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Abstract. Cavities in spatial phenomena require geometric representations
of regions with holes. Existing models for reasoning over topological relations
either exclude such specialized regions (9-intersection) or treat them
indistinguishably from regions without holes (RCC-8). This paper highlights
that inferences over a region with a hole need to be made separately from, and
in addition to, the inferences over regions without holes. First the set of 23
topological relations between a region and a region with a hole is derived
systematically. Then these relations’ compositions over the region with the hole
are calculated so that the inferences can be compared with the compositions of
the topological relations over regions without holes. For 266 out of the 529
compositions the results over the region with the hole were more detailed than
the corresponding results over regions without holes, with 95 of these refined
cases providing even a unique result. In 27 cases, this refinement up to
uniqueness compares with a completely undetermined inference for the
relations over regions without holes.

1. Introduction

Some spatial phenomena have cavities (Figure la-d), which require geometric
representations of regions with holes when they are modeled in geographic
information systems. Most prominent geographic examples are the territorial
configurations of South Africa (which completely surrounds Lesotho), the former
East Germany (completely surrounding West Berlin), and Italy (which completely
surrounds San Marino and the Vatican City). Many other spatial configurations with
holes have been thought of (Cassati and Varzi 1994). This paper focuses on the
topological relations involving regions with a single hole.

Although such regions with holes resemble visually regions with indeterminate
(i.e., broad) boundaries (Figure 2a), their topologies differ conceptually, since a
region with a broad boundary is an open set (Figure 2b), whereas a region with a hole
is a closed set (Figure 2c). Therefore, the various versions of topological relations
between regions with broad boundaries (Cohn and Gotts 1996; Clementini and
Di Felice 1996; Liu and Shi 2006) do not apply immediately to regions with holes.
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Corbett Hall

(d)

Fig. 1. Regions with a hole: (a) the Lago Iseo (with Monte Isola, Italy’s largest island in a
lake), (b) the area of Massachusetts with precipitation on December 23, 2006 at 7:30am, (c) the
part of region A that cannot be reached by both persons B and C when they were to travel from
their current locations for a set amount of time, and (d) the smoke-free zone around Corbett
Hall and Dunn Hall on the UMaine campus implied by a 30ft buffer zone around each building.

dA gB Broad-Boundary Region Region with Hole
7 / aRbbo= B°\A® (R, =B A
R, = A° R, =B \(A°UJA°)
R, = (B~ UdB) R, =B UA°
(a) (b) (c)

Fig. 2. Two closed discs (A and B): (a) their topological components boundary (JR), interior
(R°), and exterior ( R") that contribute to the formation of (b) a region with a broad boundary
(R,,) and (c) a region with a hole (R,).

While geometric models of spatial features have matured to capture appropriately
the semantics of regions with holes (Frank and Kuhn 1986; OGC 1999), models of
qualitative spatial relations over regions with holes have essentially stayed in their
infancy. Some models of topological relations have addressed regions with holes
(Egenhofer, et al. 1994; Schneider and Behr 2006; Li 2006), distinguishing varying
levels of details about the placements of the holes, however, qualitative spatial
reasoning with such relations has been either discarded or treated like reasoning
without holes. The 4-intersection (Egenhofer and Franzosa 1991) and 9-intersection
(Egenhofer and Herring 1994), for instance, exclude explicitly as the relations’
domain and co-domain any regions with holes, so that the comprehensive body of
inferences over topological relations based on the 9-intersection does not apply
directly to regions with holes. On the other hand, the region-connection calculus
(RCC) (Randell ez al. 1992) makes no explicit distinction between regions with or
without holes so that this model of topological relations, and their inferences from
compositions, applies to regions with holes as well. While the 9-intersection
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composition table is extentional (Li and Ying 2006), RCC’s applicability to regions
with or without holes has given rise to a non-extentional composition table. These
differences in the composition of topological relations are the key justification for the
need to differentiate relations for regions with holes from relations for regions without
holes when making inferences over topological relations.

