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Metric Details of Topological Line-Line Relations 

Abstract 

Many real and artificial entities in geographic space, such as transportation networks and 

trajectories of movement, are typically modeled as lines in geographic information systems. 

In a similar fashion, people also perceive such objects as lines and communicate about them 

accordingly as evidence from research on sketching habits suggests. To facilitate new 

modalities like sketching that rely on the similarity among qualitative representations, 

oftentimes multi-resolution models are needed to allow comparisons between sketches and 

database scenes through successively increasing levels of detail. Within such a setting, 

topology alone is sufficient only for a coarse estimate of the spatial similarity between two 

scenes, whereas metric refinements may help extract finer details about the relative 

positioning and geometry between the objects. The 9-intersection is a topological model that 

distinguishes 33 relations between two lines based on the content invariant (empty-nonempty 

intersections) among boundaries, interiors, and exteriors of the lines. This paper extends the 

9-intersection model by capturing metric details for line-line relations through splitting ratios 

and closeness measures. Splitting ratios, which apply to the 9-intersection’s non-empty 

values, are normalized values of lengths and areas of intersections. Closeness measures, 

which apply to the 9-intersection’s empty values, are normalized distances between disjoint 

object parts. Both groups of measures are integrated into compact representations of 

topological relations, thereby addressing topological and metric properties of arbitrarily 

complex line-line relations. 
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1. Introduction 

Modern geographic information systems (GISs) still rely heavily on quantitative 

descriptions of spatial objects and phenomena, both for storage and querying. There is 

significant evidence, however, that people think of space and communicate about spatial 

concepts using qualitative rather than quantitative terms (Lynch 1960; Hernández 1994; 

Regier 1995). An example is the approximate way in which people communicate 

directions to one another (e.g., the church is in the center square, which is a couple blocks 

down and to the left). The persistence on the classic quantitative paradigm renders GIS 

packages usable only for professionals or sophisticated users who often receive extensive 

training so that they become proficient in the formalizations of underlying spatial data 

models and their terminology. Non-expert users typically feel alienated, since they lack 

the necessary background and the technical jargon needed to comprehend and employ 

these tools, even for relatively simple tasks such as way-finding or spatial querying in 

order to find objects of interest around them. 

Recent studies addressed the lack of commonsense formalizations of geographic 

knowledge in computers, by proposing formal and sound theories that allow reasoning 

about spatial relations, primarily in a qualitative manner (Egenhofer and Franzosa 1991; 

Randell et al. 1992). One such developed theory is the 9-intersection model (Egenhofer 

and Herring 1990), which focuses on binary topological relations between two regions, 

two lines (Egenhofer 1994), and a region and a line. The 9-intersection is an effort to 

incorporate Naive Geography concepts and reasoning into GISs (Egenhofer and Mark 

1995). The internal representations of spatial relations and the mathematical operations 

that take place within this model are transparent to users, who are able to formulate 

queries by employing spatial predicates that correspond to natural-language terms such as 

inside or overlap, and also receive answers in a similar fashion. 

The prominence of topology in the 9-interesection as the most critical aspect that 

people refer to when assessing spatial relationships in geographic space, has been 

confirmed by experiments in psychology and cartography (Lynch 1960; Stevens and 

Coupe 1978; Mark 1992; Mark and Egenhofer 1994). A critical factor that reinforces this 

view is that errors about spatial relations in human cognition are typically of metric, 
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rather than topological nature (Tversky 1981; Talmy 1983). Despite its importance, 

however, topology per se is often insufficient in addressing people’s needs. Metric 

details—though considered to be of lesser importance—are still required to capture the 

essence of spatial relations. Such circumstances arise when topology-based results to 

queries—even though exact—are underdetermined (i.e., do not provide enough detail so 

as to help accomplish the task at hand). Another typical situation of the usefulness of 

metric enhancements is exemplified by people’s tendency to occasionally complement 

qualitative with quantitative information in order to resolve ambiguities in the description 

of spatial scenes. To reflect better human behavior, GISs that rely on models such as the 

9-intersection need to incorporate mechanisms that will allow metric, in addition to the 

topological inferences among spatial entities. We follow the premise that topology 

matters, while metric refines (Egenhofer and Mark 1995); hence, the metric 

enhancements should be viewed only as extensions and supplements to the theory and not 

as the core of a qualitative geographic information system. 

