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Abstract

Different users of geospatial information have different requirementsof that information.
Matching information to users’ requirements demands an understanding of the ontological
aspects of geospatial data. In this paper, we present an ontology-driven map generalization
algorithm, called DMin, that can be tailored to particular users and users’ tasks. The level
of detail in a generated map is automatically adapted by DMin according to the semantics
of the features represented. The DMin algorithm is based on a weighting function that has
two components: (1) a geometric component that differs from previous approaches to map
generalization in that no fixed threshold values are needed to parameterizethe generaliza-
tion process and (2) a semantic component that considers the relevance of map features
to the user. The flexibility of DMin is demonstrated using the example of a transportation
network.

Key words:
“cartographic generalization,” “line simplification,” “geospatial informationsemantics,”
“task-oriented”

1 Introduction

Different users of geospatial information have different requirements of that in-
formation. For example, the information requirements of a tourist exploring the
downtown area of a historic city are expected to be manifestly different from the
requirements of a dispatch driver delivering goods to localbusinesses in the same
city. The tourist is typically interested in locating landmarks and places of cultural
and historical relevance, including scenic parts of the city; the delivery driver is
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interested in the shortest path, avoiding heavy traffic and roadworks, and directly
accessing the delivery addresses. In order to meet the particular requirements of
a user engaged in a specific task, information retrieval and processing operations
must be able to incorporate ontological information about the data, the user, and
the user’s task.

In this paper, we examine the inclusion of such ontological information within
one class of geospatial information processing operation:generalization. Gener-
alization concerns the process of producing maps at coarserlevels of detail, while
retaining essential characteristics of underlying geographic information (Weibel,
1995).

The growth of mobile and location-aware systems presents a new set of challenges
for map generalization techniques. Traditional generalization techniques produce
maps that are general-purpose, that is, applicable to a widerange of different tasks.
Mobile users of location-aware systems require information that is directly relevant
to the specific task in which they are engaged. At the same time, the limited commu-
nication, power, processing, and display characteristicsof most mobile computing
devices place constraints on the digital characteristics of information provided to
users, in particular bandwidth constraints.

As a consequence, task-oriented generalization algorithms are needed that can
adapt information to the diverse requirements of users of mobile and location-aware
systems. In this paper we present an ontology-driven map generalization algorithm,
called DMin (“dee-min”), that is able to meet this need (“DMin” is a contraction of
“decimation-min-ε,” see sections 2.1 and 3.1). DMin comprises two components:
a geometric component and a semantic component. Following the review of back-
ground literature in section 2, we present DMin and explore its properties in section
3. Section 4 illustrates the geometric component of DMin, using the example of a
transportation network. Section 5 shows, using the same transportation example,
how the semantic component of DMin can be used to adapt the generalization pro-
cess to a range of different task-oriented user requirements. Finally, the discussion
in section 6 concludes the paper and presents suggestions for further work.

2 Background

Techniques for generalizing two-dimensional data in geospatial applications have a
long tradition. Jones (1997) distinguishes eight different generalization techniques:
elimination, simplification (also called reduction), typification, exaggeration, en-
hancement, collapse, amalgamation, and displacement. We confine our survey to
line simplification techniques. In section 5 we also discussthe elimination of lines,
which in turn can form the basis of amalgamation and collapseoperations.
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2.1 Line simplification algorithms

Heckbert and Garland (1997) give an extensive survey of polygonal simplifica-
tion algorithms for lines as well as surfaces. These techniques may be thought of as
lossy compression techniques. Simplified representations, such as a schematic map,
conserve bandwidth when transmitted to a mobile computing device, for example a
handheld or wearable computer. Typical two-dimensional visualizations of geospa-
tial data include maps of transportation networks, for example street networks and
terrain elevations. In such maps, (polygonal) lines are used to represent the extents
of streets or differences in elevation.

Computational cartography has led to the development of a suite of techniques for
simplifying and reducing detail in polygonal lines (McMaster, 1987; McMaster and
Shea, 1992). Most of these simplification techniques employadecimationstrategy,
in which the vertices of polygonal lines are deleted sequentially in accordance with
a preset error criterion. An example of a simple decimation algorithm is to remove
everynth point not fulfilling an error criterion. More sophisticateddecimation al-
gorithms determine which points are to be deleted by superimposing local toler-
ance bands upon the original line (Reumann and Witkam, 1973).Other techniques
process local direction and distance information (Jenks, 1981; McMaster, 1987),
taking into account two or three points of a line and traversing the line sequentially,
deleting vertices according to a predefined minimum length,or angle, or both.