The following example highlights the need for such an explicit distinction. Given a
region B such that it overlaps with a region A and also overlaps with a region C. From
the composition A overlaps B and B overlaps C (Egenhofer 1994) one can deduce the
possible relations between A and C (Figure 3a-h), yielding in this case the universal
relation Uy (i.e., all eight topological relations are possible).

Fig. 3. The eight possible configurations if region A overlaps region B and B overlaps region C:
(a) A disjoint C, (b) A meet C, (c) A overlaps C, (d) A equal C, (e) A covers C, (f) A coveredBy
C, (g) A contains C, and (h) A inside C.

If one starts, however, with a region with a hole (E) that overlaps with two other
regions, D and F, each without holes, the hole may play a significant role in
constraining the possible relations between D and F. For instance, let E overlap with
D such that E’s hole is completely contained in D, and let E overlap with F such that
F meets E’s hole. Then D could overlap with F (Figure 4a), D could cover F
(Figure 4b), and D could contain F (Figure 4c). Therefore, the insertion of a hole into
the first region results in a composition scenario that is more constrained than the one
without the hole. Treating both cases with the same (less constrained) composition
would offer some incorrect choices in case the region has a hole.

(a) ()

Fig. 4. The three possible configurations if E overlaps with D such that E’s hole is inside D,
and E also overlaps with F such that E’s hole meets F: (a) D overlaps F, (b) D covers F, and (c)
D contains F.
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Is this example an anomaly? Or maybe even the only case in which relation
inferences differ for regions and regions with a hole? Or are there so many more cases
that typically the reasoning over a region with a hole differs from the well known
topological inferences of regions without holes? This paper provides answers to these
questions through a systematic study of the topological relations involving a region
with a hole, the derivation of the composition inferences of these relations, and a
quantitative comparison of these compositions with the compositions of topological
relations between regions without holes (Egenhofer 1994). The topological relation
between a region and a region with a hole is denoted by f7zg, (and its converse

relation by tg,r), while tgpr refers to the topological relation between two regions

(each without a hole).
Throughout this paper, the qualitative model of a region with a hole (B) is based on
B’s five topologically distinct and mutually exclusive parts (Figure 5).

B° is B’s interior
B™' is the inner exterior of B, which fills B’s

hole aB aB
B is the outer exterior of B 3 <
d,B is the inner boundary of B, which

separates B° from B B

d,B is the outer boundary of B, which
separates B° from B

Fig. 5. B’s five topologically distinct and mutually exclusive parts.

The elements of the qualitative description of a region with a hole are (1) its hole
By (B UJ,B) and (2) the generalized region B* (B, UB°UJ,B). B* and B, are
spatial regions, that is, each region is homeomorphic to a 2-disk so that the eight ¢,
(Franzosa and Egenhofer 1991) apply to B* and B, (but not to B, because B with the
hole is not homeomorphic to a 2-disk). The topological relation between B* and By, is
contains, therefore, this is a more restrictive model than the generic region-with-holes
model (Egenhofer et al. 1994), where B, also could have been coveredBy or even
equal to B*, thereby leading to somewhat different semantics of a region with a hole.

The remainder of this paper is organized as follows: Section 2 specifies the
canonical model used for modeling a region with a hole as well as such a region’s
topological relation with another region. Section 3 presents a method to derive the
trr, that are feasible between a region and a region with a hole. Section 4 presents
the 23 relations that can be found between a region and a region with a hole, followed
by an analysis of these relations’ algebraic properties in Section 5. Section 6 derives
the qualitative inferences that can be made with rgpg, and tg,r, focusing on

compositions over a common region with a hole. Section 7 analyzes these
compositions, comparing their reasoning power with the compositions of topological
relations between regions without holes. The paper closes with conclusions and a
discussion of future work in Section 8.
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2. Qualitative Model of a Region with a Hole

The topological relation between a region (A) and a region with a hole (B) is modeled
as a spatial scene (Egenhofer 1997), comprising A, B*, and By together with nine
binary topological relations among these three regions (Figure 6).

| A B* By
A equal overlaps  covers
‘ B* | overlaps equal  contains
By, | coveredBy  inside equal
(@) (b)

Fig. 6. Topological relation of a region with a hole: (a) graphical depiction of a configuration
and (b) the corresponding symbolic description as a spatial scene.

