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Abstract. Spatial scenes are abstractions of some geographic reality, focusing 
on the spatial objects identified and their spatial relations. Such qualitative 
models of space enable spatial querying, computational comparisons for 
similarity, and the generation of verbal descriptions. A specific strength of 
spatial scenes is that they offer a focus on particular types of spatial relations. 
While past approaches to representing spatial scenes, by recording exhaustively 
all binary spatial relations, capture accurately how pairs of objects are related to 
each other, they may fail to distinguish certain spatial properties that are 
enabled by an ensemble of objects. This paper overcomes such limitations by 
introducing a model that considers (1) the topology of potentially complexly 
structured spatial objects, (2) modeling applicable relations by their boundary 
contacts, and (3) considering exterior partitions and exterior relations. Such 
qualitative scene descriptions have all ingredients to generate topologically 
correct graphical renderings or verbal scene descriptions. 

Keywords: Spatial scenes, topological relations, compound objects, ensembles 
of spatial regions. 

1  Introduction 

Spatial scenes are abstractions of some geographic reality, focusing on the spatial 
objects identified and their spatial relations [3]. Objects may also be associated with 
non-spatial properties [31], yielding comprehensive qualitative representations of 
some mini-world. Such qualitative models of space enable spatial querying, 
computational comparisons for similarity, and the generation of verbal descriptions. A 
specific strength of spatial scenes is that they offer a focus on particular types of 
spatial relations so that users’ analyses may put explicit emphasis on properties that 
may be of particular importance for the task at hand. For instance, matching a sketch, 
represented as a spatial scene [17], with the closest configurations in a spatial 
database may ignore metric relations embodied in the sketch, as sketches are often not 
to scale, while emphasizing relations about relative directions among the objects 
drawn. This paper focuses on the topology of spatial scenes that are embedded in ℝ!. 

Fig. 1 depicts two simple scenes consisting of an ensemble of spatial regions. A 
spatial region is closed, homogenously 2-dimensional without separations or 
holes [14]. A scene representation may be thought of as a directed graph, in which 
each node represents a region and each directed edge, connecting two distinct nodes, 
captures the spatial relations between the two regions.  
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  (a)   (b) 

Fig. 1: A graphical depiction of a spatial scene in ℝ! for which the mere set of binary 
topological relations is insufficient to distinguish between (a) object G1 being surrounded by 
the union of A through F and (b) object G2 being outside the union. 

Representations of spatial scenes typically resort to capturing exhaustively all 
binary spatial relations, yielding for a scene of n objects and m types of spatial 
relations m*(n2–n)/2 relations. In some cases this set of qualitative scene relations 
may be further reduced by eliminating redundancies that are implied by 
compositions [18,36] as well as dependencies across relations [20,29,38]. While this 
approach captures accurately how each object is related to each other object in a 
spatial scene, it may fail to distinguish certain spatial properties that are enabled by 
the ensemble of objects. The two configurations shown in Fig. 1 share the same pairs 
of topological relations as modeled by the 4-intersection [14,22] or RCC-8 [34]. 
While direction relations, such as G1 is south of B, but G2 is north-east of B, would 
contribute to distinguishing the two configurations, on a purely topological basis the 
set of binary topological relations would suggest they are topologically 
equivalent [17,21]. 

The mere pairwise recording of binary relations may have another shortcoming 
when multiple objects interact with the same object. The distinction between different 
types of meet, overlap, covers, and coveredBy relations between two regions have 
been addressed extensively [13,21,26], but these methods may fall short of capturing 
topological equivalence if multiple, possibly complex boundary-boundary interactions 
occur. Fig. 2 shows for two configurations how the breakdown of such a complex 
multi-object relation into all pairs of binary relations is insufficient to distinguish 
some critical topological information enabled only by the ensemble of the objects. 

 
 (a)  (b)  (c)  (d)  (e)  (f) 

Fig. 2: Two configurations that differ by the way C touches A, but their pairs of binary 
relations show, however, pairwise the same topological relations: (a) and (d) with the same type 
of overlap, (b) and (e) with a simple meet, and (c) and (f) with the same type of overlap. 

This paper develops a formal model that addresses an arbitrarily complex topology 
of region-based spatial scenes, embedded in ℝ!. After a summary of related work 
(Section 2), Section 3 develops a model for complexly structured objects. Section 4 
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accounts for intersection ambiguities among multiple objects (Fig. 2) by modeling 
boundary contacts, while Section 5 addresses relations in different exterior partitions. 
Section 6 demonstrates how both boundary contacts and exterior partitions may need 
to be used simultaneously for capturing the topology of complex spatial scenes. The 
paper concludes in Section 7 with a summary and a discussion of future work.  

2  Topological Relations  

Existing methods for modeling spatial relations have been comprehensively compiled 
in several survey articles [10,11,25]. While early approaches [24] addressed spatial 
relations in an integrated fashion, the use of tailored methods for different types—
topological, direction, and metric—has prevailed during the last decade. Current 
models for topological relations fall primarily into two major categories: (1) those 
based on connection [34] and (2) those based on intersection [14,15]. For two simple 
regions, both models yield the same topological relations (Fig. 3).  

 

 

Fig. 3: The eight topological relations between two simple regions in ℝ! resulting from both 
the 9-intersection and the region-connection calculus (using the 9-intersection terminology). 

