediment variables

were identified as significant variables in most simu-

lation runs for the PCA-based GAM for both the

richness and diversity indices (Table 2).

Model validation

The average of correlation coefficients between the

observed and predicted indices for the test data over
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the 100 simulation runs was greater than 0.5 for both

the regular and PCA-based GAMs (Fig. 5). The

predicted richness index values obtained from the

regular GAM had an average correlation coefficient

value of 0.53 over the 100 simulation runs (-0.247 to

0.932). The mean correlation coefficient for the

richness index values for the PCA-based GAM was

0.60 (-0.067 to 0.905), which was significantly higher

than the average value for the regular GAM (Student’s

t test, p \ 0.001). Predicted and observed diversity

index values had average correlation coefficients of

0.53 (-0.201 to 0.901) and 0.65 (0.01 to 0.936),

respectively, for the regular GAM and PCA-based

GAM. Thus, for both the richness and diversity

indices, the average correlation coefficients of pre-

dicted and observed values for the PCA-based GAM

were greater than those for the regular GAM (Stu-

dent’s t test, p \ 0.001).

Different results were observed between the regular

and PCA-based GAMs for the same set of data. The

intercepts of the regression models of predicted and

observed test data in the cross-validation were positive

in the most simulation runs, implying the existence of

system biases between observed and predicted indices

(Table 3). The regular GAM tended to have large

values of intercepts than the PCA-based GAM

Table 1 The correlation coefficients between the environmental variables

Temperature Salinity Chlorophyll Turbidity Oxygen Depth Month Type

Temperature – 0.0003 0.1032 0.0076 <2.20e216 0.5362 2.358e207 0.7144

Salinity -0.4000 – 0.1297 0.2505 0.0522 0.4493 0.0008 0.4862

Chlorophyll -0.1860 -0.1731 – 2.20e216 0.0128 0.3639 0.0726 0.9355

Turbidity -0.2999 -0.1317 0.8223 – 0.0190 0.3149 0.0770 0.7615

Oxygen -0.7985 0.2207 0.2807 0.2651 – 0.0839 5.802e209 0.2251

Depth 0.0711 -0.0869 -0.1042 0.1153 -0.1969 – 0.4410 0.0104

Month 0.5460 -0.3710 -0.2040 -0.2010 -0.6010 0.0885 – 0.4225

Type -0.0420 0.0800 -0.0093 -0.0350 0.1390 -0.2890 -0.0920 –

Values in the lower part of the table are correlation coefficients, and values in the upper part are p values with bold font being

significant at p \ 0.05

Fig. 2 The distribution of environmental variables in time and space. a Temperature changed in time; b salinity changed in time;

c oxygen changed in time; d depth changed in space
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(Table 3). The slope coefficient was closer to 1 for the

PCA-based GAM, implying that the PCA-based GAM

predicted richness and diversity indices more consis-

tently than the regular GAM. We concluded that the

PCA-based GAM performed better than the regular

GAM in the cross-validation.

Comparison of the two models in habitat

predictions

The predicted distributions of species richness and

diversity indices tended to differ between the regular

GAM and PCA-based GAM (Figs. 6, 7) for all the

Fig. 3 Box plot of loadings

of environmental variables

in each principal component

over the 100 simulation

runs. a Loadings of

environmental variables in

first principal component;

b loadings of environmental

variables in second principal

component; c loadings of

environmental variables in

third principal component
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months, except for the richness index in October

(Fig. 6a, b). The PCA-based GAM identified the high

richness index in August located in the northwestern

study area and around the island in the southeastern

area; however, the high richness index was mainly

concentrated in the center of study area according to

the regular GAM (Fig. 6d). The difference in distri-

bution also existed in the diversity index prediction for

August and October (Fig. 7). Moreover, the ranges of

richness index and diversity index predicted by the

PCA-based GAM tended to be wider than the values

predicted by the regular GAM. For example, the

richness index ranged from 1.9 to 2.9 in August for the

regular GAM (Fig. 6d), but from 1.1 to 3.3 for the

PCA-based GAM (Fig. 6c). The same trend could also

been found for the diversity index.