In such a spatial scene, five of the nine binary topological relations are implied for
any configuration between a region and a region with a hole: each region is equal to
itself, B* contains By, conversely By, is inside B*, and for the two relations between A
and B* and A and By, their converse relations (from B* to A and from B, to A) are
implied by the arc consistency constraint (Macworth 1977); therefore, a model of
such a spatial scene only requires the explicit specification of the two relations
between A and B* and A and By, to denote tzg, (Eqn. 1). These relations between A
and B* and A and B, are called the constituent relations of a topological relation
between a region and a region with a hole. Their horizontal 1x2 matrix is a direct
projection of the top elements in the two right-most columns of the spatial scene
description.

tw, (A B)=[t(A.B") 1(A,B,)] @
The principal relation 7 (z,, ) is then the first element of 7., (Eqn. 2).

w(t,, (A,B)=r(A,B") 2)

RRjp,

Section 3.3 shows that some configurations actually only require the principal
relation in order to specify tzg, completely.

3. Deriving the Topological Relations between a Region and a
Region with a Hole

The spatial scene can also be used for the derivation of what topological relations
actually exist between a region and a region with a hole. Since two of the scene’s nine
topological relations are subject to variations (the relations between A and B* and A
and By), a total of 8°=64 tgg, could be specified. But only a subset of these 64

relations is feasible. For example, 7gg, [contains disjoim] is infeasible, because B*
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cannot be inside A at the same time as By, (which is inside B*) is disjoint from A.
Therefore, a topological relation from a region with a hole to another region is
feasible if (1) that scene’s representation is consistent and (2) there exists a
corresponding graphical depiction.

The binary topological relation between a region (A) and a region with a hole (B) is
established as a 3-region scene comprising A, B*, and Bj, with the constraint that B*
contains By (Figure 7). The topological relation between a region and a region with a
hole holds if this 3-region scene is node-consistent, arc-consistent, and path-consistent
(Macworth 1977) for the four values t (A, B*), t (A, B,) and their corresponding
converse relations ¢ (B*, A) and ¢ (By, A).

‘ A B* By
A equal t (A, B¥) t(A, By)
B* t (B*, A) equal contains
By t(By, A) inside equal

Fig. 7. A 3-region spatial scene that captures the constituent relations of a binary topological
relation between a region (A) and a region with a hole (B).

The range of these four relations is the set of the eight ¢ .. With four variables over
this domain, a total of 8* = 4,096 configurations could be described for the topological
relations between a region and a region with a hole. Only a subset of them is feasible,
however. These feasible configurations are those whose 3-region scenes are
consistent. Since in the feasible configurations ¢ (A, B*) must be equal to the converse
of t (B*, A), the enumeration of the relations in the feasible configuration can be
reduced. The same converseness constraint also holds for 7 (A, By) and ¢ (By, A);
therefore, for a feasible 7zg, two of the four relations are implied. Thus, only two of
the four unknown relations are necessary to completely describe a feasible #zg,,
reducing the number of possible configurations to 8> = 64.

4. Twenty-Three Relations between a Region and a Region with a
Hole

In order to determine systematically the feasible 7zg,, a scene consistency checker
has been implemented, which iterates for each unknown (i.e., universal) relation over
the eight possible relations and determines whether that spatial scene is node-
consistent, arc-consistent, and path-consistent (Macworth 1977). Only those
configurations that fulfill all three consistency constraints are candidates for a valid
trr, - Twenty-three spatial scenes representing a region and a region with a hole have
been found to be consistent (Figure 8).
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¢

RR hl[disjoint disjoint] RR hZ[meet disjoint] RR h?:l:overlap disjoint] RR h4[overlap meet]

RR h5|:overlap overlap] RR h6[ overlap covers] RR h7[ overlap contains] RR,‘S[covers contains]

.