Their extensions to capture more details—up to topological equivalence [21]—are 
particularly relevant for relations with boundary intersections, such as overlap [26], 
meet, and covers/coveredBy [13]. Some alternative models for spatial relations based 
on interval relations [26], direction [30,39], and 2-D strings [5], have been primarily 
applied to image retrieval. While RCC as a first-order theory deals with sets of 
regions, including possible holes, one could assume that this approach would lead 
directly to capturing the topology of a scene. The idiosyncrasies of the connection-
base relations of single regions with multiple parts, however, yield undesired effects, 
as it captures topologically distinct configurations by the same relation (Fig. 4). 

 
Fig. 4: Two scenes with a set of regions, both of which RCC classifies as partially overlapping 
(PO). 
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2.1 Models of Complex Spatial Features 

Complex regions mainly refer to regions with separations of the interior (multiple 
components) and of the exterior (holes). Worboys and Bofakos [44] introduced the 
concept of a generic area based on a labeled-tree representation. Areal objects with 
separations, holes, and islands nested to any finite level are modeled by describing 
each level with a set of nodes. These nodes are topologically equivalent to the unit 
disk, pairwise disjoint or with a finite intersection, and may spatially contain their 
child nodes. The root node represents the entire region object. Clementini et al. [8] 
define composite regions as closed, non-empty, 2-dimensional subsets of ℝ!. Each 
component is a simple region (with no holes). The components’ interiors are pairwise 
disjoint and their boundaries are either pairwise disjoint or intersect at a finite set of 
points. A complex region, however, has components that may be either simple regions 
or regions with holes [7]. 

The OpenGIS Consortium (OGC) has informally described geometric features, 
called simple features, in the OGC Abstract Specification [32] and in the Geography 
Markup Language GML [33] an XML encoding for the transport and storage of 
geographic information. Among these features, MultiPolygons refer to complex 
regions that may have multiple components and holes. A complex region [37] 
comprises one or several regular sets, called faces that may have holes and other faces 
as islands in the holes. A hole within a face can at most touch the boundary of the face 
or of another hole at a single point. Each face is atomic and cannot be further 
decomposed. A complex region can comprise multiple faces, which can either be 
disjoint, meet at one or many single boundary points, or lie inside of the hole of 
another face and possibly share one or more single boundary points with the hole. 

Ontological aspects of parts [12,42] and holes [4] have been studied extensively, 
with a specific emphasis on part-whole relations as well as mereology—the theory of 
parthood and relations—and mereotopology [41]—a first-order theory that blends 
mereological and topological concepts. These reflections and formalizations have 
been linked mostly to the region-connection calculus [34]. 

2.2 Models for Topological Relations with Holes or Separations 

Among the many variations of models for topological relations are six previous 
approaches that address explicitly some aspects of a qualitative spatial-relation system 
for holed or separated regions. We briefly summarize their key features and analyze 
what aspects of holes and separations they cover, including their existing support for 
similarity and composition reasoning. 

• The region-connection calculus RCC-8 [34] specifies eight relations that also 
apply to regions that may have holes and/or separations. This elegant yet coarse 
model suffers from a representation shortcoming, since it does not distinguish 
between significantly different topological configurations as it makes no 
distinction for holed regions whether an interaction takes place from the outside or 
the inside. Since the RCC-8 composition table [35] applies to an all-encompassing 
region, the particularities of holes and parts that constrain inferences at times are 
not accounted for, so that only an upper bound for the inference possibilities is 
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available at times, which renders some of these composition inferences imprecise, 
because impossible derivations are included in the set of inferred possibilities. 

• The use of the vanilla 9-intersection for complex regions [37] yields 33 relations, 
some of which expose the same issues as RCC-8. It further considers only holes 
that are fully contained, but none that are on the fringe (i.e., tangential). No 
neighborhood graphs or compositions have been derived.  

• The Topological-Relations-for-Composite-Regions (TRCR) model [7,8] captures 
primarily relations of regions with separations, but indicates TRCR’s extension to 
holed regions. TRCE uses a coarse underlying relation model derived from 
disjunctions of 9-intersection relations. But these disjunctions are not jointly 
exhaustive and pairwise disjoint, so that, for instance, equal must be derived from 
A in B and B in A. Therefore, the set of relations has no explicit identity relation. 
Here also no neighborhood graphs or compositions have been derived. 

• Egenhofer et al. [19] treat topological relations of holed regions exhaustively, 
allowing for tangential holes, holes that fill a region completely, and multiple 
holes, but at the expense of a tedious enumeration of all details. While they 
address the transition to hole-free regions through examples, no generic method 
for determining a conceptual neighborhood graph or the composition of relations 
is given. 

• Vasardani’s model for relations with holed regions is highly expressive, 
identifying 23 relations between a hole-free to a holed region [23] and 152 
between two single-holed regions, together with neighborhood graphs, 
compositions, and a summary model that applies to multi-holed regions [43]. It, 
however, deals only with fully contained holes and does not address regions with 
separations. 

• Tryfona and Egenhofer [40] treat relations under the transition from regions with 
separations to generalized regions by filling in the gaps between parts with a (not 
necessarily convex) hull. These separations exclude touching components and 
have no account for holes.  