This paper focuses on binary relations between linear objects. The intent is to develop 

a comprehensive model for capturing metric details about such relations. Examples of 

entities that people often conceptualize as lines include road networks, sewer systems, 

rivers and streams, irrigation networks, aerial navigation routes, and satellite orbits. The 

critical components for line-line relations are the interiors and boundaries of the lines. 

When the interior or boundary of one line interacts with either the interior or boundary of 

the other line, certain metric properties can be captured about this interaction. For 

instance, a line may cross the interior of another, thus separating its interior into two 

distinct segments, the length of which could be measured. Even when parts of the two 

lines do not interact (i.e., their intersection is empty), it is still possible to measure the 

distance among those parts. 

Purely quantitative measures, however, are undesirable because they do not take into 

consideration the relation to the objects for which they were derived. To describe details 

about topological relations, we consider the metric concept of (1) splitting, which 

determines how a line’s interior and exterior are partitioned by the other line’s interior or 

boundary, and (2) closeness, which determines how close or far apart are disjoint line 
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parts (boundary-boundary, boundary-interior, and interior-interior). Both types of 

measures are normalized (i.e., scale-independent) values with respect to metric properties 

of line relations, such as the lengths of common parts or the area enclosed by two lines.  

The remainder of this paper presents in detail the topological and metric models used 

to specify the geometry of spatial relations. Section 2 summarizes previous work on line-

line relations, focusing mainly on concepts of the 9-intersection model which we extend 

with metric details. Section 3 introduces the rationale for splitting ratios and defines three 

types of line-splitting ratios: line alongness, interior splitting, and exterior splitting. 

Section 4 is concerned with the development of closeness measures and defines three 

types of closeness measures: boundary closeness, interior closeness, and interior-

boundary closeness. The next two sections are concerned with the representation of the 

derived metrics in database structures. Section 5 describes the integration of splitting 

ratios into the same tabular representation that was used for the 9-intersection-based 

detailed topological relations (Clementini and di Felice 1998), yielding a metrically 

enhanced classifying invariant, whereas Section 6 discusses the encoding of closeness 

measures in a 4-intersection matrix, a more compact version of the 9-intersection. Section 

7 provides conclusions and suggests topics for future research. 

2. Topological Measures for Line-Line Relations 

From a purely quantitative standpoint, line algorithms and representations have been 

omnipresent in the classic GIS literature and date back to the genesis of GISs. Lines and 

points are at the core of representational structures for objects in conventional GISs, 

whereas line algorithms (e.g., intersection of lines, line in polygon) are used to perform 

fundamental GIS operations relating to the querying and updating of those systems 

(Laurini and Thompson 1992).  

The first formalisms for representing and reasoning qualitatively about spatial 

information, however, have mostly been concerned with qualitative relations among 

regions. Such theories were primarily developed within the AI and the GIS communities. 

Besides the 9-intersection (Egenhofer and Herring 1990), notable alternative models for 

spatial relations include symbolic projections (Chang and Jungert 1996) and the region-
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connection calculus (Randell et al. 1992). Symbolic projections model spatial relations 

based on directions captured independently along the coordinate axes. Unlike the 9-

intersection, however, they refer to the objects’ minimum bounding rectangles, rather 

than to their actual shapes, which provides an approximation that depends on the objects’ 

orientations. The region-connection calculus, based on the part-whole theory of 

mereology (Simons 1987) and Clarke’s (1981) calculus of individuals, identifies for 

region-region configurations the same set of binary relations as the 9-intersection; 

however, it has not been developed for relations involving line-like objects. 

Building on the basic notions of qualitative reasoning for relations between regions, 

several respective formalisms for lines have been proposed. Such an effort is the theory 

of path relations, a special type of spatial relations which are concerned with forming the 

geometry of trajectories and defining the exact semantics of relations such as “along”, 

“past”, or “around” (Krüger and Maaß 1997; Kray and Blocher 1999). Other methods 

focus on reasoning about oriented line segments. Schlieder (1995) developed a calculus 

that resulted in a set of 14 spatial relations among ordered linear segments, based on an 

extension of Allen’s interval relations to two-dimensional space and the order 

information of triples of points, where points are the vertices of the segments. Moratz et 

al. (2000) identified an extended set of 24 atomic relations by considering additional 

possible configurations and documented a relation algebra for those relations. Cristani’s 

