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ABSTRACT

Naive Geography’s premise “Topology matters, metric refines”
calls for metric properties that provide opportunities for finer-
grained distinctions than the purely qualitative topological
relations. This paper defines a comprehensive set of eleven
metric refinements that apply to the eight coarse topological
relations between two regions that the 9-intersection and the
Region-Connection Calculus identify and develops the
applicable value ranges for each metric refinement. It is shown
that any topological relation between two regions can be
derived uniquely from the conjunction of at most three such
refinement specifications (i.e., pairs of metric refinements and
applicable value ranges). The smallest set of refinement
specifications that determine uniquely all eight relations
resorts to six of the eleven metric refinements.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Management, Design.

Keywords

Spatial reasoning, metric, spatial relations, topology.

1. INTRODUCTION

The mathematical concepts of topology and metric have had a
profound impact on the modeling of discrete spatial
phenomena. While topology addresses invariants under
homeomorphisms (i.e., properties that do not rely on metric
measures), a metric space is based on the notion of a distance.
Topology and metric are not totally separate concepts,
however. Topology and metric both establish a closeness, and
a metric space induces a topology. A metric space, such as IR’
or Z*, therefore, exhibits both metric and topological
properties that are interlinked. For qualitative spatial
reasoning, however, this linkage between topology and metric
has not yet been established sufficiently.
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In geographic information systems the rise of topological data
models and data structures was to a large degree driven by the
unreliable results of geometric calculations with finite number
systems [13]. The same computational deficiencies of
numerical calculations stimulated Naive Physics [16], calling
for alternatives to traditional Euclidean geometry. These
concerns about numerical inconsistencies have taken the
backseat over time, however. More recently the prime
motivation for topological models has been the quest for
cognitively plausible qualitative spatial models. Since
topological spaces are more abstract than metric spaces,
topological properties have assumed a leading role in
qualitative spatial reasoning. In this setting, the
9-intersection [9] and the Region-Connection-Calculus
RCC [21] for binary topological relations have become
popular models for qualitative spatial relations. Most models
for qualitative distances [15, 17, 22, 25] have been developed
independently of topological models, although some
approaches have considered metric refinements of topological
relations [5, 11, 20, 23] including specific shapes, such as
convex hulls [2]. Here we are interested primarily in the reverse
dependencies—that is, from metric to topology—and their
implications. Such cross-relation dependencies have been
found useful for the combination of topological and direction
relations [24] yielding at times unique inferences where
topology or direction alone would only provide ambiguous
results. On the other hand reasoning about distances alone,
without considerations of directions, is often
inconclusive [12]. Likewise combined reasoning about
topological relations and size of regions has been explored
[16, 18].

A key question is whether the entire set of eight topological
relations between two spatial regions can be derived uniquely
from a combination of metric properties. Such inferences
would contribute to generating approximate graphical
depictions from verbal descriptions. They would also lay the
foundation for combined metric and topological reasoning,
particularly if topological information is enhanced by
qualitative metric information.

The remainder of the paper is structured as follows: Section 2
briefly reviews the underlying model for topological relations
and introduces terminology referred to later. Section 3
introduces the systematic model for metric refinements. The
analysis of the value ranges of the eleven metric refinements
leads to refinement specifications (Section 4), from which
topological relations are inferred (Section 5). The paper closes
with conclusions and a discussion of future work (Section 6).

2. TOPOLOGICAL RELATIONS

The spatial objects considered in this paper, referred to as
spatial regions, are embedded in IR>. They have a continuous
boundary, no holes, no spikes, and no cuts. Whenever two



such spatial regions are considered, one is labeled A and the
other B. Every spatial region has three distinct features: (1) an
interior (denoted as A°), (2) a boundary (denoted as dA), and
(3) an exterior (denoted as A™). A° is the union of all open
sets contained in A, JA is the difference of the closure—the
intersection of all closed sets containing A—minus A°, and

A~ is the difference of A’s embedding space and A’s closure.

