The Relationship Between Adverse Childhood Experiences and Working Memory in Older

Adults

Sahvannah Michaud, Amy Halpin, Angelica Boeve, & Rebecca K. MacAulay, PhD Department of Psychology, University of Maine Orono

INTRODUCTION

- · Adverse childhood experiences (ACE) are linked to poorer physical, emotional, and cognitive outcomes across the lifespan (1 2 3)
- The effect of early life adversity upon working memory (WM) remains unclear (4,5,6).
- The current study investigated whether performance in visual and auditory WM tasks is associated with childhood adversity in older adults.

TABLE 1. PARTICIPANT DEMOGRAPHICS

Variables	
Mean Age (SD)	70.69 (6.47)
Sex (% female)	73.5%
Mean Years of Education (SD)	15.63 (2.69)
Mean Montreal Cognitive Assessment (MoCA) score (SD)	26.21 (2.61)

METHODS

Participants

Data was collected as part of the Maine, Aging, Behavior, Learning, and Enrichment (M-ABLE) study at the University of Maine. The M-ABLE study is a community-based research study designed to recruit a socioeconomically diverse sample of 121 older adults.

Inclusion/Exclusion criteria

- Age < 55 years old
- History of neurological impairments, neurodegenerative disorders, recent stroke. or dementia
- Severe cognitive impairment defined by MoCA scores < 18(7)
- Severe depression defined by Geriatric Depression Scale > 11(8)

Measures

- Adverse Childhood Experiences (ACE) Questionnaire evaluated early life adversity(9)
- WAIS-IV Digit Span total was used to evaluate auditory WM(10)
- NIH Toolbox (NIHTB) List Sorting Working Memory Test was used to evaluate visual WM(11)
- The MoCA was used to evaluate global cognition(12)

Analyses

· Hierarchical multiple regression analyses investigated the relative contributions of age, education, MoCA, and ACE scores on visual WM and auditory WM.

TABLE 2. REGRESSION MODEL SU	UMMARIES
------------------------------	----------

Model Summary	R	R²	Adj. R ²	∆ R² =	∆df
	AUD	TIORY W		EMORY	
1	.321	.103	.080	.103	114**
2	.324	.105	.074	.001	115

VISUAL WORKING MEMORY 114** .451 .203 .183 .203 2 .490 .240 .214 .037 115*

Model 1: Age, Education, MoCA Model 2: Age, Education, MoCA, ACE

p < .05*. p < .01**

TABLE 3. NIHTB LIST SORTING TASK RESULTS

COEFFIICIENTS				
Predictors	β			
Age	154			
Education	.347*			
Global Cognition	.241*			
ACE	.216*			
p < .05*				

RESULTS SUMMARY

- · A hierarchical multiple regression revealed that ACE scores contributed to 3.7% of variance in visual WM performance after adjusting for age, education, and global cognition.
- · ACE scores were not significantly associated with auditory WM.
- · Age significantly contributed to the variance in visual WM performance

CONCLUSIONS

- ACE scores exhibited a domain-specific effect upon WM performance in older adults.
- Developing a better understanding of domain-specific effects on cognition in those with ACE could lead to improved understanding of underlying neurological mechanisms that may be negatively impacted by early life stress.
- This study was limited by its cross-sectional design.
- In the future, a longitudinal assessment of directional associations between these variables in accordance with a comparison of visuospatial and language functions and their corresponding brain regions in those who have experienced ACE should be performed.

ACKNOWLEDGEMENTS

This study was supported by a clinical trial grant from the National Academy of Neuropsychology and the University of Maine Economic Improvement Fund provided to Dr. MacAulay (PI).

CONTACT INFORMATION

PI: Dr. Rebecca MacAulay: rebecca.macaulay@maine.edu Sahvannah Michaud: sahvannah.michaud@maine.edu

REFERENCES

 Llerzog, J. L. & Schmahl, C. (2016). Adverse Childhood Experiences and the Consequences on Neurobiological. Psychoscal, and Somatic Conflict Across the Usegan. Finderine in psychiatry, <i>43</i>(2). INITIAL INITIALISIS INIS INITIALISIS INITIALISIS INIS INITIALISIS INIS INITIALISIS INIS INITIALISIS INIS INIS INIS INIS INIS INIS INIS
 Wechster D. (2008). Wechster adult intelligence scale. Fourth Edition (WAIS-IV). San Antonio, TX: NCS Pearson, 22(498), 816-827. https://doi.org/10.1037/115169-000. T. Tudky, D. S., Cafexz, N., Chemarakiti, N. D., Beaumort, J. L., Kitals, P. A., Mungas, D., Corway, K. & Genthon, R. (2014). NHT Toolbox: Cognition Battery (NHTB- thagardise). The scale of t

(,))