3  Relation-Based Compound Spatial Objects 

In order to capture complexly structured spatial objects, we use the relation-based 
compound spatial object model, which creates compound objects from geometric 
combinations—unions and set differences—of basic spatial object types that fulfill 
explicitly specified constraints about topological relations [16]. Although the basic 
object types may be spatial regions [14], simple lines or points [15], within the scope 
of this paper only compound spatial objects made up of regions are considered.  

The topological-relation constraints between object parts are critical to construct 
the intended topology of the objects. For two regions R1 and R2, with the constraint R1 
contains R2, the closure of the set difference R1\R2 forms a (closed) region with a 
single hole (Fig. 5a). On the other hand, if R3 disjoint R4 then R3∪R4 forms a (closed) 
separated region (Fig. 5b); the construct (R5\R6)∪R7, with the constraint that R5 
contains R6 and R5 is disjoint from R7, yields a holed region with a separation in the 
region’s exterior (Fig. 5c); while the construct (R8\R9)∪R10, with the constraints R8 
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contains R9 and R9 contains R10, provides a holed region with a separation in the region’s 
hole (Fig. 5d). 

 
(a) (b) 

 
(c) (d) 

Fig. 5: Construction of compound spatial objects: (a) a holed region from R1\R2 with R1 
contains R2; (b) a separated region from 𝑅! ∪ 𝑅! with R3 disjoint R4; (c) a holed region with an 
exterior separation from (R5\R6)∪R7 with R5 contains R6 and R7 disjoint R5; and (d) a holed 
region with a separation in the hole from (R8\R9)∪R10 with R8 contains R9 and R9 contains R10. 

The advantage of such constructions of compound spatial objects is that the objects’ 
topology enables immediately a specification of the topological relation involving 
compound spatial objects. There is no need to continue the search for more and more 
complicated spatial relations for complex objects (e.g., relations between a simple region 
and a 2-holed region), as the relation-based compound-object model lends itself 
immediately to specifying topological relations based on the components topological 
relations. Relations other than disjoint and contains, such as meet or covers, may 
participate in the construction of compound spatial objects as well, but if they yield 
interior or exterior separations, the methods of partitioning (Section 5) may be necessary. 

4  Boundary Contacts 

To fully capture the topology of a spatial scene, one needs to consider the impact of 
the boundary intersections that the topological relations meet, overlap, covers, and 
coveredBy possess. These boundary intersections are a key ingredient for the 
reconstruction of a spatial scene from its scene description. 

The method chosen to construct this scenario is based on following the boundary 
components of each object in the scene on a course through a Venn diagram view of 
the space, in a clockwise direction, combined with the semantic differences of two 
line-line relations—touches and crosses [6,21,28]—that are congruent under the 9-
intersection. 
Definition 1: Let A and B be two lines. A and B touch if the local intersection 
configuration is such that a consistent clockwise traversal visits the same line twice in 
a row (Fig. 6a). 
Definition 2: Let A and B be two lines. A and B cross if the local intersection 
configuration is such that a consistent clockwise traversal visits the lines in an 
alternating sequence (Fig. 6b). 
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 (a) (b) 

Fig. 6: Line intersections: (a) two lines in a touch configuration, where the order of contact in 
any cyclic path surrounding the intersection is of the form (black, red, red, black), and (b) two 
lines in a cross configuration where the order of contact in any cyclic path surrounding the 
intersection is of the form (black, red, black, red). 

Theorem 1: Let A and B be two lines such that A touches B. This configuration 
cannot be transformed into a single A crosses B configuration without first going 
through another line-line relation with a different 9-intersection matrix. 
Proof: Both touches and crosses have the same 9-intersection matrix, but their local 
intersection structure is different in ℝ! because of co-dimension constraints. To get 
from a single touch to a single cross without passing through another relation requires 
fixing the intersection of the two lines topologically, that is, to maintain that, the 
intersection zone—the part of 𝐵° originally in common with 𝐴°—moves only along 
the interior of the line. If it moves to the boundary of either line, the 9-intersection 
matrix of the configuration changes. If it moves off of either line in any direction, one 
of two things must occur: (1) the intersection zone will move to the exterior and cease 
to be a touches or crosses configuration, thus going through at least another 9-
intersection symbol, or (2) the intersection zone will be moved to the other side of the 
line, fixing the 9-intersection symbol, but producing two crosses configurations in the 
process. To remove either of these instances would require the boundary of A to enter 
the interior of B or the boundary of B to enter the interior of A, both of which 
producing a separate 9-intersection matrix.  n 

Theorem 1 shows that the line-line relations touch and a cross (though congruent 
under the 9-intersection) are different. Herring [28] also demonstrates the differences 
between these two configurations. To deal with boundaries of regions (bounded by 
Jordan Curves), the process differentiates occurrences of touches from crosses. Both 
touch and cross can exist in either 0-dimensional or 1-dimensional forms, leaving four 
possible types of interactions between any two boundaries: 0-touch (denoted as t0), 0-
cross (denoted as c0), 1-touch (denoted as t1), and 1-cross (denoted as c1). Any 
region’s boundary can be partitioned with respect to the other objects in a space based 
on these four units and a Venn diagram. The development of this method provides a 
shorthand notation for the process, which we refer to as the o notation. 