The topological relations between two such spatial regions
have been derived based on the 9-intersection matrices of the
two regions’ interiors, boundaries, and exteriors [9]. For an
embedding in IR’ eight 3x3 matrices with empty and non-
empty values, called the content invariant, apply (Figure 1),
each yielding a different topological relation. This set of
relations is jointly exhaustive and pairwise disjoint, so that
all combinations of two objects exhibit one and only one of
the spatial relations.
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Figure 1. The eight topological relations between two
regions in IR” with their 9-intersection matrices, the
relations’ labels, and their shortcuts.

The content invariant provides only a coarse classification of
topological relations. While empty intersections offer no
further opportunities to distinguish more detail, any non-
empty intersection has the potential to capture a plethora of
more detailed properties. Within this framework, a series of
topological refinements of non-empty intersection have been
identified, such as the dimension of an intersection and the
number of separations [4], or for non-empty intersections
involving lines the types of the intersection [1, 8].
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Figure. 2. The conceptual A-neighborhood of the eight
topological relations between two regions in IR”.

Similarity among these qualitative relations is captured
through their conceptual neighborhoods [6, 14], which link
relations that can be obtained through a topological
transformation without a need to go through another relation.
The A-neighborhood of the eight region-region relations
(Figure 2) is most fundamental as it is established through
purely topological means.

3. METRIC REFINEMENTS FOR
REGION-REGION RELATIONS

The premise of metric refinements is to enhance topological
relations with non-topological discernability. The metric
refinements of the topological relations distinguish two types
of measures, those that record metric properties of common
parts between two regions and those that capture how far non-
intersecting parts are from either other. In terms of the 9-
intersection matrices this distinction translates to the
following metric analysis of non-empty intersections for
region-region relations through splitting measures:

¢ the intersection’s area for a 2-dimensional intersection

¢ the intersection’s length for a 1-dimensional intersection

e 0 for an intersection that consists only of 0-dimensional
components

Similarly, closeness measures apply to empty intersections of
two linear objects, such as two regions’ boundaries. These
metric refinements materialize in terms of the area of a buffer
zone, a fundamental GIS operation.

In order to yield scale-independent values these areas and
distances are normalized by the reference region’s interior area
and its perimeter (i.e., the boundary’s length), yielding a
dimension-neutral metric for each measure.

3.1  SPLITTING MEASURES

Each splitting measure is defined as a ratio, either of the area of
an intersection with respect to the area of one of the two
regions, or of the length of an intersection with respect to the
length of the boundary of one of the two regions. Among the
nine intersections of interiors, boundaries, and exteriors, four
are two-dimensional (A°NB°,A°’NB~,A” NB°, and
A™ N B7) and, therefore, of type area, while another four are
linear (A°NdB,JANB°,JANB~, and A~ NdB) and,
therefore, of type length. The ninth intersection (dA N JB) may
be linear or 0-dimensional, depending on the particular
geometry of the boundaries’ intersection. Their notions and
informal definitions are complemented by the refinements
formal definitions and graphical examples highlighting their
components (Figure 3).

e Inner Area Splitting (IAS): the portion of A’s interior
inside of B (Figure 3a).

e Outer Area Splitting (OAS): the portion of A’s interior
outside of B (Figure 3c).

« Inverse Outer Area Splitting (OAS™): the portion of A’s
exterior inside of B (Figure 3g).
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Figure 3. The nine splitting measures.
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e Exterior Splitting (ES): the area of A’s exterior shut off by
the union of A and B (Figure 3i).

e Inner Traversal Splitting (ITS): the portion of A’s boundary
inside of B (Figure 3d).

 Inverse Inner Traversal Splitting (ITS™): the portion of A’s
interior shared with B’s boundary (Figure 3b).

e Outer Traversal Splitting (OTS): the portion of A’s
boundary outside of B (Figure 3f).

 Inverse Outer Traversal Splitting (OTS™): the portion of A’s
exterior shared with B’s boundary (Figure 3h).

¢ Alongness Splitting (AS): the portion of A’s boundary
shared with B (Figure 3e).

Together these nine splitting measures offer a refinement
opportunity for the entire 9-intersection (Figure 4).
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Figure 4. Distribution of splitting measures over
9-intersection

Since IAS and OAS are based on A°NB° and A°NB~,
respectively, and both measures are normalized by the same
value, the two measures exhaust the entire area of region A.
This implies that IAS and OAS are complementary so that they
must sum up to 1 (Equation 1).