RRh9[ contains contains] RR th[ equal contains] RR 1 l[coveredBy diSjoint] RR 12 coveredBy meet]

RR 1 3[ coveredBy overlap] RR hl4[coveredBy covers] RR h15[coveredBy contains] RR|1 6[ inside disjaint]

RR, 17 [inside meet] RR, 18 [inside overlap] RR, 19 [inside covers] RR, 20[ inside contains|

RR h21[inside equal] RRh22[inside coveredBy] RR h23[inside inside]

Fig. 8. Graphical depictions of the 23 topological relations between a region and a region with
a hole.

The remaining 64-23=41 candidate configurations for 7zg, have been found to be

inconsistent. Therefore, the 23 consistent cases establish the 23 binary topological
relations between a region and a region with a hole.

S. Properties of the Twenty-Three Relations

These 23 tgr, can be viewed as refinements of the eight ¢,,. Five of the eight
t . —disjoint, meet, covers, contains, equal—do not reveal further details if region B

has a hole, because in each of these cases the relation between A and B* is so strongly
constrained that only a single relation is possible between A and B’s hole B,. The
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remaining three ¢,, —overlap, coveredBy, inside—are less constraining as each offers

multiple variations for the topological relations between A and By: overlap and
coveredBy each have five variations for 7 (A, By), while inside has a total of eight
variations.

Without a specification of the relation between A and B, the configurations A
overlap B* (RR,5- RR,8) and A coveredBy B* (RR,11-RR,15) are underdetermined,
that is, one can only exclude for each case the three relations A equal By, A coveredBy
By, and A inside By, but cannot pin down which of the remaining five choices—A
disjoint By, A meet By, A overlap By, A covers By, A contains B,—actually holds.
Likewise, the configuration A inside B* is undetermined without a specification of the
relation between A and By, because any of the eight ¢, could hold between A and By,

5.1 Converse Relations

Since the domain and co-domain of 7zg, refer to different types—a region with a hole
and a region without a hole—there is neither an identity relation, nor are there
symmetric, reflexive, or transitive fgg,. The concept of a converse relation (i.e., the
relation between a region with a hole and another region) still exists, however. The
relation converse to fgg, is implied through the converse property of the constituent
relations (Eqn. 1)— #(B",A) = t(A,B") and #(B,,A)=1t(A,B,) —which is captured in
a transposed matrix of the constituent relations (Eqn. 3).

O | B L

This leads immediately to 23 tg,z. Their names are chosen systematically so that
all pairs of converse relations have the same index (Eqn. 4).

Vx:1...23: R,Rx=RR,x @)

From among the 23 pairs of converse fgg, tr,r, five relation pairs have identical
constituent relations (Equations 5a-e), because each element of these five pairs has a
symmetric converse relation, that is, R,Rx = (RR hx)T.

diijgiZ;T = [disjoint disjoint] (5a)
: di1s1jeoei€1 t:T = [meet disjoint] (5b)
ere;;lgﬁT = [overlap disjoint] (S¢)
:OZZZP :T = [overlap meet] (5d)
[Z:Zﬁgﬁ ]T =[overlap overlap] (Se)
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5.2 Implied Relations

The dependencies among a region’s relations to the generalized region and the hole
reveal various levels of constrains (Figure 9). While five 7 (A, B*) imply a unique
relation for ¢ (A, By), two other ¢ (A, B¥*) restrict 7 (A, By) to five choices. Only one
t (A, B¥)—inside—yields the universal relation U, imposing no constraints on ¢ (A,
By).

Known Relation ¢ (A, B¥) Implied Relation ¢ (A, By)

disjoint disjoint
meet disjoint
covers contains
contains contains
equal contains
overlap not {equal, coveredBy, inside}
coveredBy not {equal, coveredBy, inside}
inside U

Fig. 9. Constraints imposed by a specified t (A, B¥) on t (A, By).

Reversely, knowledge of the relation ¢ (A, By) implies in three cases—if # (A, By) is
equal, coveredBy, or inside—a unique relation between A and B*; has three choices
for three relations between A and B* (if ¢ (A, By) is meet, overlap, or covers); five
choices in one case (if 7 (A, By) is disjoint); and six choices if t (A, By) is contains
(Figure 10).