One of the most popular techniques, also employed in commercial systems, is the
Douglas-Peucker algorithm (Douglas and Peucker, 1973). Incontrast to decima-
tion algorithms, the Douglas-Peucker algorithm employs a constructiverefinement
strategy. Vertices are sequentially inserted between the extreme points of the orig-
inal polygonal line in accordance with a preset error criterion. Algorithms like the
Douglas-Peucker algorithm are often described asglobal, because they process an
entire line at once. However, like most of these so-called global algorithms the
Douglas-Peucker algorithm is only able to operategloballyupon one polygonal line
at a time. An important feature of the DMin algorithm is that it is able to operate
upon multiple polygonal curves at the same time, therefore,optimizinguniversally
across an entire data set. An alternative to this approach isto integrate global gen-
eralization algorithms into a universal generalization solution, for example using
multi-agent systems (Lamy et al., 1999; Galanda and Weibel,2002). However, the
multi-agent approach has been criticized for requiring impractical levels of com-
putational resources (Vermeij et al., 2003). Consequently,it is not well-suited to
on-demand mapping in a mobile computing environment.

Every line simplification algorithm introduces a deviationfrom the original lines,
the error,ε, of the simplification (Cromley, 1991). There are two types ofdesign
goals for simplifications algorithms with respect to error bounds (Imai and Iri,
1988):
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(1) minimizing the number of vertices for a given error boundε, called min-#
problem; and

(2) minimizing the approximation error for a certain numberof vertices, called
min-ε problem.

According to Imai and Iri (1988) min-# problem are easier to solve than min-ε
problems.

Most line simplification algorithms are min-# techniques and work with a predeter-
mined error boundε. Typically, the error bound defines a tolerance band such that
only points within the tolerance band are allowed to be deleted. The disadvantage
of this technique is that a user has to specify in advance a sensible threshold value
of the error boundε for each dataset. This threshold value indirectly determines
the number of points removed. The actual number of points that will be removed
is not known in advance, making min-# techniques less suitable for compression
purposes.

2.2 Goals of line simplification

Weibel (1996) specifies four criteria that generalization techniques have to satisfy:
Gestalt (shape) constraints, semantic constraints, metric constraints, and topologi-
cal constraints. We consider each of these criteria in turn.

First, with notable exceptions like the Douglas-Peucker algorithm, many algorithms
are not able to preserve the overall shape of lines, because the simplification criteria
involve only local curve features. The shape of a curve is essential for identifying
the salient features of the object represented by the curve.For example, a meander-
ing line representing a street might indicate to a driver slow or otherwise difficult
driving conditions (Mark, 1989). Recent work on line simplification in image pro-
cessing (Latecki and Lakämper, 1999, 2000, 2002) has drawn upon psychological
research into shape interpretation and human cognition (Hoffman and Singh, 1997).

Second, the majority of cartographic algorithms are not tailored to meet the require-
ments of a specific user or task. The algorithms are based primarily on geometric
error criteria, but do not include semantic or ontological knowledge about lines,
such as the meaning of a line (e.g., road versus vegetation boundary) or its non-
spatial properties (e.g., surface type or traffic throughput of a road). Although the
inclusion of semantic knowledge is widely regarded as an important issue for line
generalization algorithms (Jones, 1997), current algorithms have not addressed this
need. To date, only a few generalization algorithms, such asthe multicriteria line
generalization of Sinha and Flewelling (2002), are able to incorporate any non-
spatial information into the generalization process.

Third, many line generalization algorithms are not guaranteed to beoptimal ac-
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cording to a given error criterion. In this context, “optimal” means an algorithm is
able to find the best possible approximation that minimizes the overall deviation
of the simplified line with respect to the original line. According to Heckbert and
Garland (1997) there has been relatively little work on optimal simplification algo-
rithms for lines. Imai and Iri (1988) have shown that the computational complexity
of optimal decimation techniques for a curve withn vertices in general isn2 log n.
Because optimal algorithms can be slow, it is common practiceto trade optimal-
ity for speed. The Douglas-Peucker algorithm is not optimal, but can be computed
with a complexity ofn log∗ n (Hershberger and Snoeyink, 1998).

Fourth, not all algorithms are guaranteed to be topologically consistent (Muller,
1990), and may introduce such topological inconsistenciesas new self-intersections
or new intersections with neighboring map features. The Douglas-Peucker algo-
rithm is not necessarily topologically consistent. For mapdata in vector format,
the importance of topological consistency has been emphasized by Bertolotto and
Egenhofer (2001). Approaches simplifying lines in a topologically consistent man-
ner are given in Jones et al. (1995), de Berg et al. (1998), and van der Poorten
et al. (2002). Topologically consistent simplification algorithms are typically based
on computational geometry techniques such as Delaunay triangulation (van der
Poorten et al., 2002).

In summary, none of the current generalization algorithms is at the same time
ontology-driven, shape-preserving, topologically consistent, and optimal.