 𝜕𝐴!"#$: 𝑜!(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛,𝑇,𝐶) (1) 

Symbol Acomp is a boundary component of a region A, S is the collection of regions 
of which that boundary component is currently outside (symbolized by the letter o), 
dimension is the qualitative length of the interaction (either 0 or 1), T is the collection 
of region boundaries that are undergoing a touch interaction, and C is the collection of 
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regions undergoing a cross interaction. This notation accounts for all but the 
boundedness of the planar-disk classifying invariant [21], which is addressed in 
Section 5.  
Theorem 2: Let A1 and A2 be two regions such that their boundaries cross (Fig. 7). 
Traverse 𝜕𝐴! as it approaches A2 from its exterior. The set C must be a subset of S. 

 
Fig. 7: Two regions whose boundaries cross as a c0 intersection, as the cross goes from outside 
of A2 to inside (symbolized by the arrow) and is of 0-dimension, yielding the o notation 
𝜕𝐴!: 𝑜{!!}(0,∅,𝐴!). 

Proof: Since 𝜕𝐴! is in the exterior of A2 as it approaches the intersection, 𝐴! ∈ 𝑆. 
Since 𝜕𝐴! impacts A2, 𝐴! ∈ 𝐶.  n 

The same observation in Theorem 2 would also apply to a touch configuration 
upon the sets T and S. In the case of crosses, the next o notation (Eqn. 1) has its set S 
become the set S\C, as the boundary crossed from the exterior to the interior of the 
regions in the set C. This observation is referred to as the set difference rule. In the 
case of touches, there are no corresponding changes in S, because the boundary line in 
the exterior never entered into the interior. 
Theorem 3: Let A1 and A2 be two regions such that their boundaries cross (Fig. 8). 
Traverse 𝜕𝐴! as it approaches A2 from its interior. 𝐶 ∩ 𝑆 = ∅. 

 
Fig. 8: Two regions whose boundaries cross in a c0 intersection, as the cross goes from inside 
of A2 to outside (symbolized by the arrow), is of 0-dimension, and the position is outside of 
nothing in the scene yielding the o notation ∂A!: 𝑜 ∅ (0,∅,A!). 

Proof: Since 𝜕𝐴! is in the interior of A2 as it approaches the intersection, 𝐴! ∉ 𝑆. 
Since 𝜕𝐴! impacts A2, 𝐴! ∈ 𝐶.  n 

The same observation in Theorem 3 also applies to a touch configuration upon the 
sets T and S. In the case of crosses, the next o notation (Eqn. 1) has its set S become 
the set 𝑆 ∪ 𝐶, as the boundary entered the exterior of those regions in the set C. This 
observation is referred to as the union rule. In the case of touches, there are no 
corresponding changes in S, because the boundary line in the interior never entered 
the exterior. 
Theorem 4: Given the o notation (Eqn. 1) for an arbitrary spatial scene. 𝑇 ∩ 𝐶 = ∅. 
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Proof: Since touch and cross have been shown to be two different configurations 
(Theorem 1), T and C can have no common elements.  n 

There are scenarios in which a spatial scene would produce sets T and/or C such 
that either or both of these sets would not be subsets of, or pairwise disjoint from, the 
corresponding set S. Let a group of objects constitute a spatial scene such that the set 
C from the o notation (Eqn. 1) is neither a subset of, nor pairwise disjoint from, S. 
This spatial scene contains an intersection of boundaries such that some go from 
interior to exterior, while others go from exterior to interior at the same location. The 
elements that are in common follow the set difference rule, while the elements not in 
common follow the union rule. 

To completely traverse a boundary, the o notation is appended to itself until the 
entire boundary is traversed. Since the representation starts and ends with the same 
o notation, the redundant ending is dropped (Fig. 9). 

 
Fig. 9: Two regions whose boundaries cross in two c0 intersections, yielding the o notation 
∂A!: 𝑜{!!}(0,∅,A!)𝑜{∅}(0,∅,A!). In this convention, the last encountered state always cycles 
back to the initial outside condition, with the next impact being the first cross/touch. 

We now consider two scenarios where multiple boundaries come together at a 
single point (Fig. 10a) or with interrupting intersection (Fig. 10b). 

   
 (a) (b) 

Fig. 10: Two scenarios where multiple boundaries come together: (1) Three objects—
A!  𝑜𝑣𝑒𝑟𝑙𝑎𝑝  A!,A!  𝑚𝑒𝑒𝑡  A!, 𝑎𝑛𝑑  A!  𝑚𝑒𝑒𝑡  A!—to exhibit the boundary notation, and (b) The 
sequence for A3 is ∂A!: 𝑜 !!,!! (1,∅,A!)𝑜 !!,!! (0,A!,A!)  𝑜 !!,!! (1,∅,A!)𝑜 !! (0,∅,A!).  In this 
configuration, the change to the subscript based on the cross does not happen until the 1-
dimensional cross is finished in its entirety. 

For Fig. 10a, we get three sequences (Eqs. 2-4), starting each boundary traversal in 
the common exterior in a clockwise direction. The union rule and set difference rule 
apply for the crosses configurations, while both rules do not apply for the touches 
configurations. 