Known Relation ¢ (A, By) Implied Relation ¢ (A, B*)

equal inside
coveredBy inside
inside inside

disjoint not {equal, covers, contains}

meet {overlap, coveredBy, inside}

overlap {overlap, coveredBy, inside}

covers {overlap, coveredBy, inside}

contains not {disjoint, meet}

Fig. 10. Constraints imposed by a specified ¢ (A, By) on t (A, B*).

The dependencies may be seen as an opportunity for minimizing the number of
relations that are recorded. For example, if one of the two implications were such that
all known relations implied a unique relation, then it would be sufficient to record
only the known relation, thereby cutting into half the amount of relations to be stored
for each tgg,. Such a simple choice does not apply, however. Since five 7 (A, By,) are
implied uniquely by ¢ (A, B*), t (A, By) needs to be recorded only in three cases to fix
a complete 7gg, specification. Reversely only three 7 (A, B*) are implied uniquely by
their 7 (A, By). Therefore, the common-sense choice of favoring the relation with
respect to the generalized region over the relation to the hole gets further support.



10  Max J. Egenhofer and Maria Vasardani

6. Compositions over a Region with a Hole

A key inference mechanism for relations is their composition, that is, the derivation of
the relation A to C from the knowledge of the two relations t (A, B) and ¢t (B, C). A
complete account of all relevant compositions considers first all combinatorial
compositions of relations with regions (R) and regions with a hole (Ry). Since all
compositions involve two binary relations (i.e., _ _; _ _ ), each over a pair of R and
Ry, there are 2* = 16 possible combinations (Figure 11). Eight of these sixteen
combinations specify invalid compositions (C 3-6 and C 11-14), because the domain
and co-domain of the composing relations’ common argument are of different types
(i.e., trying to form a composition over a Region and a Region with a hole). Among
the remaining eight combinations, C 1 is the well-known composition of region-
region relations. Two pairs of combinations capture converse compositions—C 2 and
C9, as well as C8 and C 15—while three combinations capture symmetric
compositions—C 7, C 10, and C 16.

Cl ity:t, CS5 — C9  tyity CI3 —
C2 tyity C6 — C10 1,0, Cl4 —

C3 — C7 ty:t,, Cll —  CI5 il
C4 — C8 tyity, CI12  —  Cl6 1,31,

Fig. 11. The 16 combinations of compositions of binary relations with regions (R) and regions
with a hole (R,).

From among these combinations of compositions involving a region with a hole,
we focus here on Comp 7, the inferences from #gg, ; tr,r. A spatial scene serves
again as the framework for a computational derivation of all compositions. Objects A
and C are two regions without a hole, whereas object B is a region with a hole. The
corresponding spatial scene has four regions (A, B*, By, and C) with their sixteen
region-region relations (Figure 12). The pair of relations ¢ (A, B*) ¢ (A, By) must be a
subset of the 23 valid tgg, , while the pair of relations ¢ (B*, C) t (By, C) must be a
subset of the 23 valid tg,g. Furthermore, ¢t (B*, A) and ¢ (B, A) must be the
respective converse relations of 7 (A, B¥) and ¢ (A, By). The same converse property
must hold for the pair ¢ (C, B*) t (C, By) with respect to ¢ (B*, C) t (By, C). With 23
pairs for each rgg, and tg,r, there are 529 compositions. The range of the inferred
relation ¢ (A, C) is the set of the eight tgg. This composition of 7 (A, B) ;¢ (B, C) is
specified for any spatial scene that is node-consistent, arc-consistent, and path-
consistent. To determine systematically all consistent compositions, we have
developed a software prototype of a consistency checker that evaluates a spatial scene
for the three consistencies. All compositions where found to be valid (i.e., none of the
compositions resulted in the empty relation).



Spatial Reasoning with a Hole 11

A B* By C

A equal U U U

B* U equal contains U

By U inside equal U
C U U U equal

Fig. 12. The spatial scene over four regions used for the derivation of the composition ¢ (A,
B);t(B, ().