IAS + OAS = 1 1)

The splitting measures IAS and OAS™?, with A°NB° and
A~ N B°, extend similarly exhaustively over region B. The

normalization by A’s area, however, yields only the conclusion
that IAS and OAS™ are complementary, but provides no insight
about their sum. No immediate dependencies can be found for
the fourth areal measure ES.

The traversal splittings reveal another dependency. The three
measures ITS, AS, and OTS, with dJA NB°, dJANJB, and
JdA N B~, extend exhaustively over A’s boundary. Since each
is normalized by A’s perimeter, their sum must yield 1
(Equation 2).

ITS +OTS + AS=1 2)

The traversal measures ITS?, AS, and OTS? then expose the
analog of 1AS and OAS™ since their sum covers completely B’s
boundary, but the normalization by A’s perimeter only implies
a dependency among the three values with respect to B’s
perimeter, but they do not yield a specific sum.

3.2 CLOSENESS MEASURES

Closeness measures capture the effort to convert an empty
boundary-boundary intersection into a non-empty
intersection. They are defined as the area by which a region
needs to grow or shrink in order for its boundary to make
contact with the other region.

¢ Expansion Closeness (EC): the swelling required for A and
B so that their boundaries intersect (Figure 5a).

« Contraction Closeness (CC): the contraction required for A
and B so that their boundaries intersect (Figure 5b).

For Contraction Closeness, the area of the reference region
normalizes this buffer zone to a value between 0 and 1, while
for the Expansion Closeness the buffer is normalized by the
area after swelling (i.e., the area of the union of the reference
region and the buffer). The specifications of buffer zones for
metric details of line-line relations [20] apply.
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Figure. 5. The two closeness measures (a) Expansion
Closeness (EC) and (b) Contraction Closeness (CC).

4. REFINEMENT SPECIFICATIONS

For different topological relations these metric refinements
carry different values, which may become characteristics to
identify topological relations from metric properties. For
example, the 1AS value for disjoint is 0, because A°N B°=.
The combination of a metric refinement and such a value is
called a refinement specification. In this section the
refinement specifications for all eight topological relations are
derived from the refinements’ equations (Figures 3 and 5).
Since for all metric refinements the denominator is greater than
zero, no division by zero may occur. All refinement
specifications are summarized graphically (Section 4.9) to
enable a visual comparison.



4.1  disjoint

Two disjoint regions have no common interiors or boundaries,
therefore, the numerators of 1AS, ITS™, ITS, and AS are zero. The
corresponding denominators are non-zero, implying also zero
values for these metric refinements.

Since two disjoint regions are separated they cannot form a
bounded exterior so that ES must be zero as well. The regions’
separation also implies that the reference region’s interior and
boundary are completely located in the target region’s
exterior, so that OAS and OTS become divisions of identical
areas and identical perimeters, yielding values of 1 for both.

The precise values of the two inverse outer measures OAS™ and
OTS™? depend on the metric properties relative to the target
region’s interior and boundary, so that their values may
extend from >0 to +oo.

The Expansion Closeness EC for disjoint is based on a greater-
than-zero buffer zone, which implies a value range between
greater than zero and less than 1. Due to the disjoint regions
being located in their opposite regions’ exteriors the buffer
zone for contraction closeness is zero, implying CC=0.

4.2 meet

The relation meet exposes most of the same properties as
disjoint, except for those that are related to meet’s common
boundary parts. So meet shares with disjoint 1AS=0, ITS?,
OAS=1, ITS=0, OAS™>0, OTS™>0, and CC=0.

The common boundary may be a single point or a sequence of
separated point segments [8], which yield an Alongness
Splitting value of 0. In these cases the length of the boundary
located in that region’s exterior is equal to the entire
perimeter, implying that OTS is 1.

For scenarios in which the common boundary consists of at
least one non-point segment the Alongness Splitting is greater
than 0, but it can never reach one, which would require full
coincidence between the two boundaries. So meet’s value range
for AS is the open interval (0 1). Its immediate implication for
OTS is that OTS’s value range must then be (0 1) as well.
Therefore meet yields two value ranges each for AS and OTS.