 𝜕𝐴!: 𝑜 !! ,!! 0,∅,𝐴! 𝑜 !! 0,𝐴!,𝐴! 𝑜 !! ,!! 1,𝐴!,∅  (2) 
 𝜕𝐴!: 𝑜 !! ,!! 1,𝐴!,∅ 𝑜 !! ,!! 0,𝐴!,𝐴! 𝑜 !! 0,∅,𝐴!  (3) 
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 𝜕𝐴!: 𝑜 !! ,!! 1,𝐴!,∅ 𝑜 !! ,!! 0, {𝐴!,𝐴!},∅ 𝑜 !! ,!! 1,𝐴!,∅  (4) 

For Fig. 10b, we get three sequences (Eqs. 5-7), starting each boundary traversal in 
the common exterior in a clockwise direction. This particular instance demonstrates 
how a shorter intersection that interrupts a longer intersection is handled for the case 
of crosses. The boundary traversal of A1 (Eqn. 5) reveals that the union rule 
(𝑆 → 𝑆 ∪ 𝐶) is not followed until the completion of the cross, despite the interruption 
of the touch. Similarly, the boundary traverse of A3 (Eqn. 7) reveals that the set 
difference rule (𝑆 → 𝑆\𝐶) is not followed until the completion of the cross, despite the 
interruption of the touch. The notation thus ensures that the cross has not been fully 
completed, distinguishing this scenario from other scenarios where a 0-touch and 0-
cross would coincide between two 1-cross impacts. For the scenario of touches being 
interrupted, this cannot be maintained by the mere knowledge of boundary 
interactions, as it requires the consideration of the partitioning structure of the objects 
upon the space (Section 5). 

 𝜕𝐴!: 𝑜 !! ,!! 0,∅,𝐴! 𝑜 !! 1,∅,𝐴! 𝑜 !! 0,𝐴!,𝐴! 𝑜 !! 1,∅,𝐴!  (5) 
 𝜕𝐴!: 𝑜 !! ,!! 0, {𝐴!,𝐴!},∅   (6) 
 𝜕𝐴!: 𝑜 !! ,!! 1,∅,𝐴! 𝑜 !! ,!! 0,𝐴!,𝐴! 𝑜 !! ,!! 1,∅,𝐴! 𝑜 !! 0,∅,𝐴!  (7) 

5  Exterior Partitions 

The model presented thus far for describing a topological scene captures the relations 
between explicitly defined objects. However, a complete representation requires 
identifying relationships between objects that lie within separated components of the 
common exterior. These separated components are classified as exterior partitions, 
and a mechanism is provided for identifying them within a scene. This identification 
is necessary since existing methods, such as the 9-intersection, capture object-to-
object relations, but not the relations between an object and a group of 
objects (Fig. 11). 

 
 (a) (b) (c) 

Fig. 11: Examples of topologically distinct configurations: (a) a holed region, (b) a union of 
objects forms a hole that contains other objects, and (c) a holed region with a separation. 

Intuitively, the exterior of an object is pictured as resting entirely outside of that 
object. It is commonly understood that the exterior of a set A within an embedding 
space X is A’s complement; that is, X\A, or succinctly, A–. In the simplest cases, 
exteriors are connected, but it need not be so. 
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An exterior partition is synonymous with a holed region within an object (Fig. 11a) 
or a hole formed from the union of multiple objects (Fig. 11b). In these instances the 
common exterior is not path-connected. This statement is equivalent to saying that the 
exterior is separated, or partitioned. Similarly, it can be seen that an object with a 
satellite (Fig. 11c) also lacks this property of path connectedness. In order to be self-
contained we review the basic definitions of continuous, path, and path-connected [1]. 
Definition 3: Let X and Y be topological spaces. A function 𝑓:𝑋 → 𝑌 is continuous if 
𝑓!!(𝑉) is open in X for every open set 𝑉 ⊂ 𝑌. 
Definition 4: Let Y be a topological space, and let 0,1 ⊂ 𝑅 have the standard 
topology. A path in Y is a continuous function 𝑝: 0,1 → 𝑌. The path begins at p(0) 
and ends at p(1). 
Definition 5: Let A be a set in a topological space X. A is path-connected if for every 
𝑎! , 𝑎! ∈ 𝐴, there exists a path 𝑝 ⊂ 𝐴 that begins at ai and ends at aj. 

If an object’s interior is separated (Fig. 11c), it can safely be assumed that the 
separated area is surrounded by something else—generally the common exterior, but 
possibly other objects. In the same sense an exterior partition is subject to a similar 
surrounded relation—a singular object, or the union of multiple objects, can partition 
it (Fig. 11b). In the latter instance, the objects collectively surrounding a partition are 
also path-connected. A multigraph highlights such a collective surrounding (Fig. 12). 

Each object depicted in the scene is represented as a vertex. Edges connect objects 
that intersect through the meet or overlap relations, with one edge representing each 
distinct intersection between the objects. Additional relations are not germane to the 
construction of edges and can be safely disregarded.  

In such a graph, objects with explicitly defined holes are represented as self-loops. 
To generalize, however, unique loops of arbitrary length can possibly define a 
surrounds relation—encapsulating an exterior partition or another object. By 
identifying all such loops the search for exterior partitions can begin. In order to 
define the object topology for any partitioned segment of the exterior—and any object 
possibly residing within—the exterior partition must be represented explicitly as a set 
itself.  

 
 

 
  (a) (b) 

Fig. 12: A spatial scene represented (a) graphically and (b) by its corresponding graph. 

The first step in this process is to represent a holed object A without the exterior 
partition; in essence an operation is provided to fill the hole, creating a new object B. 
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The concept of a region with its holes filled (Fig. 13) was introduced under the term 
of a generalized region [19], and has been redefined with the term topological hull [2] 
for a 3-dimensional digital embedding (i.e., ℤ!). To account for ℝ!, we give a new 
definition of the topological hull. 