3 The DMin algorithm

The DMin algorithm incorporates both geometric and semantic information about
a line. The core aim of DMin is to achieve ontology-driven simplification, where
semantic information concerning the relative importance of features to a user can
be accounted for within the simplification process. Additional design goals of the
DMin algorithm include shape-preservation and the maintenance of topological
consistency. Although the DMin algorithm is not optimal, itis still very efficient in
terms of computational complexity and, therefore, scales well to very large datasets.

3.1 General approach

A crucial foundation for DMin is the assignment of separate weights to each vertex
of every line in a dataset. The weight consists of two components, a geometric
and a semantic component. The DMin algorithm uses the weighting function to
decide which points are deleted when the set of lines is simplified. At each step the
algorithm determines for all lines the point with the smallest weight. Those vertices
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with the smallest weights are successively dropped.

The DMin algorithm is a min-ε technique. At each iteration DMin removes the
point with the least importance (weight) and consequently does not require any
preset error bound. The total number of points to be deleted can be explicitly speci-
fied by the user. For example, if a user requires a compressionratio of 10:1, then the
algorithm can be set to remove those 90% of points that are of least importance, in
terms of both geometry and semantics. In the context of mobile and location-aware
computing, the min-ε approach, used in DMin, enables the level of compression to
be adjusted to the limitations of bandwidth or display resolution.

3.2 Weighting functions

The geometric component of DMin measures the overall impactof a vertex on
the shape of the line to which it belongs. The geometric weight assigned to each
vertex will usually depend on the length of the segments meeting at the vertex and
their turning angle. In this case, the weighting function will be a ternary function
f : R

3 → R. The precise nature of the function may vary. It could dependlinearly
on the segments and the turning angle, that is,f(s1, s2, α) 7→ s1·s2·α. Alternatively,
it could emphasize the turning angle, or minimize the area ofthe triangle spanned
by the two segments.

A key element of the DMin algorithm is itsadaptability. DMin can be tailored to
different cartographic or psychological requirements by adopting different weight-
ing functions. In the examples that follow in later sections, we have primarily
adopted theL2 error norm to ensure compatibility with existing research.TheL2

error norm is a standard construction used in geometry to quantify the discrepancy
between two curves, in terms of the area enclosed by those curves. Although the
L2 error norm is widely used in simplification algorithms, results of cognitive psy-
chology and gestalt theory (Hoffman and Singh, 1997) show that salient angles are
often crucial for a description of shape features. Thus, we have also included in
section 4 a weighting function that emphasizes angular information.

In addition to the geometric impact of a vertex upon the entire polygonal curve, we
also assign a weight for the semantic relevance of each vertex within a particular
context. A geographic object is described not only by its geometric extension, but
also by its semantic features. For example, in the case of a road network, an un-
derlying road ontology might provide the semantics for different classes of roads.
In turn, different road classes may assume varying levels ofimportance to a person
engaged in a particular task (e.g., highways being more important than major roads,
which are more important than minor roads). The semantic weight assigned to each
vertex should reflect the relevance of that vertex to a specific task- or user-oriented
context. Later sections give examples of such semantic weighting functions.
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3.3 Topological consistency

The algorithms presented in sections 3.4 and 3.5 are topologically consistent: they
neither introduce self-intersections for a single line nordo they introduce any new
intersections with neighboring lines. Self-intersections and new intersections in-
troduced during simplification can be identified by applyingthe triangle-criterion,
which is used, for example, in knot theory (Livingston, 1993). Deleting a vertex
from a polygonal curve introduces a self-intersection if and only if there exists one
or more points of the curve lying within the triangle spannedby the two segments
of the vertex in question (Figure 1).

Fig. 1. Introducing intersections by deleting vertices

The triangle condition ensures that the line simplificationdoes not introduce any
new line intersections. In the case of non-planar graphs, however, the triangle con-
dition is insufficient to guarantee that existing line intersections are preserved (Fig-
ure 2). The configuration shown in Figure 2 is not uncommon in geospatial informa-
tion, for example in the representation of bridges and tunnels in transport networks.
Removing these intersections would change the topological structure of the trans-
port network. To ensure topological consistency the DMin algorithm maintains a
list of line intersections that are not vertices of polygonal curves.

Fig. 2. Removing intersections by deleting vertices

Finally, our topological consistency checks assume that the underlying graph is
connected. For a disconnected graph there is a possibility that the DMin algo-
rithm could change the graph’s topology, if two of the graph’s disconnected non-
intersecting components still have no intersection after one component is simplified
(Figure 3). Although such topological inconsistencies arepossiblefor disconnected
graphs, they represent a degenerate case and seem unlikely to occur for spatial data.