(2003) work is similar, but also tackles the problem of line-segment relations in 3-

dimensional space. Isli (2002) developed a ternary algebra for reasoning about 

orientations. The algebra consists of a rotational and a translational component of 

knowledge of 3-valued relations among directed lines. Most of these efforts have implicit 

the assumption that line segments are straight, in contrast to the 9-intersection, which 

applies to arbitrary shapes and thus has a wider applicability. Qualitative reasoning with 

lines has also been used outside the context of binary and ternary relations to describe 

individual object properties. An example includes qualitative description of the shape of 

spatial entities (Schlieder 1996; Gottfried 2003).  

This research focuses on relations between lines derived by the 9-intersection model, 

and complements them with metric details. Our work in this sense is parallel to that of 
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Shariff (1996) and Egenhofer and Shariff (1998) who identified, for the 9-intersection, 

metric refinements for region-region and line-region relations, respectively. The 

measures they developed, however, are not directly applicable to line-line relations, due 

to the particularity of linear objects (i.e., each with two 0-dimensional boundary points 

and a 1-dimensional interior). For example, an overlap relation between two regions has 

metric refinements of common interior areas and common boundary lengths, whereas an 

overlap relation between two lines has common interior lengths but no boundary length 

measures. Furthermore, our set of closeness metrics is stricter in the sense that they are 

object-identity invariant (i.e., the choice of the reference object is immaterial). This is a 

basic assumption of previous approaches, however, where a different labeling of the 

objects would change all metric quantities derived for the description of a spatial scene 

(Blaser 2000). 

The 9-intersection model (Egenhofer and Herring 1990), upon which we base this 

work, provides a comprehensive framework and a relation algebra for the description of 

topological relations between objects of type area, line, and point. The topological 

relation between two such geometric objects, A and B, is characterized by the binary 

value (empty, non-empty) of the set intersections of A’s interior ( °A ), boundary ( A∂ ), 

and exterior ( −A ), with the interior, boundary, and exterior of B (Equation 1). 
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(1) 

The content of the set intersections is a topological invariant (i.e., a topological 

property that is preserved under groups of topological transformations such as rotation, 

scaling, and skewing). With nine set intersections and two possible values for each, the 

model distinguishes 512 possible topological relations, some of which cannot be realized 

depending on the dimensions of the objects and the dimension of the embedding space. 

Those that cannot be realized are eliminated through a set of consistency constraints 

(Egenhofer and Franzosa 1991; Egenhofer 1994). One that applies to line-line relations, 

for example, is that the intersection of the exteriors of two lines in 2  can never be 
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empty. Eliminating impossible relations through constraints results in a set of 33 relations 

that can be realized between linear objects in 2  (Figure 1). These relations are the focus 

of this work. The only assumption we make is that the relations pertain to simple lines, 

defined as lines with exactly two boundary nodes and without any self-intersections. We 

also use the term boundary of a line to refer strictly to both points that make up a line’s 

boundary; to refer to a specific point the term boundary point is used instead. 

The content invariant of empty and non-empty intersections, although attractive due to 

its simplicity, is only a coarse measure, incapable of differentiating several situations that 

people often do. For example, the two spatial configurations in Figure 2 are distinct, 

while they are represented by the same 9-intersection matrix; therefore, in order to 

capture such finer details one has to consider additional invariants. Early work for 

invariants of line-line relations suggested using the type of interior intersections 

(touching or crossing) as an invariant (Herring 1991). Egenhofer and Franzosa (1995) 

developed a set of invariants that help establish topological equivalence between a model 

representation and a spatial configuration for region-region relations. Based on this 

model, Clementini and di Felice (1998) derived a complete set of invariants for line-line 

relations. Examples of those invariants are the type of intersection, the dimension, and the 

order in which intersections are encountered when their cardinality is larger than one. 

Each of these invariants is explained in depth in section 5, where we describe how metric 

information derived from splitting measures and detailed topological information for a 

relation can be stored in a single, uniform representation. 