 
 (a) (b) (c) 

Fig. 13: (a) An object in a scene, (b) the object’s topological hull, and (c) the object overlaid by 
its topological hull. 

Definition 6: Let A be a closed, path-connected set in ℝ! with co-dimension 0 within 
the standard topology, and let B be the smallest closed set homeomorphic to an n-disk 
such that 𝐴 ⊆ 𝐵. B is called the topological hull of A, denoted as [A]. 

The interior of the originating object, A, is a subset of the interior of the topological 
hull B. Importantly, 𝐵∘ covers the region coincident to the interior of the partition if it 
exists, in addition to 𝐴∘. 
Theorem 5: If B is the topological hull of A, then 𝐴

∘ ⊆ 𝐵∘. 
Proof: Since 𝐴 ⊆ 𝐵 and B is closed, 𝐴

∘ ⊆ 𝐵. Since B is homeomorphic to an n-disk 
and the standard topology is enforced, 𝐴

∘ ⊆ 𝐵∘. n 

In a similar fashion, the boundary of the topological hull is a subset of the 
originating object’s boundary as the originating object also bounds any exterior 
partitions within itself. 
Theorem 6: If B is the topological hull of A, then 𝜕𝐴 ⊇ 𝜕𝐵. 
Proof: Since A is closed, and B is the smallest closed n-disk such that 𝐴 ⊆ 𝐵, the 
boundary of B is part of the boundary of A. Furthermore, no part of the boundary of B 
can be outside of the boundary of A, however parts of the boundary of A may actually 
sit within 𝐵∘, therefore the improper subset is allowed. n 

Using such a construction all of the topological hulls of an object A are 
represented, even if the object has separations, by taking the union of all topological 
hulls of A. The new object is the aggregate topological hull of A. 
Definition 7: Let A be a closed set in ℝ! with co-dimension 0 within the standard 
topology. Consider the collection of path-connected subsets P such that 𝑝 = 𝐴°!∈!  
and |P| is minimized. The aggregate topological hull [A] is the set 𝐵 = [𝑝]!∈! . 

Since Definition 6 is a special case of Definition 7 (namely when A has a single 
path-connected p), the same notation is used for the topological hull [A] and the 
aggregate topological hull [A]. 

The simplest scenario consists of an object A with no separations. If A is path-
connected then the topological hull of A equals the aggregate topological hull 
of A (Fig. 14a). 
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 (a) (b)  (c) 

Fig. 14: (a) The topological hull of A equals the aggregate topological hull of A, (b) all 
separations in A are nested, and (c) A has unnested separations; the aggregate topological hull is 
not path-connected. 

Theorem 7: If B is the topological hull of A and C is the aggregate topological hull of 
A, then B = C. 
Proof: Since B is the topological hull of A, A is path-connected. The collection of sets 
P that minimize the cardinality of the set P has exactly one member, A. By definition 
5, the aggregate topological hull is constructed by considering the topological hull of 
each member set. Since A is the only member set, 𝐶 = 𝐵, a symmetric relation. Since 
B is path-connected, C must similarly be path-connected.  n 

Exterior partitions and additional components of A can also be nested within A 
(Fig. 14b), similar to the construction of a Russian matryoshka doll. In this analogy, 
the outermost shell contains a number of smaller shells within itself, each transitively 
contained within the first. Unlike a matryoshka doll, however, multiple divisions can 
exist at the same level. 
Theorem 8: If A is a set and C its aggregate topological hull such that all but one of 
A’s separations are nested within another (Fig. 14b), then C is path-connected. 
Proof: Consider the separation j that is not nested within any other separation. Since j 
cannot be nested within any other separation and is the only one that cannot be nested, 
j must surround all of the other separations. Now consider 𝐶! and all immediately 
nested 𝐶!. 𝐶! ⊂ 𝐶!. Any other 𝐶∗ nested in a 𝐶!, follows this relationship by the 
transitivity of subsets. This procedure exhausts all of separations.  n 

The next case is that of an object A with multiple unnested separations (Fig. 14c). 
In such a case the aggregate topological hull of A is not path-connected. 
Theorem 9: If A has more than one separation that cannot be nested, C is not path-
connected. 
Proof: By Theorems 7 and 8, every set has at least one part that cannot be nested. 
Theorem 3 covers a path-connected A. Theorem 4 covers a completely nested A. This 
theorem is the final case: multiple unnested. Consider one of the unnested sets j and 
all other sets nested within it. By Theorem 8, the 𝐶!∗ for this set is path-connected. 
Consider another one of the unnested sets k and all other sets nested within it. By 
Theorem 8, the 𝐶!∗ for this set is path-connected. For C to be path-connected would 
imply that ∃𝐶!∗,𝐶!∗ ∋ 𝐶!∗∘ ∩ 𝐶!∗∘ = ¬∅. But 𝐶! and 𝐶! share nothing under definition 5. 
Therefore, C cannot be path-connected.  n 
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By utilizing the properties of an aggregate topological hull, exterior separations 
within an object A can be identified. If the set difference between the aggregate 
topological hull C and the originating object A is nonempty, the resulting set 
coincides with the existence of any exterior partitions contained within.  
Theorem 10: If C is the aggregate topological hull of A, C is path-connected, and 
𝐶\𝐴 = ¬∅, then A separates 𝐴– into separated components. 
Proof: Assume not. There is thus a member of C that is in the aggregate topological 
hull of A and not in A that is path-connected to every other member of 𝐴–. By 
Theorems 7–9, A is either a nested construction or itself path-connected. Consider the 
surrounding set j in the nested construction or the only set A in the path-connected 
construction. The boundary of 𝐶! is a Jordan Curve, separating its exterior from its 
interior. The non-empty intersection suggests that at least one element is not in 
common with A, yet the boundary of C must be contained within the boundary of A 
(by Theorem 6), and the interior of A must be contained within the interior of C (by 
Theorem 5). There is thus a point in the interior of C that is not in the closure of A, 
but still bounded by the Jordan Curve. This point is excludable from the exterior, a 
contradiction of the assumption.  n 