Fig. 3. Line simplification leading to topological inconsistency in disconnected graphs
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3.4 Line simplification algorithm

The first variant of the DMin algorithm, called S-DMin,simplifiesthe polygonal
curves up to a desired compression level; that is, until a certain number of vertices
have been removed. Every vertex of a polygonal curve that is not an endpoint is
called aninterior vertex. The S-DMin line simplification algorithm only deletes
interior vertices of polygonal curves. IfN is the overall number of interior vertices
of all polygonal curves andn the number of removed interior vertices, then the
compression level is the ration/N expressed as a percentage, whereN > 0. A
compression level of 100% (assuming this is possible without introducing self-
intersections) means that the simplification algorithm removes every interior point
of each polygonal curve, resulting in a planar straight linegraph.

Algorithm 1 : S-DMin semantic line simplification

Input : A setP of polygonal curves and the desired compression levell

Output : A setP of polygonal curves simplified to the desired compression level l
// Initialize weights;
foreachcurvec ∈ P do

foreach interior vertexv of c do
Compute geometric weightωg(v);
Compute semantic weightωs(v);
Compute combined weightω(v) ← ωg(v) ⊗ ωs(v);

Generate a priority queueΩ of all weightsω;
1.1 Compute a listI of intersection points that are not vertices of a curve;

// Iterate over weights;
Setn ← 1;
while current compression level< l andΩ 6= ∅ do

Select vertexvi with nth smallest weight fromΩ;
Select curvec ∈ P containingvi;

1.2 Λ(vi) ← {v|v 6= vi andv is ac-adjacent vertex};
1.3 if vi−1vi ∩ I = ∅ andvivi+1 ∩ I = ∅ andΛ(vi) ∩ ∆(vi−1vivi+1) = ∅ then

Remove vertexvi from c;
Removeω(vi) from Ω;
Setn ← 0;

Setn ← n + 1;

Algorithm 1 initializes the weight for every interior vertex v as a combination of the
geometric and semantic weights for that vertex,ωg(v) andωs(v) respectively. Each
weight is stored in a priority queueΩ. At line 1.1, a listI of existing intersection
points is stored. These points can be junctions in the road network or represent
tunnels and bridges (see section 3.3).

At each iteration the algorithm tries to remove the vertex with the minimum weight.
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When deleting a vertex of a curve, the algorithm must check forintersections with
other curves. To increase efficiency, instead of checking for intersections of the
curvec with all other curves, the algorithm only needs to check for intersections
with those curves that are in some sense in the immediate vicinity of c. For example,
for a planar graph it would only be necessary to check for intersections with those
parts of curves that share a common face withc. In the more general case of non-
planar graphs, we require a more complex definition of what itmeans to be in the
“immediate vicinity” of c, leading to the definitions below.

A polygonal region is calledsimpleif it has a non-intersecting boundary consisting
of edges and nodes in the underlying graph. A simple polygonal region is ac-face
is if has at least one line segment in common with the curvec. A c-face isminimal
if it does not completely contain any otherc-face. A boundary vertex of a minimal
c-face is calledc-adjacent. The algorithm maintains a setΛ of all vertices that are
c-adjacent, in order to check more efficiently for intersections between curves.

The line segment connecting two verticesvi andvi+1 is denoted byvivi+1. The
condition in line 1.3 checks whether removing the selected vertexvi either:

(1) deletes an existing interior point ofI (i.e., one of segments with endpointvi

contains a point ofI); or
(2) introduces an intersection (i.e., one of the vertices ofΛ lies in the triangle

defined by the segments with endpointvi).

If the elimination of the vertex does not change the topologyof the graph, the vertex
is removed from its supporting curve and its weight deleted fromΩ. Otherwise, the
algorithm removes the vertex with the next-smallest weightthat does not introduce
an intersection. The algorithm terminates once the desiredcompression level is
reached, or if there exist no curves that can be simplified without changing the
graph’s topology.

3.5 Line generalization algorithm

The S-DMin algorithm simplifies but never eliminates curves. However, we can use
the general form of the line simplification algorithm to define a line generalization
algorithm that may eliminate complete curves from the graph(Algorithm 2). The
second algorithm, called SE-DMin for “simplification-elimination-DMin,” assigns
a weight to every vertex, including the endpoints of each curve (line 2.1). The
algorithm assumes that the weights of the endpoints of a curve are always greater
than any of the weights of the interior points of a curve. Thisimplies that the line
generalization process will always delete interior pointsof a curve before deleting
its endpoints. The intuition behind the SE-DMin algorithm is that a line is first
simplified before it is completely deleted.
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Algorithm 2 : SE-DMin semantic line generalization

Input : A setP of polygonal curves and the desired compression levell

Output : A setP of polygonal curves generalized to the desired compressionlevel
l

// Initialize weights;
foreachcurvec ∈ P do

foreach interior vertexv of c do
Compute geometric weightωg(v);
Compute semantic weightωs(v);

2.1 Compute combined weightω(v) ← ωg(v) ⊗ ωs(v);

Generate a priority queueΩ of all weightsω;
// Iterate over weights;
Setn ← 1;
while current compression level< l andΩ 6= ∅ do