Whenever the boundary-boundary intersection has a
separation, the two regions that meet form one or more
bounded areas of the exterior. With a non-zero total of these
bounded areas the Exterior Splitting assumes as value of
greater than zero. Whenever meet has a single boundary
component, however, there is no separation of the exterior so
that ES becomes 0.

The last value range that differs between disjoint and meet is
for Expansion Closeness, since meet’s boundary-boundary
intersection is non-empty, which implies a zero-buffer zone for
EC, which also yields an EC value of zero.

4.3  overlap

For overlap all nine intersection are non-empty so that all
splitting measures apply, while both closeness measures EC
and CC are 0.

For IAS, OAS, ITS, and OTS the common part may be any non-
zero subset of the reference region’s interior or boundary, but
not the entire interior or boundary, because otherwise a

different topological relation would hold. Therefore, each of
IAS, OAS, ITS, and OTS must be greater than 0 but less than 1.

For the inverse splittings the common perimeter or area may be
less than or greater than the area or perimeter of the target
region, but never 0. This implies that for overlap ITS? and
OTS™? must be greater than 0.

With respect to Exterior Splitting overlap has the same setting
as meet, because the two regions’ boundaries may create one or
more bounded portions of the exterior [8], so that ES may be
greater than 0. It is, however, also feasible that overlap forces
no separation of the exterior so that ES may remain 0.

The outer inverse splittings OAS-1 and OTS-1 have in the
numerator a non-empty part of the target region’s interior or
boundary, respectively. Their values are, therefore, the positive
real numbers.

44  equal

The coincidence of interiors, boundaries, and exteriors for
equal constrains its metric refinements so that no value ranges
are possible. Its six empty intersections imply zero values for
IAS, ITS™, OAS, ITS, OTS, OAS™, and OTS™. IAS and AS
respectively derive from the intersections of the entire interior
and entire boundary, yielding the values 1. The third non-
empty interior—exterior-exterior—cannot form a bounded
separation so that ES is always 0. Since the boundaries
coincide there are no opportunities for forming non-zero
buffer zones, which implies that EC and CC are zero.

45  coveredBy

The three empty intersections of coveredBy imply zero values
for their corresponding metric refinements ITS?, OAS, and
OTS. Since the non-empty boundary-boundary intersection
yields no opportunities for forming non-zero buffer zones,
which implies that EC and CC are zero as well. While two
foundations for Exterior Splitting are fulfilled—boundary-
boundary and interior-interior intersections are non-empty—a
third constraint—that both boundaries must intersect their
opposite exteriors—is not fulfilled [3], therefore, no bounded
part of the exterior-exterior intersection can be formed for
coveredBy, which implies ES=0. A coveredBy B implies
A° C B° so that IAS is the division of the areas of A° by A,
yielding 1. The true subset constraint A C B of coveredBy
implies that non-empty portions of B’s interior and B’s
boundary are located in A’s exterior. Therefore, the two inverse
outer splittings must be greater than 0.

The assessment of the traversal splittings ITS and AS follows
the analogous discussion of the meet’s values for OTS and AS.
If the common boundary of coveredBy consists only of one or
more separated point-like segments, then the length of the
boundary-boundary intersection is 0, which implies AS=0 and
since OTS=0, it follows (Equation 2) that ITS=1. Conversely,
for at least one non-point segment the Alongness Splitting is
greater than 0, but it can never reach one (which would require
full coincidence between the two boundaries). 0<AS<1 must
then be paired with 0<ITS<1.

Since two disjoint regions are separated they cannot form a
bounded exterior so that ES must be zero as well. The regions’
separation also implies that the reference region’s interior and
boundary are completely located in the target region’s



exterior, so that OAS and OTS become divisions of identical
areas and identical perimeters, yielding values of 1 for both.

The precise values of the two inverse outer measures OAS™ and
OTS™? depend on the metric properties relative to the target
region’s interior and boundary, so that their values may
extend from >0 to +oo.

The Expansion Closeness EC for disjoint is based on a greater-
than-zero buffer zone, which implies a value range between
greater than zero and less than 1. Due to the disjoint regions
being located in their opposite regions’ exteriors the buffer
zone for contraction closeness is zero, implying CC=0.