An important invariant is the number of components. The definition of a component is 

based on the topological concepts of separation and connectedness (Egenhofer and 

Franzosa 1995). For a set Y, a component is the largest connected (non-empty) subset of 

Y. Whenever any of the nine set intersections is separated into disconnected subsets, these 

subsets are the components of this set intersection. Hence, any non-empty intersection 

may have several distinct components, each of which may be characterized by its own 

topological properties. The number of components of an intersection is denoted by 

# ( )A B∩ . For example, for the configuration in Figure 2a, # 1 2( ) 1L L°∩ ° = , whereas for 

Figure 2b, # 1 2( ) 2L L°∩ ° = . In addition, for Figure 2b, component co is a 0-dimensional 
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component whereas c1 is a 1-dimensional component. An obvious dependency between 

the content and the component invariants is that any empty intersection has zero 

components, and every non-empty intersection has at least one component. 

3. Splitting Measures 

Splitting determines how a line’s interior is divided by another line’s interior or 

boundary. A special case of splitting pertains to the separation of the common exterior of 

the lines into one unbounded and one or more bounded components. To describe the 

degree of splitting, the metric concepts of the length of a line and the area of a bounded 

exterior are used. Among the entries of the 9-intersection for two simple lines, there are 

five intersections—between two boundaries, between boundary and interior, and between 

boundary and exterior—that cannot be evaluated with a length or area measure, because 

these intersections are 0-dimensional (Table 1). The intersection of the two interiors can 

be evaluated with a length measure only when it is 1-dimensional. If non empty, the two 

intersections of one line’s interior with the other line’s exterior are always 1-dimensional. 

The intersection of the exteriors of the lines is always 2-dimensional. 

To normalize the length of the common interior we compare it with the length of L1 (or 

the length of L2). The length of the intersection between L1’s interior and L2’s exterior is 

normalized by the length of L1. Similarly, the length of the intersection between L2’s 

interior and L1’s exterior is normalized by the length of L2. The area of a bounded 

exterior is normalized by the area of a circle whose perimeter is equal to the sum of the 

lengths of the two lines. Such a circle encloses the largest bounded exterior area that two 

lines can form. 

Two simple lines may form a topological configuration of arbitrary complexity with 

multiple components of the same or different intersection types; therefore, the metric 

refinements in the form of the splitting measures operate at the component level 

describing adequately the different metric properties of each component. For instance, for 

the configuration in Figure 3a one calculates the metric properties separately for each 

intersection between the interiors of the lines. A global measure that would rely on the 
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sum of all common interior segments would not help distinguish between the two 

topologically equivalent configurations depicted in Figures 3a and 3b. 

3.1 Line Alongness 

Line alongness captures how much of one line coincides with another line. In order to 

consider line alongness, the intersection of the interiors of two lines must be non-empty 

1 2( )L L°∩ ° = ¬∅  and 1-dimensional. The interior of one line interacts with the interior 

of the other such that each line is separated into two sets of line parts: (1) line segments 

that are in the common interior (i.e., common interior components) and (2) line segments 

that are in the exterior of the other line. This separation makes a 1-dimensional object 

split another 1-dimensional object into two or more 1-dimensional parts (Figure 4). 

As the measure for the separation we employ the notion of the line alongness ratio 

(LA) as the ratio between the length of the common interior and the length of a line. 

There are two possible ratios: one with respect to the length of L1 and another with 

respect to the length of L2 (Equation 2). The range of the line alongness ratio 

is 0 1LA≤ ≤ . When the common interior segment degenerates to a point, LA reaches 0. If 

L1 is entirely contained within the interior of L2, then LA1 becomes 1, and the same occurs 

for LA2, when L2 is entirely contained within the interior of L1. If both LA1 and LA2 are 1, 

then the lines are equal. For arbitrarily complex configurations with multiple interior-

interior intersections, a separate measure of line alongness is derived for each component 

c where c +∈  (the set of positive integers). 

, ( )

( )
( )

i j
i j c

i

length L L
LA

length L
°∩ °

=  with , {1,2},i j i j∈ ≠ , c +∈  
(2) 

3.2 Interior Splitting 

If the interior or boundary of one line interacts with the interior of the other line, it 

separates the interior into left and right line segments according to some predetermined 

orientation. This involves a 1-dimensional object (i.e., common interior segment) or a 0-

dimensional object (i.e., interior or boundary point) splitting a 1-dimensional object into 
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two 1-dimensional parts, both of which intersect with the exterior of the splitting line 

(Figure 5). 