Fig. 4 The distribution of

PCs in space, where circle

artificial reef, triangle

mussel, plus mud and sand,

multiplication mud, square

sand, inverted triangle

Rocky reef, Comp1(temp)

means the temperature has

the highest loading in the

first principal component

(PC), Comp2(salinity)

means the salinity has the

highest loading in the PC,

Comp3(depth) means the

depth has the highest

loading in the third PC.

a The distribution of first PC

in space; b the distribution

of second PC in space; c the

distribution of third PC in

space
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Discussion

Performance of the two GAM models was compared

in their quantifications of relationships between fish

community indices and environmental variables. This

study suggests that PCA-based GAM can reduce the

uncertainty introduced by the existence of strong

correlations of environmental variables in a GAM and

improve the performance of the model in predicting

spatial distribution of the fish community index. The

PCA-based GAM showed the improved predictive

power of the habitat models compared to the regular

GAM in this study. Although the deviance explained

by the regular GAM was slightly higher than that by

the PCA-based GAM, the predicted precision was

higher and biases were lower for the PCA-based GAM

in the cross-validation. We considered the results

derived from the cross-validation were more sub-

jective in reflecting the predictive power of the model

because the test data were not used in the model

development.

The regular and PCA-based GAMs yielded differ-

ent spatial distributions for the fish richness and

diversity indices. Because of the space limitation, only

Table 2 Proportion of the simulation runs in which the factor identified as significant factors

Factors Richness

regular GAM

Diversity

regular GAM

Factors Richness

PCA-based GAM

Diversity

PCA-based GAM

Total

(%)

Correlation

[0.5 (%)

Total

(%)

Correlation

[0.5 (%)

Total

(%)

Correlation

[0.5 (%)

Total

(%)

Correlation

[0.5 (%)

Month 1 31 30.2 10 9.2 Month 1 6 6.6 2 2.4

Month 2 63 57.1 99 98.5 Month 2 68 72.4 95 95.2

Month 3 12 7.9 3 1.5 Month 3 4 2.6 0 0

Month 4 34 38.1 37 32.3 Month 4 5 3.9 65 63.9

Month 5 27 28.6 4 3.1 Month 5 3 1.3 1 1.2

Month 6 16 9.5 5 4.6 Month 6 7 3.9 2 2.4

Month 7 20 12.7 1 0 Month 7 7 3.9 3 2.4

Month 8 28 19.0 12 12.3 Month 8 56 57.9 0 0

Month 9 32 22.2 48 49.2 Month 9 70 71.1 36 37.3

Month 10 23 19.0 21 27.7 Month 10 31 25 43 42.2

Month 11 29 30.0 34 40 Month 11 37 34.2 56 54.2

Month 12 14 6.3 9 3.1 Month 12 0 0 1 1.2

Artificial reef 36 31.7 13 16.9 Artificial reef 17 18.4 12 13.30

Mussel 69 61.9 49 49.2 Mussel 73 76.3 80 80.7

Cage 60 54 31 36.9 Cage 88 90.8 82 83.1

Mud 67 57.1 32 30.8 Mud 29 25 25 22.9

Sand 39 36.5 11 13.8 Sand 18 21.0 0 0

Mud and sand 58 52.3 15 26.9 Mud and sand 47 47.4 1 0

Rock 79 76.2 49 49.2 Rock 76 80.3 67 65.1

Temp 7 6.3 1 0 Component 1 29 19.7 31 27.7

Lon 44 38.1 47 44.6 Component 2 7 6.6 16 18.7

Lat 18 11.1 19 13.8 Component 3 2 0 5 6.0

Salinity 43 36.5 11 6.2 Lon 17 1.3 17 14.5

Chlorophyll 54 52.3 47 41.5 Lat 3 19.7 15 10.8

Oxygen 5 1.6 7 7.7

Depth 31 30.2 39 44.6

Turbidity 18 11.2 21 23.1

Proportion of the simulation runs in which the factor identified as significant factors was in bold print. The ‘‘Correlation[0.5’’ is the

proportion of variables as significant factors when the correlation between the predicted and observed indices is higher than 0.5
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the distributions for maximum and minimum fish

richness and diversity indices (i.e., August and Octo-

ber, respectively) were shown (Figs. 6, 7). Although

the overall distributional patterns were similar

between the two GAMs in the richness indices

predicted, large differences occurred on fine scales.

For example, the area with low richness indices was

smaller in August for the regular GAM than for the

PCA-based GAM (Fig. 6). Differences in the predic-

tion of fish richness and diversity indices may result in

the development and adaptation of different manage-

ment regulations (Link et al. 2011; Zarkami et al.