Select vertexvi with nth smallest weight fromΩ;
Select curvec ∈ P containingvi;
if no intersections are introducedthen

if vi is an interior vertex ofc then
Remove vertexvi from c;
Removeω(vi) from Ω;

else
Select endpointvj 6= vi of c;

2.2 Removeω(vi) andω(vj) from Ω;
Removec from P ;

Setn ← 0;
Setn ← n + 1;

The initialization stage of SE-DMin assigns to every vertexof each curve a weight.
The algorithm continues to delete points with minimal weights until the desired
compression level is reached or the graph cannot be further generalized without
introducing new intersections between curves. If a vertex has a minimal weight and
its deletion does introduce any intersections between curves, two cases can occur:

(1) the vertex is an inner point of a curve; or
(2) the vertex is an endpoint of a curve.

In case 1 only the point is deleted from its corresponding curve and its weight is
deleted from the listΩ. In case 2, however, the entire curve to which the vertex
belongs is eliminated. At line 2.2 the weights of both endpoints belonging to this
curve are deleted from the listΩ. In contrast to the simplification algorithm, the
generalization algorithm can change the topology of the graph by removing lines.
Existing intersections between lines may be removed. Therefore, the condition in
S-DMin algorithm 1 (line 1.3) that checks whether an intersection is removed is
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Fig. 4. Four co-located endpoints at an intersection

missing in SE-DMin algorithm 2.

In order to delete an entire curve from a graph, we assume thatan intersection
of curves is represented not by a single point, but by the unique points that be-
long to each individual curve meeting at that intersection.For example, in Figure
4 even though the points are coincident in the representation, each point can be
still identified with the curve to which it belongs. The number of coincident points
at an intersection corresponds to the number of curves incident with that intersec-
tion (the degree of that intersection). For example, if fourstreets are incident at
an intersection, the intersection is represented by four endpoints. Given a four-way
intersection, the deletion of one street would, therefore,result in the removal of the
one curve, but not the intersection point itself, resultingin a T-junction.

An optimal simplification algorithm guarantees that there is no better approxima-
tion of a line simplification with respect to a given weighting function. Because
the primary goal of this approach is to explore the value of combining semantic
with geometric information for generalization, we implemented a fast algorithm
and traded optimality for speed. The DMin algorithm is locally optimal, that is,
optimal in each step, but not globally optimal. However, anydecimation technique
can easily be modified to produce an optimal algorithm, albeit at the cost of greatly
increased computational complexity (see Imai and Iri, 1988, for more details).

4 Example geometric simplification

This section illustrates the basic geometric simplification that can be performed by
the S-DMin simplification algorithm. The algorithm was implemented, using Java,
and tested on a range of real and simulated data. The examplesin this and following
sections are based on topographic data for British Columbia, Canada∗ .

∗ The datasets used in this paper are available via the Canadian Geospatial Data Infrastruc-
ture (CGDI),http://www.cgdi.gc.ca. Data for Figures 5, 6, 8–11c© 2003 Govern-
ment of Canada with permission from Natural Resources Canada.
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A design feature of the DMin algorithm is that it possesses sufficient adaptability
to generalize using a wide variety of weighting functions (section 3.2). This fea-
ture contrasts with much of the previous work on generalization (section 2), which
is concerned with the properties of specific weighting functions. To illustrate this
property, Figure 5 shows the results of simplifying 90% of the points within a single
line (part of a coastline) using three different geometric weighting functions.

a. Normalized linear weights

b. Angle-biased weights

c. error norm weightsL
2

Fig. 5. Comparison of three different geometric line simplification weighting functions for
part of the coastline of British Columbia, Canada with 90% of vertices removed.

The three geometric weighting functions used to generate Figure 5 are as follows:

(1) Normalized linear weights: After Latecki and Lak̈amper (1999), we tested the
ternary weighting functionf(s1, s2, α) 7→ s1·s2·α

s1+s2
, where, for three adjacent

pointspn−1, pn, andpn+1, s1 is the distance betweenpn−1 andpn, s2 is the
distance betweenpn+1 andpn, andα is the turning anglepn−1pnpn+1.

(2) Angular-biased weights: In keeping with Hoffman and Singh (1997), the
weighting function can be biased toward the turning angle byusing the ternary
weighting functionf(s1, s2, α) 7→ s1 · s2 · α

3, wheres1, s2, andα are defined
as above.

(3) L2 error norm weights: A commonly used error criterion in generalization,
the L2 error norm weights associated with each vertex are computedas the
area enclosed between the original curve and the curve that would result from
removing that vertex.
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These three functions were chosen as a representative sample of the geometric
weighting functions tested during the course of this work. In computational terms,
the normalized linear and angle-biased weighting functions are the simplest to com-
pute as the weighting for each point depends only on the distances and angle be-
tween three points. Weighting function 3, theL2 error norm, may require a consid-
eration of all the points within a line in order to compute theweight for a particular
point.