4.6 covers

Since coveredBy and covers are pairs of converse relations, the
refinement specifications of covers can be derived directly
from those of coveredBy. ITS, OAS™, and OTS™ must be 0 due
to the emptiness of their corresponding intersections. The
empty values of ES, EC, and CC for coveredBy apply
unchanged to covers, while complementary properties lead to
0<IAS<1, ITS-1>0, and 0<OAS<1 for coveredBy. For the three
traversal splittings ITS and OTS switch specifications, so that
for coveredBy OTS=1 with AS=0, while 0<OTS<1 pairs with
0<AS<1.

4.7 inside

Since inside differs from coveredBy only the value of the
boundary-boundary intersection, they share all splitting
values except for Along Splitting, which is empty for inside
and, therefore, must be 0, and ITS, which is fixed at 1 for
inside. While the Contraction Closeness does not apply
(therefore, CC=0), a non-empty buffer can be formed around
the contained region A so that neighboring relations
coveredBy or equal are obtained. Such a non-empty buffer
leads to a non-zero numerator in EC. The buffer’s area is,
however, always less than EC denominator—the area of the
buffer plus the area of the reference region—so that 0<EC<1.

4.8 contains

The refinement specifications for contains can be extrapolated
in two ways: (1) making in analogy to the transition from
coveredBy to inside the transition form covers to contains; or
(2) following the converseness reasoning from coveredBy to
covers and applying it to the transition from inside to
contains. In either case, ITS, AS, OAS™, and OTS™ are 0 since
their corresponding intersections are empty. Since ITS=0 and
AS=0, OTS must be 1 (Equation 2). No Exterior Splitting
applies (i.e., ES=0). IAS and OAS are both in the range between
0 and 1, while ITS™0. Since A D B, no expansion buffer
applies to A, so that EC=0. A contraction buffer, however, can
be formed to its neighboring relations covers and equal. That
buffer’s area is greater than zero, but cannot reach the size of A.
Therefore, 0<CC<1.

4.9 Summary

The mappings from the topological relations onto the
refinement specifications (Figure 6) provide for each
refinement measure a graphical account of what values or value
ranges apply to what topological relation. Seven value cases
occur: The two values 0 and 1, three interval ranges between 0
and 1—the open interval (0 1) and the two semi-open intervals

[0 1) and (0 1]—and two ranges whose upper bounds exceed
1—the positive real numbers (0 «) and the non-negative real
numbers [0 «). The topological relations’ conceptual
neighborhood graph [6] frames this portrayal. Each metric
refinement has between 2 (Figures 6b and 6g-k) and 4
(Figure 6f) value ranges. Common value ranges form clusters
that distribute over the neighborhood graph. For some
refinements each range of common values is connected
(Figures 64, c, g-h). Since some pairs of the seven value ranges
are not mutually exclusive, only clusters involving mutually
exclusive value ranges contribute to the formation of simply
connected clusters. The study of the distribution of value
ranges over topological neighborhoods, the combination of
the value ranges’ neighborhoods with the topological
relations” neighborhoods, and any differences from type A, B,
or C neighborhoods [14] are outside this paper’s scope.
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Figure 6. Value ranges of the eleven metric refinements for
each of the eight topological relations between two regions,
arranged by their conceptual neighborhood graph.



5. REFINEMENT SPECIFICATIONS TO
TOPOLOGICAL RELATIONS

The goal is to derive uniquely each of the eight topological
relations from one or more refinement specifications. A
refinement specification that fully encapsulates the essence of
a particular topological relation serves as the sole constraint
powerful enough to imply that particular topological relation.
This is, for instance, the case with AS=1 as it only holds for
equal, while the remaining eight relations require AS<1. No
other relation than equal can be inferred form AS=1. Such an
inference from a single constraint only applies to one other
refinement specification as 0<CC<1 implies contains, since
for the remaining seven relations CC must be 0. Beside equal
and contains, however, no other topological relation can be
inferred from a single refinement specification.