2012; Maloney et al. 2013). For example, a low

predicted fish diversity may lead to the exclusion of

some areas from being included in marine protection

areas because marine protection area tends to include

areas with high biodiversity (Edgar et al. 2008). Based

on the PCA-based GAM, areas with high fish diversity

appeared to be around rocky areas in August (Fig. 6).

This is consistent with previous studies which showed

that rocky areas tended to have higher fish diversity

because the kelp in this area bloomed in August which

made rocky areas attractive for many fish species

(Wang et al. 2011, 2012). This was not obvious for the

results derived from the regular GAM. Thus, the use of

Fig. 5 Probability distribution of correlation coefficients

between observed and predicted richness and diversity indices

for the test data in the cross-validation over the 100 simulation

runs. a The results of regular GAM for the richness index; b the

result of GAM based on principal component analysis (PCA-

based GAM) for the richness index; c the result of regular GAM

for the diversity index; and d the result of PCA-based GAM for

the diversity index

Table 3 The coefficients for the regression models of

observed and predicted indices for the test data in the cross-

validation

Richness index Diversity index

Regular

GAM

PCA-

based

GAM

Regular

GAM

PCA-

based

GAM

Correlation coefficient

Estimates 0.53 0.82 0.48 0.89

p value 0.07 0.002 0.1163 0.0003

Intercept (a)

Estimates 1.28 0.80 0.5885 0.26

p value 0.05 0.19 0.420 0.63

Slope (b)

Estimates 0.39 0.59 0.7248 0.79

p value (H0:b = 0) 0.07 0.02 0.116 0.03

Significant test at the p \ 0.05 level is identified in bold print
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the regular and PCA-based GAMs may have different

impacts on resource conservation and fisheries

management.

Although the PCA-based GAM tended to yield

better fish richness and diversity indices in this study,

it is often difficult to choose an appropriate statistical

model because many methods are often available for

addressing one question. As Graham (2003) studied,

methods like PCA only help reduce biases and make

analyses more repeatable, but the explanatory vari-

ables are still correlated by nature. Therefore, an

optimal model should be chosen not only based on its

statistical properties but also based on its appropriate-

ness of ecological implications. The variables that

appeared significant in a high proportion of simulation

runs were chosen as the main significant variables in

this study. This study suggests that month and habitat

type were the two most important variables for both

fish richness index and diversity index (Table 2).

However, the two GAMs considered their importance

differently. The influence of month was strengthened,

but the influence of environmental variables was

reduced in the PCA-based GAM compared to the

regular GAM. The previous studies in the same sites

showed that fish community had an obvious seasonal

change especially in rocky areas (Wang et al. 2011,

2012). Comparing the results derived from this study

and previous studies on the influence of month and

Fig. 6 The distribution of richness index of demersal fish

community from different models. a Richness distribution in

October (PCA-based GAM); b richness distribution in October

(regular GAM); c richness distribution in August (PCA-based

GAM); and d richness distribution in August (regular GAM)
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habitat, PCA-based GAM tended to yield results more

consistently compared to the regular GAM in explor-

ing the relationship between environment and fish

richness and diversity indices.

Different sediments may result in different fish

community assemblages (Jenkins and Wheatley 1998;

Lopez-Lopez et al. 2011). This study showed sedi-

ments could have great impacts on fish community. A

large spatial heterogeneity exists in the distribution of

natural sediments such as rock reef, sand, mud, and

their mixtures in the study area (Wang et al. 2012).

Artificial sediments associated with aquaculture activ-

ities, such as mussel aquaculture, artificial reef, and

net cage aquaculture, also exist in this study area

(Wang et al. 2012). Fish community structures differ

greatly among these habitats (Saraceno et al. 2005;

Ribeiro et al. 2012; Wang et al. 2012). A good

understanding of the roles of sediments is important

for resources conservation. For example, rock areas in

this study support high species diversity because of the

existing of kelp bed. Thus, maintaining kelp bed is

critical to preserve fish resources (Terawaki et al.

2003; Wang et al. 2011).

Other environmental variables in addition to sed-

iment also play a major role in regulating fish

community distribution (Lopez-Lopez et al. 2011).