Conversely there is an additional case, where A and the aggregate topological hull 
of A completely coincide. In this instance A does not contain an exterior partition. 
Theorem 11: If C is the aggregate topological hull of A, and A=C, then 𝐴– is path-
connected. 
Proof: Since C and A have the same membership, A is either an n-disk, or by 
Theorem 9, would be a combination of n-disks such that none were nested. In this 
case, the exterior remains path-connected.  n 

After proving the existence of one or more partitioned regions of the exterior, it is 
necessary to represent them explicitly. By Theorem 10, if 𝐶\𝐴 = ¬∅, A partitions 
some region of the exterior. Closure performed on this set produces an object H, 
which coincides with the partitioned regions of the exterior within A (Fig. 15), and 
can similarly contain nested separations, that is, satellites that are not path-connected, 
or have no separations. 

 
  (a) (b) (c) 

Fig. 15: (a) An object with holes and a separated region, (b) the topological hull overlaid over 
the object, and (c) the exterior partitions within the object. 

It is, therefore, necessary to take the topological hull of H, and recursively any 
resulting objects, until the scene has been exhaustively explored. In this manner the 
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topology between objects, the exterior partitions that they form, and any objects 
contained within can be sufficiently represented.  

Bounded and unbounded boundary components [21], which are not captured 
explicitly in the o notation, are distinguished with the aggregate topological hull. The 
two scenes in Fig. 16a and 16c have the same o notation, but they differ in the number 
of boundary intersections that are bounded and unbounded. Scene A has one bounded 
boundary intersection, while scene B has two. Unbounded intersections are in the 
boundary of the aggregate topological hull, while bounded intersections are in its 
interior. For bounded intersections, this difference is captured by the intersection of 
the aggregate topological hull’s interior with the intersection of the two regions’ 
boundaries, resulting in this example in sets of cardinality one (Fig. 16b) and 
two (Fig. 16d). 

 
  [𝐴! ∪ 𝐴!]° ∩ (𝜕𝐴! ∩ 𝜕𝐴!)   [𝐵! ∪ 𝐵!]° ∩ (𝜕𝐵! ∩ 𝜕𝐵!) 
  (a) (b) (c) (d) 

Fig. 16: Two spatial scenes with different bounded and unbounded boundary intersections, 
which are captured through the aggregate topological hull. 

 

6  Integration of o Notation and Topological Hull 

This section addresses how the combined use of the o notation and the topological 
hull enables the modeling of a complex spatial scene. While so far only scenes were 
considered that require only one of the two in order to determine completely the 
topology of a spatial scene, we consider here cases that need both simultaneously. 

We start with the two scenes, A and B, in Fig. 17 that have the same o notation 
(Eqs. 8a-c for 16a, and replacing B for A to obtain the o notation for 16b). The two 
scenes are topologically different, however, as scene A has one path-connected 
exterior separation formed between regions A1 and A2, while scene B has two 
(between B1 and B2). 
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 (a) (b) 

Fig. 17: Two topologically different spatial scenes with the same boundary intersections. 

 ∂A!: 𝑜 !!!! (0,∅,A!)𝑜 !! (1,A!,∅)𝑜 !! (0,A!,A!)𝑜 !!!! (1,A!,∅) (8a) 
 ∂A!: 𝑜 !!!! (0,A!,A!)𝑜 !! (1,∅,A!)𝑜 !! (0,∅,A!)𝑜 !!!! (1,A!,∅) (8b) 
 ∂A!: 𝑜 !!!! (0,∅,A!)𝑜 !! (1,∅, {A!,A!})𝑜 !! (0,∅,A!) (8c) 

The o notation alone cannot capture the difference for this construction, but the 
topological hull enables a distinction. Fig. 18 shows for both scenes the step-wise 
construction of the topological hulls (Fig. 18a and 18d), the unions of the regions 
(Fig. 18b and 18e), and their holes as the differences (Fig. 18c and 18f). 

 
Fig. 18: Two complex spatial scenes that share the same boundary intersections, but are 
topologically different captured by using the aggregate topological hull. 

Since scene A has a single, bounded, path-connected exterior component, a single 
relation captures the exterior partition (Eqn. 9a). On the other hand, scene B has two 
bounded, path-connected exterior components. Therefore, an exterior partition 
assessment needs to be applied to both (Eqs. 9b and 9c), revealing the difference 
between scenes A and B.  