The conjunction of two refinement specifications offers a
further opportunity to make unique topological inferences.
For instance, if both 0<IAS<1 and OTS=1 hold for the same
configuration then that configuration must be the topological
relations overlap or covers. This inference results from the
intersection of the relations that respond to the constraints
imposed by the two refinement specifications, that is,
{overlap, covers, contains} for 0<IAS<1 and {meet, overlap,
covers} for OTS=1. Of particular interest are those
intersections that yield a single relation (e.g., overlap is the
only relation that fulfills 0<IAS<1 and 0<ITS<1).

The following questions are addressed subsequently.

Q1l: Can all eight topological relations be uniquely
determined from refinement specifications?

Q2: Can all eight binary topological relations other than
equal and contains be uniquely determined by a pair of
refinement specifications, or does the unique inference of
some relations require more than two refinement
specifications?

Q3: Do all metric refinements contribute to uniquely
determining topological relations?

51  Same Refinement Specification

In order to enable topological inferences from metric
refinements, the reverse mappings—from refinement
specifications onto applicable topological relations—are
needed. These reverse mappings are first arranged by common
refinement specifications, grouped for each topological
relation. This approach establishes for each topological
relation the set of relations that respond to the same
refinement specification and is captured by the mapping .

For instance, disjoint has the value range 1AS=0, which applies
to one other candidate relation (meet), therefore,
t[ disjoint , IAS = 0] = {disjoint,meet}. On the other hand,
overlap shares the value range 0<ITS<1 with coveredBy,
because coveredBy’s range 0<ITS<1 intersects with overlap’s
range 0<ITS<1, therefore, <t[overlap,0<ITS<1]=
{overlap,coveredBy}. Reversely, coveredBy offers two
constraints from its value range O0<ITS<l—first 0<ITS<1,
which applies to coveredBy (0<ITS<1), therefore,
t[ coveredBy,0 < ITS < 1] = {overlap,coveredBy}, and second
ITS=1, which applies to coveredBy (0<ITS<1) as well as inside
(ITS=1), therefore, [ coveredBy,ITS = 1] = {coveredBy, inside} .
A range that is not applicable for a particular topological

relation would result in the empty candidate relation, for
instance t[equal,CC =1] =

For the presentation of a relation’s z-tuples we choose an
iconic display that highlights on the eight relations’
conceptual neighborhood graph [6] all those relations that
apply to a chosen refinement specification to support the
visual confirmation for the intersection of a relation’s
refinement specifications. Of greatest interest are those
intersections that result in a singleton, yielding a unique
inference. For instance, the intersection of 1AS=0 with 0<EC<1
yields a single relation, disjoint (Figure 7a). In two cases a
single refinement specification is sufficient to determine
uniquely a topological relation (Figure 7b).

N =
IAS=0 0<EC<1 disjoint
(a)
= equal = equal
AS=1 0<CcCx1
(b)

Figure 7. Visualization of applicable relations for
refinement specifications: (a) intersection that yields a
single topological relation and (b) single refinement
specifications that imply a unique topological relation.

Figure 8 groups all t-tuples that apply to a particular
relation. An exhaustive combinatorial intersection of all
refinement specifications determines what conjunctions of
refinement specifications determine uniquely a topological
relation (Section 5.3).
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Figure 8. T—tuples that apply to a particular relation such
that in each panel the splitting ratios are arranged spatially
according to the underlying 9-intersection, while the two
closeness measures are placed underneath.

5.2  Pairs of Refinement Specifications
that Imply Unique Topological Relations

The intersections of T-tuples reveal that 30 pairs and two
single refinement specifications define uniquely a topological
relation (Figure 9).

This finding provides answers to two of the three questions
(Q1-Q3) posed at the beginning of Section 5.

Q1: Six topological relations are uniquely defined by single
pairs of refinement specifications, but the two relations
coveredBy and covers fail to respond to a unique
determination from one or two refinements.

Q3: The 62 (2*30+2*1) refinement specifications build on ten
of the eleven metric refinements—only Exterior Splitting
(ES) does not contribute to a unique inference. The reason
for ES’s deficiency is that ES>0 as the discriminating
characteristic applies to meet and overlap, but it does not
for every meet or overlap scenario. For example, a simple
meet with a single-component boundary-boundary
intersection has ES=0, which does not distinguish it from
the other relations (except if overlap had ES>0, but like
for meet, this is not a necessary condition for overlap).
The most frequently occurring metric refinements are EC
(10), IAS (9), and OAS and ITS (both 8), with 0<EC<1
being the most frequent refinement specification (8
times).