In cartographic terms, all three weighting functions are sensible, allowing a high de-
gree of simplification while still retaining the essential characteristics of the curve.
The choice of which weighting function to use within a particular application will
be, at least partly, a subjective one. From the perspective of this paper, the important
message is that the DMin algorithm is flexible enough to allowany of these func-
tions to be used to build the overall geometric weighting function ωg, and indeed
any similar functions.

As discussed in section 2, the DMin algorithm may be applied universally to a
complex dataset made up of multiple lines and polygons, as toa single line. Fig-
ure 6 shows an example simplification of part of the transportnetwork of British
Columbia. At each iteration, the simplification process findsthe optimal point to
remove from acrossall the geometries in the dataset. By contrast, traditional gen-
eralization algorithms operate locally on part of a featureor globally on just one
feature at a time. Per-feature generalization can be iterated over the whole dataset.
However, processing universally across an entire dataset ensures that the simplifi-
cation process operates within the context of the dataset asa whole.

4.1 Analysis

Figure 7 compares the behavior of the three geometric weighting functions for the
data set displayed in Figure 6. For each weighting function,the figure plots the level
of simplification (as percentage of points removed) againstthe total inaccuracy
in the map (in terms of theL2 error norm, the area of discrepancy between the
generalized and ungeneralized map in square kilometers). The figure shows that all
weighting functions perform well, in the sense that between30% and 40% of the
data points can be removed using the S-DMin simplification algorithm with almost
zero error. The level of inaccuracy remains relatively low,up until the 60–80%
generalization level, after which levels of inaccuracy increase dramatically.

The errors for theL2 norm weighting function are initially marginally lower than
for the other two weighting functions. In the 60–90% range this situation is re-
versed, with errors for theL2 norm weighting function being larger than for the
other two functions. This feature highlights the local optimality of the DMin algo-
rithm. At each iteration, theL2 error norm weighting function removes that vertex
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Major highway

Minor highway

Minor road

Multi-lane highway

Ferry route

85%
Vertex Reduction
(Angle-biased
weighting)

0%
Vertex Reduction
(12,000 vertices)

Fig. 6. Geometric line simplification for part of the transport network of BritishColumbia,
Canada.

which yields the minimal increase in error. Over multiple iterations this strategy
does not necessarily lead to a globally optimal solution (hence, the other weighting
functions are able to achieve lower levels of inaccuracy).

4.2 Summary

This section has illustrated the geometric simplification of geospatial data using the
DMin algorithm. DMin provides several significant advantages over many other
conventional line simplification algorithms. Specifically, DMin is:
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Fig. 7. Comparison of geometric line simplification weighting function performance for the
transport network shown in Figure 6.

• able to generalize within the context of the entire dataset,not simply on a per-
feature basis;

• flexible enough to support a range of weighting functions; and
• locally optimal (optimal at each iteration), although not globally optimal.

These features mean the DMin algorithm compares well with conventional line
simplification algorithms. However, its advantage is that the weighting functions
may be further extended to encompass semantic as well as geometric information,
explored further in the following section.

5 Ontology-driven simplification

Traditional map generalization usually aims to provide a multi-purpose representa-
tion of a geographic environment, suitable for a variety of different users engaged
in a diverse range of activities. The growth in mobile and location-aware computing
in particular has led to a greater demand for mapping services that are tailored to
the requirements of a particular user engaged in a specific task. In turn, this requires
the ability to incorporate ontological information about the tasks and goals of a user
when responding to user queries.
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5.1 Parameterized semantic weighting function

The semantic weighting component of the DMin algorithm is just as flexible as
the geometric weighting component. Potentially any semantic weighting function
can be used. As an example, consider a weighting function based on a tuple of
user-defined weights for each feature class in the map. The transportation dataset
used to evaluate the algorithm has five feature classes. Correspondingly, the quin-
tuple 〈a, b, c, d, e〉 can be used to encode the user-defined weightsa, b, c, d, ande
expressing the relevance to a user of ferry routes, minor roads, minor highways,
major highways, and multi-lane highways, respectively. For the purposes of this
example, we define a semantic weighting function (Equation 1), wherek is some
constant andx is the user-defined weight (from our tuple) for the feature class to
which vertexv belongs:

ωs(v) 7→ kx (1)

Using this approach, the ontology-driven simplification process can be parameter-
ized using the tuple〈a, b, c, d, e〉. The values of each element in the tuple can be ma-
nipulated to reflect a particular user’s requirements. For example, the task ontology
of a delivery driver, who considers multi-lane and major highways more relevant
to the task of delivering goods than minor roads and highwaysor ferry routes, is
modeled as the tuple〈0, 0, 0, 1, 1〉. By contrast, a tourist’s information requirements
might be represented as the tuple〈1, 0, 1, 1, 0〉 (i.e., tourists regard multi-lane high-
ways and minor roads as of less relevance to touring than ferry routes, and minor
and major highways). Similarly, a recreational cyclist whowishes to avoid heavy
motorized traffic might regard minor roads and highways as ofgreatest relevance
to the task of cycle-touring, represented as the tuple〈0, 2, 1, 0, 0〉.