 J!  𝑚𝑒𝑒𝑡  A! (9a) 
 [𝑝!]  𝑚𝑒𝑒𝑡  B! (9b) 
 [𝑝!]  𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦  B! (9c) 

The second scenario that considers o notation and topological hulls features two 
scenes (Fig. 19) with the same aggregate topological hulls, yet different o notations. 
In this case, the o notation per se is insufficient to capture the scenes’ topological 
differences; therefore, both are needed. 
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  (a) (b)  

Fig. 19: Two spatial scenes, each consisting of three objects, for which the o notation and the 
topological hull are needed to completely distinguish them from each other. 

While the aggregate topological hulls 𝐻! = [𝐴1 ∪ 𝐴2] and 𝐻! = [𝐵1 ∪ 𝐵2] contain, 
respectively, 𝐴! and 𝐵!, they cannot capture the differences in which 𝐴! and 𝐵! surround 
𝐴! and 𝐵!, respectively—namely in a 0-dimensional or a 1-dimensional boundary 
intersection. Likewise, the different types of overlaps of 𝐴! and 𝐴! and 𝐵! and 𝐵! are also 
only evident from their o notations. To differentiate these two properties, the boundary 
components need to be analyzed in each scene over the three objects involved, plus their 
respective holes 𝐴!𝐻 = 𝐻𝐴°\(  𝐴! ∪ 𝐴!)° and 𝐵!𝐻 = 𝐻𝐵°\(  𝐵! ∪ 𝐵)°. The differences 
appear then, for instance, the o notations of 𝐴! vs. 𝐵! (Eqs. 10a and 10c) and the 
o notations of 𝐴! and 𝐵! (Eqs. 10b and 10d). 

 𝜕𝐴!: 𝑜 !!!,!! ,!! 0,∅,𝐴! 𝑜 !!!,!! 0,∅,𝐴!   (10a) 
 𝜕𝐴!: 𝑜 !! 0,𝐴!𝐻,∅   (10b) 
 𝜕𝐵!: 𝑜 !!!,!! ,!! 1,∅,𝐵! 𝑜 !!!,!! 0,∅,𝐵!  (10c) 
 𝜕𝐵!: 𝑜 !! 1,𝐵!𝐻,∅  (10d) 

7  Conclusions and Future Work 

The topology of a scene as an ensemble of regions has been formalized. To this end, 
the boundary intersections between objects with the relations meet, overlap, covers, 
coveredBy, and entwined were further explored. These boundary intersections take the 
form crosses or touches, in either a 0-dimensional or 1-dimensional flavor. By 
recording these boundary impacts about each object in clockwise orientation the 
objects of the spatial scene can be related, even where there exist separations or more 
than two objects. The result of this approach is a symbolic representation of the 
topological scene, comprised of these intersection strings, called the o notation. 

Furthermore, an operation is presented for creating the smallest, path-connected 2-
disk of an object, in essence filling any holes within the topological hull. This enables 
the capture of relations between an object and a group of objects and also allows for 
the differentiation of separated regions of the common exterior. Such separations can 
be holes within individual objects, or holes formed by the union of multiple objects. 
Similarly, the aggregate topological hull enables nested or separated groups of 
objects to be considered. The set difference between a given topological hull and its 
originating object(s) captures surrounding or nested objects. 
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The methods to record boundary contacts and exterior partitions extend the 
established methods for capturing the topological relation between two simple 
regions [21] to an ensemble of spatial regions, where regions may have holes or 
separations, and the ensemble may create exterior separations (essentially holes in 
unions of regions). 

These methods for representing a spatial scene can be expanded upon in the future 
through new lines of inquiry. First, the topological hull operation should be extended 
to allow for the inclusion of lines, the torus in ℝ!, and any objects embedded in ℝ! 
generally, possibly relating to the topological hull definition in ℤ! [2]. Neither lines 
in ℝ! nor regions and volumes in ℝ! are captured in the current model. The 
generalization of boundary contacts and exterior partitions for such settings is a 
challenge. Second, the description of a spatial scene involving objects such as 
handled or otherwise-spiked regions should be considered. A handled or spiked 
region fits within the compound-spatial object model by considering not only regions 
but also lines (e.g., for a region R5 and a line L1, their union R5 ∪ L1—when 
combined with the constraint R5 doubleMeet L1 [15]—yields a simple region with a 
handle, which creates an exterior partition.  

Finally, the concepts of qualitative direction and distance could be added to the 
description of the spatial scene in order to further tighten the descriptive power of a 
scene by accounting for the continuous transformations objects represented within 
may undergo while preserving their relatedness to their neighbors, as well as 
accounting for their relative direction to one another using any number of qualitative 
methods for capturing such information. 

Some may want to consider using first-order logic, in combination with either the 
9-intersection relations or the RCC language an alternative approach. But one could 
also just use first-order predicate calculus altogether to capture the semantics of 
spatial scenes. Such comparative assessments may or may not have value in the 
future.  

The method per se, even only for regions in ℝ!, features two theoretical and two 
applied challenges: (1) a proof that the combination of boundary contacts and exterior 
partitions is fully sufficient to capture completely the topology of an ensemble of 
regions; (2) a normalization of the boundary components, as the o notation repeats for 
the same boundary interaction the same information along each participating region 
boundary; (3) the automatic generation of a graphical depiction of the topology of a 
spatial scene from its scene topology description; and (4) the automatic generation of 
a verbal description of the topology of a spatial scene from its scene topology 
description, at various levels of detail. 
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