Figures 14a and 14b summarize the result graphically, using for the composition
the iconic representation of the region-region relations based on their conceptual
neighborhood graph (Freksa 1992). A highlighted relation in that graph indicates that
that relation is part of the particular composition. The universal relation Uy is then an
icon with all relations highlighted (Figure 13a), while a unique inference has a single
relation highlighted (Figure 13b). The composing relations 7zg, and tg,r are also
captured by the same neighborhood graph, in which the relation to the generalized
region is superimposed over the relation to the hole (Figure 13c).

i, E4 o

(a) (b) (©)

Fig. 13. Iconic representation of relations and compositions: (a) universal relation of region-
region relations, (b) unique composition result (inside) of region-region relations, and (c)
unique fgg, with the large circle identifying the relation between region A and the generalized
region B* and the black disc highlighting the relation between A and B,,.

7. Analysis of Compositions

The 64 compositions of tpr ; trr (Egenhofer 1994) form the benchmark for the
assessment of the reasoning power of compositions involving regions with holes.

Finding 1: The composition table fgg, ; fr,r (Figure 14a and 14b) shows that all 529
compositions are valid (i.e., there is no empty relation as the result of any of the
compositions). This means none of the 529 4-object scenes considered to calculate the
compositions (Figure 12) is inconsistent. The same level of consistency was also
found for the tgr ; tgrr composition table.

Finding 2: All compositions are compatible with the composition results of their
principal relations (Eqn. 6), that is, the inferences from the principal relations provide
an upper bound for the reasoning over regions with a hole.

Va:1...23,Vb:1...23: RR,a;R,RbC 7(RR,a); 7(R,Rb) (6)
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Finding 3: Among the 529 compositions there are 263 (49.7%) whose results are
identical to the compositions of the relations’ principal relations (Eqn. 7). Therefore,
for slightly less than half of the inferences the hole is immaterial, while it matters for
the remaining 266 inferences.

da,bla=b: RR,a;R,Rb=m(RR,a); w(R,Rb) ¥

Finding 4: Among the 266 compositions whose results are more refined than the
compositions of their principal relations, 95 compositions are refined to uniqueness
(Eqn. 8). If one were to resort in these cases to the compositions of their principal
relations, one would incorrectly infer that these compositions are underdetermined.

Ja,bla=b:RR,a;RRbC w(RR,a); 1(R,RD) A #(RR,a;R,Rb) =1 8)

To further assess the inference power of the compositions, we use the
composition’s cardinality (Eqn. 9a), which is the count of relations in that
composition result, and the composition table’s cardinality (Eqn. 9b), which is the
sum of the cardinalities of all compositions in a table. This yields the composition
table’s normalized crispness (Eqn. 9c), whose lowest value of 0 stands for
compositions that result in the universal relation and whose value increases linearly
for composition results with fewer choices. The latter measure also applies to subsets
of a composition table to assess and compare the inferences of particular groups of
relations. The corresponding measures for #gzr ; frr can be defined accordingly.

card! =# (RRhi;RhRj) (9a)
J=1..#(Usy3)
Yo = Ecardzig (9b)
i=1. #(Uy)
el Yo
r,=1- 9c
» # U # U,)*# (U,,) o

Finding 5: While the cardinality of the tgrg,;fr,r composition table is over seven
times higher than that of the fgg;fgrg composition table (y,, =1389 vs. y, =193), the
overall inferences from f#gg,;tr,r are crisper, because the average composition
cardinality is approximately 8% higher for all gg,;tr,r than for all ,:¢,,
(T,, =0.67 vs. T, =0.62).

Finding 6: The increase in crispness is primarily due to a decrease in the relative
number of compositions with a cardinality of 5 (and to a lesser degree cardinalities 6
and 8), while simultaneously the relative numbers of compositions with cardinalities
3, 2, and 4 (and to a miniscule amount those of compositions with cardinality 1)
increase (Figure 15). Overall 239 ambiguities of pure topological reasoning are
reduced, but not fully eliminated, when considering the holes in the regions.