To incorporate semantic information into the simplification process, we must com-
bine the parameterized semantic weighting function with a geometric weighting
function (section 3.4). For example, Figure 8 shows a detailfrom part of the trans-
port network dataset, following simplification using the linear combination of geo-
metric and semantic weighting functions,ω(v) 7→ ωg(v) · ωs(v). In Figure 8,ωg is
theL2 error norm weighting andωs is the tuple-based semantic weighting function
discussed above. The two maps represent the results of tailoring the simplification
algorithm toward the task-oriented requirements of two different users, the delivery
driver and the recreational cyclist.

Comparison of the maps in Figure 8 reveals that, while all the roads have been gen-
eralized to a high extent, greater detail does indeed remainon features of particular
relevance to the user’s task ontology. To quantify the differential generalization,
Figure 9 shows an accuracy map for the entire dataset based onthe delivery driver’s
task ontology, using tuple〈0, 0, 0, 1, 1〉. For each line segment, the level of accuracy
of the simplified line has been computed as theL2 error norm for that line segment,
normalized according to the length of line segment. In Figure 9 black lines indicate
zero error (i.e., no deviation from the dataset); dark gray lines show simplified line
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Delivery driver task-parameters 0,0,0,1,1+ , Recreational cyclist task-parameters 0,2,1,0,0+ ,

Fig. 8. Ontology-driven line simplifications using different task-oriented parameters.

segments of high accuracy; light gray lines show lower accuracy simplified line
segments; and the palest gray shows those lines with the greatest normalized er-
ror levels. As expected, the spatial distribution of simplification accuracy indicates
more accurate simplification is coincident with the features of interest, in this case
major and multi-lane highways.

Simplification
accuracy (80%
vertices removed)

Low accuracy

Mid-level accuracy

High accuracy

No error

Fig. 9. Accuracy map for delivery driver task-oriented simplification.

Further statistical analysis, using a pairedt-test for differences between two means,
compared the performance of the ontology-driven simplification process (using the
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delivery driver task-oriented parameters from Figure 8) with the standard geometric
simplification (using theL2 error norm). For each road class, the null hypothesis,
that there exists no significant difference between the error characteristics of the
two simplification techniques, was tested. After removing 80% of points in the
dataset, the tests revealed significantly lower errors for multi-lane highways and
major roads using the ontology-driven simplification process (significant at the 5%
level). No significant differences between the error levelsfor the two simplification
processes were discovered for any other road classes. This is an encouraging result
as it indicates that:

(1) the ontology-driven generalization process leads to decreased error levels for
the feature classes that are considered more relevant; and

(2) any corresponding loss of accuracy across less relevantfeature classes is rela-
tively mild (i.e., not statistically significant).

In these examples, the tuple weights needed to generate the task-oriented maps
were the result of a subjective assessment of a potential users’ needs. The prototype
software developed for this research automatically includes a series of sliders as
part of its graphical user interface, one slider for each class of transportation route.
By adjusting the sliders, a user is able to interactively set the tuple-based semantic
weights used in the generalization process.

A variety of different mechanisms might be used to set the semantic weights. For
example, a generalization system could include a series of preset profiles, each
associated with particular tuple. A user would then select the preset profile that
best matches his or her own requirements. It is also conceivable that the semantic
weights could be automatically generated byuser agents, software programs that
mediate on behalf of the user to acquire information that is more relevant to that
user. The InfoSleuth architecture is one example of a systemthat utilizes such user
agents in ontology-based information capture and retrieval (Nodine et al., 2000).

5.2 Semantic weighting with user routes

The parameterized semantic weighting function is just one possible way to incor-
porate task-oriented information about a user’s information requirements into the
simplification process. Figure 10 shows the accuracy map resulting from another
type of task-oriented simplification. In Figure 10, the spatial distribution of simpli-
fication is controlled by proximity to a user’s route throughthe transport network.
Locations further away from the user’s route are simplified in preference to those
closer to the route. The semantic weights,ωs, are derived from the familiar inverse
distance decay function (Equation 2), where for some vertexv and user router,
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dr(v) is the minimum distance fromv to some part ofr:

ωs(v) =
1

dr(v)
(2)

Simplification
accuracy (80%
vertices removed)

Low accuracy

Mid-level accuracy

High accuracy

No error

User route

Fig. 10. Accuracy map for task-oriented simplification with user route.