0<ITS™? A 0<OAS™ = overlap
OAS=1 A 0<EC<1 = disjoint
OAS=0 A OAS'=0 = equal
0<OAS<1 A 0<ITS<1 = overlap
OTS=1 A 0<EC<1 = disjoint
ITS=0 A OTS=0 = equal
0<OAS<1 A 0<OTS™? = overlap
OAS=1 A EC=0 = meet
OTS=0 A OTS =0 = equal
IAS=1 A ITS=0 = equal
0<IAS<1 A 0<OAS™ = overlap
OAS=0 A 0<EC<1 = inside
IAS=1 A OTS?=0 = equal
0<ITS? A 0<ITS<1 = overlap

OTS=0 A 0<EC<1 = inside
0<CC<1 = contains

IAS=0 A 0<EC<1 = disjoint
ITS'=0 A OTS'=0 = equal
0<ITS? A 0<OTS? = overlap
ITS=0 A 0<EC<1 = disjoint
OAS=0 A OTS =0 = equal
0<OAS<1 a 0<OAS™ = overlap
IAS=0 A EC=0 = meet
OTS=0 A OAS™=0 = equal
0<ITS<1 A 0<OTS<1 = overlap
0<IAS<1 A 0<ITS<1 = overlap
IAS=1 A 0<EC<1 = inside
IAS=1 A OAS'=0 = equal
0<IAS<1 A 0<OTS™ = overlap
ITS=1 A 0<EC<1 = inside
ITS'=0 A OAS'=0 = equal
AS=1 = equal

Figure 9. Thirty pairs and two single refinement
specifications that uniquely define a topological relation.

The failure of determining uniquely coveredBy and covers with
a pair of refinement specifications begs the question whether
these two relations can be derived at all from conjunctions of
more than three refinement specifications. The intersection of
all t[coveredBy,*] (Figure 8e) yields coveredBy. Likewise, the
intersection of all z[covers,*] (Figure 8g) yields covers.
Therefore, it is feasible to determine both relations with a
conjunction of more than two refinement specifications.

For coveredBy EC=0 must belong to the constraining set as it
is the only refinement specification that eliminates inside.
Also one of 0<ITS<1, AS<0, 0<OTS?, and 0<OAS™ must be
included to prune equal. With IAS=1, OAS=0, or OTS=0 as the
third condition coveredBy is uniquely inferred by a triple of
refinement specifications. A similar approach finds the three
specifications CC=0, OAS™?=0 or OTS?=0, and any of 0<IAS<1,
O<ITS-1, 0<OAS<1, 0<AS<1, 0<OTS<1 to determine uniquely
covers. So covers and coveredBy add twenty-two 3-term
conjunctions of refinement specifications to the thirty 2-term
conjunctions and two single-term refinement specifications
(Figure 9).

5.3  Eliminating Redundancies among

Refinement Specifications

Two refinement specifications would be redundant if they
apply to exactly the same set of relations. Such redundant
specifications inflate the number of necessary refinement
specifications and, therefore, can be eliminated without
loosing expressive power. Among the 88 refinement
specifications (Figure 8a-h) are seven biconditional pairs
(Equations 3a-g) so that only one of these pairs contributes to
a smallest set of constraints. By transitivity another two
dependencies—between 0<ITS™ and 0<OAS<1 (Equations 3b
and 3d) and between OTS=0 and OAS=0 (Equations 3c
with 3e)—are established. The dependency of all IAS and OAS
values (Equations 3a-3c) was already observed at the level of
the refinement formalisms (Equation 1), while the other four

dependencies are not so obvious from the refinement
formalisms.