Depth, salinity, and temperature were three environ-

mental variables commonly considered in habitat

Fig. 7 The distribution of diversity index of demersal fish

community from different models. a Diversity distribution in

October (PCA-based GAM); b diversity distribution in October

(regular GAM); c diversity distribution in August (PCA-based

GAM); and d diversity distribution in August (regular GAM)
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modeling (Jacob et al. 1998; Marshall and Elliott

1998; Lefkaditou et al. 2008). For example, Bulger

et al. (1993) found salinity was an important variable

influences fish movement and distribution. Jauregui-

zar et al. (2004) considered that salinity was the main

factor influencing fish spatial distribution. Turbidity

affects fish distribution through food supplies and

providence of refuges (Johnston et al. 2007). Other

factors such as oxygen or chlorophyll also influence

fish distribution directly or indirectly (Maes et al.

2007; Agboola et al. 2013). Thus, we tried to include

as many potential explanatory variables as possible to

build up our habitat models. Understanding the effect

of essential fish habitat provides a legal basis for the

creation of marine-protected areas (Rieser 2000).

However, as shown in our study, different approaches

might yield different results in identifying critical

environmental factors. Therefore, it is important to

compare different methods and interpret the results

cautiously.

Several environmental variables were considered in

this study. However, other variables such as fishing

and hydrodynamic forces, which also can influence the

distribution of demersal fish community, were not

included in this study (Steele 1996; MacKenzie and

KiØrboe 2000; Marchetti and Moyle 2001; Burrows

2012). If additional variables could be included, the

model might perform better.

Many ecological studies tend to have relatively small

sample sizes because of financial/time restrictions

(Altekruse et al. 2003; Varela et al. 2011). Thus, each

sample can potentially affect the results greatly. To

consider such an issue, we used a cross-validation to

test the performance of the model, for which 80 % of

the data were randomly selected for model building,

while the remaining 20 % data were used for model

testing. This random sampling process was repeated

over the 100 simulation runs. For each simulation run,

because of random sampling, the data sampled for

model building are likely to have a narrower range

compared to the full data set. Thus, the models

developed in some simulation runs may be used beyond

their ranges in the predictions. The interpolation may

introduce large errors in the predication (Agostini et al.

2008). For instance, when we look into the subsample

used for building model in some simulation runs, the

maximum depth was reduced from 35 to 26 m. Thus,

the fish community index in the area where depth is

deeper than 26 m had to be predicted beyond the depth

ranges. Thus, given the sampling restriction of an

ecological study, the cross-validation approach used in

this study can more realistically mimic what we have to

experience in habitat modeling, and the results are thus

more realistic compared to the regular summary

statistics for model goodness of fit.

The variables identified as significant for a given

model varied among simulation runs because data were

subsampled for model building. This may result in

some potential problems in model fitting. For example,

it is difficult to understand the response curve between

fish richness and diversity indices and environmental

variables. Response curves in most simulation runs

between fish community and chlorophyll were similar

with two obvious peaks at 20 and 80 mg/L, but

response curves in a few simulation runs only had one

obvious peak at 20 mg/L. This may indicate that the

information of the second peak was excluded in

modeling as a result of random sampling, suggesting

that the results might be influenced by subsampling.

The Margalefs index and Shannon index were often

used to quantify spatial assemblages of fish species.

Although these two indices are not able to distinguish

changes in specific species, compositions of fish

communities and two fish communities of different

species compositions can have similar values of these

two indices, and they can describe an overall change in

species richness and diversity, which serves the

purpose of this study which is the comparison of the

two different approaches to modeling the relationships

between fish community and environmental variables.

The relationships between fish community and

environment variables tend to be complex, nonlinear,

and not easy to understand. Usually, interaction terms

of environmental variables need to be considered in

habitat modeling (Saraceno et al. 2005; Ribeiro et al.

2012). For simplicity, no interaction terms were

considered in this study. The potential impacts of

interaction terms on PCA-based GAM need to be

evaluated. However, this should not affect the compar-

isons between the regular GAM and PCA-based GAM

because both the models were subject to the same data

and variables with no interaction terms considered.

Conclusion

In summary, this study shows that if environmental

variables are highly correlated, the PCA-based GAM
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is a more appropriate approach for statistical habitat

modeling. Given the high likelihood of the existence

of these data in an ecological study, we recommend

that PCA-based GAM be considered in habitat

modeling. However, the attention should be paid to

the interpretation of results.
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