This semantic weighting function could be used to provide a task-oriented general-
ization of a map for a user navigating through the transport network. Locations on
or close to the user’s route are clearly more relevant to the user’s navigation task
than those further away from the route. Correspondingly, these will be subject to
lower levels of simplification.

5.3 Task-oriented elimination

The approach so far has focused exclusively on simplification. However, elimi-
nation may also be effected using the SE-DMin algorithm (section 3.5). In this
section we briefly illustrate some results of using both simplification and elimina-
tion on the test network dataset. Figure 11 shows an extreme example of elimina-
tion in ontology-driven map generalization. The distance decay semantic weighting
function (section 4), combined with the usualL2 error norm geometric weighting
function, has been used to generate Figure 11.

In Figure 11, the generalization level has been set to 90%. Atthis high level of
generalization, the majority of roads have been eliminated, although the map still
contains considerable detail close to the user’s intended route. The SE-DMin al-
gorithm as presented here is somewhat naive, causing a few roads at the periphery
of the test area to become disconnected from the remaining transport network. A
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Fig. 11. Task-oriented elimination with user route.

more sophisticated weighting function could also incorporate topological weights
that would prevent such disconnections.

5.4 Outlook

The examples in this section concern the task-oriented generalization of a road map
based on an ontology for roads. Further refinements of this technique could also in-
tegrate ontological information concerning decision points and regions adjacent to
roads. Decision points (primarily intersections in the road network) could be as-
sessed with respect to their relevance to the navigation task. Decision points that
are harder to negotiate or require a particular user action,such as a turn, could be
presented at a higher level of detail than other intersections (cf. the incorporation of
an ontology of turns into the wayfinding task in Duckham and Kulik, 2003). Figure
12 illustrates this concept using two different generalizations of a highway inter-
section. The left-hand diagram in Figure 12 shows the complete intersection. The
other two diagrams in Figure 12 show generalizations of the complete intersection
for a user who’s task is to turn left onto another highway (central diagram) or to
continue straight on (right-hand diagram).

Similarly, an underlying ontology of the regions that are adjacent to and enclosed by
the roads might also be included (Fonseca and Egenhofer, 1999, have emphasized
the importance of including such ontological information within GIS). Whether re-
gions are aggregated by DMin, eliminating the boundary thatseparates two regions,
would depend on their ontological similarity. Rodriguez andEgenhofer (2003) and
Jones et al. (2003) discuss two examples of ontological similarity measures, which
could be used as a semantic weighting component of the DMin algorithm. The
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Fig. 12. A highway intersection (left) and two task-dependent generalizations of the inter-
section (center and right).

more similar two regions are, the more likely it would be thatthey would be amal-
gamated. In the case of the SE-DMin algorithm, the line adjacent to two similar
regions could receive a low weighting, so ensuring that thisline would be preferen-
tially eliminated. These extensions, and many other ontology-driven generalization
operations, could be achieved simply by varying the form of the semantic weighting
function.

6 Discussion

This paper has described a new generalization algorithm that comprises both a ge-
ometric and a semantic component. The DMin algorithm is computationally effi-
cient, operates universally across an entire dataset, and in the case of the S-DMin
variant is topologically consistent. A wide range of shape preserving weighting
functions can be used with the geometric component. The semantic component
enables the generalization of geospatial data to be adaptedto a specific user’s re-
quirements, preferentially generalizing those features that are of lower relevance
or importance to a user. Experiments using DMin have demonstrated algorithm’s
adaptability to different types of user requirements, and the diversity of geometric
and semantic weighting functions that can be integrated with the algorithm.

Future work in this area will need to address issues in at least three different areas
arising from this initial research.

(1) Integration with user agents: A long-term goal of developing an ontology-
driven generalization algorithm is to integrate the generalization process with
autonomous user agents (section 5.1). These user agents aimto capture se-
mantic information about the user and the user’s tasks and goals, based on an
analysis of the user’s behavior patterns and context-awaresensor technology
(such as location or motion sensors). User agents could thenmediate on behalf
of the user to automatically parameterize the generalization process to provide
task-oriented geospatial information to users, without the need for any explicit
user intervention in the process.

(2) User testing: The analysis of the ontology-driven generalization process pre-
sented in this paper has focused on the statistical characteristics of the gener-
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alized information and the spatial distribution of errors within the generalized
information. In combination with the development of user agents, user testing
is needed to verify the suitability of generalized information for use with in
specific application domains.

(3) Generalization operators: This paper has primarily concentrated on two gen-
eralization operations: line simplification, using the S-DMin algorithm, and
elimination, achieved by the SE-DMin algorithm. Elimination itself can be
seen as the initial stage of other generalization operations, such as collapse
and amalgamation. Consequently, future work will concentrate on broadening
the range of generalization operations that can be achievedwithin an ontology-
driven framework.
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