IAS=0 < OAS =1 (3a)

0<IAS<1<=0<0OAS<1 (3b)

IAS = 1 <> OAS = 0 (3c)

0<IAS<1< 0<ITS" (3d)

IAS =1 <> OTS =0 (3e)

OTS" =0 < OAS" =0 (3f)

0 < OTS" < 0 < OAS" (39)

The iconic representation of the t-tuples also supports the
visual analysis of specification subsumption. A refinement
specification subsumes another if the set of relations that
respond to it are a superset of all relations that respond to the
other refinement specification. For instance, {equal,
coveredBy, inside} respond to 1AS=1, while {coveredBy,
inside} respond to ITS=1; therefore, IAS=1 subsumes ITS=1.

Subsumption graphs—essentially Hasse diagrams of the
refinement specifications—depict for each topological
relation the dependencies among refinement
specifications (Figure 10). A pair of refinement specifications
that infers a single topological relation implies that its
subsumed specifications also yield the same unique inference,
which sufficiently defines a relation. For instance, 0O<EC<1 and
ITS=0 yield disjoint (Figure 10a). Since ITS=0 subsumes
OTS=1, OAS=1, and IAS=0, their conjunctions with 0<EC<1
must yield disjoint as well; therefore, ITS=0 and 0<EC<1 are
the most encompassing specifications to infer disjoint. The
superimposition of the 20 defining refinement specifications
(Section 5.2) onto the subsumption graphs highlights
subsumptions of these critical pairs and triples.

ES=0 0<ES
BN
AS=0  CC=0 CC=0 AS<1
AN
0<0Ts1 ITS-1=0 ITS=0 ITS=0 ITS'=0 0<0TS! /0<0TS<1
|
0TS=1
0<ECK T e ) 1AS=0
(a) disjoint (b) meet
0<ES ES=0
- IN
CC=0 As<«1 cC=0
‘ EC=0 EC=0

0<0TS™! ITS1=0  ITS=0

X0

1AS=1 0151=0

0<0TS<1

/ 0<IAS<1
0<ITS<1

AS=1

(c) overlap (d) equal
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Figure 10. Subsumption graphs for each topological
relation’s the refinement specifications, with the least
specific refinement at the top and the most specific
refinements at the bottom. Redundant specifications are
grayed out.

54 Fewest Refinement Specifications

With the subsumptions the set of 20 defining refinement
specifications can be further pruned to a smallest set of
refinement specifications. In some cases the membership in
this set is obvious. For example, 0<CC<L1 is required because
it is the only defining specification of contains. Likewise,
IAS=0 and EC=0 are both required, because they form the only
pair of defining specifications for meet. Likewise CC=0 and
OTS?=0 are included in all 3-way specifications for covers,
therefore, they must be in the smallest set as well. Figure 11
compiles the eleven refinement specifications that are
sufficient to completely define all eight topological relations.
The eleven refinement specifications resort to six of the eleven
metric refinements.

1AS=0 ITS=0 0<0TS? CcC=0
0<IAS<1 AS<1 EC=0 0<CC<1
1AS=1 0TS =0 0<EC<1

Figure 11. The smallest set of refinement specifications
necessary to infer all eight topological relations.

6. CONCLUSIONS

The interaction between topology and metric were investigated
with the goal of deriving uniquely from metric refinements
topological relations. A set of eleven metric refinements,
consisting of splitting measures and closeness measures, were
defined. Splitting measures apply to non-empty intersections
of interiors, boundaries, and exterior, while closeness

measures apply to empty boundary-boundary intersections.
Together with the possible value ranges that characterize each
topological relation the metric refinements create refinement
specifications. We derived that each topological relation can
be determined from the conjunction of up to three such
refinement specifications. The relations equal and meet can be
derived from a single refinement specification, while
coveredBy and covers require three. The remaining four
relations are fully defined with two refinement specifications.
We also derived the smallest set of these specifications that is
sufficient to determine all relations.

These dependencies between metric and topological relations
open the door for a number of future investigations. With the
known compositions about topological relations as the
benchmark it is now possible to determine the composition
table of the metric refinements. This will enable metric
reasoning without the need of direction information. The
extension to the eleven topological relations on the sphere
should provide further insights about how these metric
refinements generalize. Finally the combined metric and
topological units provide the opportunity for the definition of
a new combined alphabet for spatial reasoning that starts with
the topological and metric properties.
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