RR?

Finding 7: In absolute numbers the count of compositions with unique results goes up
from 27 in tggr;trr to 224 in tgg,;tr,r. Since—for a different set of relations,
though—people have been found to make composition inferences more correctly if
the result is unique (Rodriguez and Egenhofer 2000), this increase augurs well for
people’s performance when reasoning over relations with holes.
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RRh16 [inside disjoint ]
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RRh20 [inside contains |
RRh21 [inside equal |
RRh22 [inside coveredBy ]
RRh23 [inside inide ]
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Finding 8: From among the 266 compositions with crisper results, 27 (i.e., 10.2%)
yield a complete crispening, that is a conversion from a universal composition to a
unique composition. Complete crispenings occur only for compositions RR,a ; R,Rb
with 7w (RR ,a) = inside and 7 (R,Rb) = contains (Figure 16). Resorting in these cases
to the composition of their principal relations would incorrectly imply that these
inferences are undetermined.

Finding 9: For all 266 compositions whose results are crisper, on average the
crispness of each of these 266 compositions improves by 3.5 counts. Given that the
highest possible improvement is seven (for a complete crispening), the average
crispness improvement is 50%.

Finding 10: Compositions RR,a;R,Rb are only subject to crispening if
7w (RR ,a) € {overlap,coveredBy,inside} and (R ,Rb)E {overlap,covers,contains},
yielding nine groups of compositions that feature crispenings (Figure 16). In these
groups, the compositions with 7 (RR,a) =inside and 7 (R,Rb) = contains have the
highest crispness improvements, both in absolute counts (319) as well as per
composition (5.23, which corresponds to an average crispness improvement of 75%).

8. Conclusions

Most qualitative spatial reasoning has disregarded the inference constraints that
cavities of geographic phenomena may impose, because their underlying models
either explicitly exclude regions with holes from their domain or assume that the
existence of a hole will have no impact on their topological inferences. To overcome
these limitations, this paper studied systematically the topological relations of regions
with a single hole, offering new insights for spatial reasoning over such regions:

While the 9-intersection captures eight topological relations between two regions,
this number increases by 88% to 23 when one of the regions has a hole, yielding
refinements of the eight region-region relations. Knowing the relation between a
region and the generalized region implies a 63% chance (5 out of 8 relations) of
uniquely identifying the complete relation between the two objects without any
explicit reference to the relation with the hole.

The 23 relations’ compositions over a common region with a hole show that these
compositions form subsets—although not necessarily true subsets—of the results
obtained from the compositions of regions without a hole. In 36% of the true subsets,
the result is unique (i.e., a single relation). Approximately half of the compositions
over a region with a hole yield fewer possible relations, with an 8% increase in the
average crispness when compared to the results of compositions over a region without
a hole. This decrease is due to a general trend of fewer results comprising five or
more possibilities, in combination with an increase of the occurrence of results of
fewer possibilities (four or less) and by a 10% increase of complete crispness
(yielding a unique relation) among these improved results. This leads to an average
crispness improvement of 50% for those results. These insights relate to people’s
reasoning performance, because relations that include regions with holes lead to a
higher relative number of unique possible results.
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These findings provide answers to the questions posed in the motivation: the more
constrained composition inferences found for topological relations of a region with a
hole are neither anomalies, nor do different inferences occur only in a single case.
Since over 50% of the inferences with a hole are more refined than the corresponding
inferences over regions without a hole, typically the reasoning over a region with a
hole does differ from the well known topological inferences of regions without a hole,

Future work will pursue the derivation of complementary methods for similarity
reasoning, such as the 23 relations’ conceptual neighborhoods. Initial results indicate
that this graph is an asymmetric extension of the graph for the eight region relations.
We further intend to pursue the modeling of and inferences from binary topological
relations between two regions, each with a hole. Finally, an interesting question for a
larger theory of consistent qualitative reasoning across space and time is whether
there are analog results to relations over regions with holes in the temporal domain,
namely for intervals with gaps.
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