In order to consider interior splitting for a line 1L , the intersection of that line’s closure 

with the closure of the other line 2L  must be non-empty (i.e., 1 2L L°∩ ° = ¬∅ , or 

1 2L L°∩∂ = ¬∅ , or 1 2L L∂ ∩∂ = ¬∅ ) and part of 1L ’s interior must intersect with 2L ’s 

exterior (i.e., 1 2L L −°∩ = ¬∅ ). A normalized measure for interior splitting is the interior 

splitting ratio (IS) between the line segment of the split line that is located in the exterior 

of the splitting line, and the length of the split line (Equation 3). This measure is 

evaluated separately for each applicable component intersection c. For example, in a 

typical cross-like configuration (Figure 5a), there are four components.  

( )
( ( ))

( )
i i

i c
i

length component L LIS
length L

−°∩
=  with , {1,2},i j i j∈ ≠ , c +∈  

(3) 

The interior splitting ratio is complementary to the line alongness ratio and its range 

is 0 1IS< ≤ . It would be 0 if one line was entirely contained within another, or if the lines 

were equal, which means that either the intersection 1 2L L −°∩ , or the intersection 

1 2L L− ∩ °  or both, would be empty. It reaches 1 for one line when the interior-interior 

intersection becomes empty, for instance, when the configuration in Figure 5a 

degenerates to Figure 5b. It becomes 1 for both lines when the two lines meet only at a 

common boundary (Figure 5c). 

3.3 Exterior Splitting 

Exterior splitting occurs if parts of the two lines (interiors or boundaries or both) interact 

such that they form one or more closed regions (Figure 6). Hence, exterior splitting 

involves two 1-dimensional objects splitting a 2-dimensional object into two or more 

parts. Specifically, this type of splitting implies a partitioning of the common exterior of 

the two lines into two or more components: an unbounded exterior component and one or 

more bounded exterior components. The term bounded refers to the exterior-exterior 

intersections that are completely surrounded by the interiors of the two lines. 
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A normalized measure for this property is the exterior splitting ratio (ES) as the ratio 

between the area of the bounded exterior that is formed by two lines, and the maximum 

bounded exterior that could possibly be formed by the same lines (Equation 4). For 

arbitrarily complex configurations with multiple bounded exteriors, a separate measure of 

the exterior splitting ratio is derived for each component c. 

( ) 2

4 ( ( ( ))
( ( ) ( ))

i j
c

i j

area BoundedComponent L L
ES

length L length L
π − −∩

=
+

 with , {1,2},i j i j∈ ≠ , 

c +∈  

(4)

The area of the maximum possible bounded exterior is equal to the area of a circle with 

a perimeter that is equal to the sum of the lengths of the two lines. The range of the 

exterior splitting ratio is 10 ≤< ES . It would reach 0 if the bounded area was nonexistent. 

It becomes 1 if the two lines form only one bounded area, and there are two non-empty 

boundary-boundary ( 1 2L L∂ ∩∂ ) intersections (Figure 6e). 

4. Closeness Measures 

Closeness involves considerations of distances among points and lines. Unlike splitting 

ratios, which require coincidence, closeness describes how far apart disjoint parts are. 

The object parts involved are the boundaries and the interiors of the lines. Shape-

descriptive measures, such as the distance between two boundary points that belong to 

the same line, would specify properties of individual objects, not relations. The focus 

here is on the metric relations between disjoint object parts that belong to different lines. 

For all possible configurations between two linear objects there are three types of 

closeness measures of interest: 

• the closeness of a line’s boundary to another line’s boundary that involves distances 

between points; 

• the closeness of a line’s interior to another line’s boundary that involves distances 

between lines (1-dimensional objects) and points (0-dimensional objects); and 

• the closeness between a line’s interior and another line’s interior that involves 

distances between two lines (1-dimensional objects). 
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Considering exteriors would require definitions of distances between 2-dimensional 

objects and it would not offer additional refinements of the spatial configuration between 

two lines in 2  (i.e., the distance between the exterior of one line and parts of the other 

line would always be 0). As in the case of splitting ratios, the distances expressing the 

closeness measures need to be normalized in order to become scale-independent. 

Closeness measures are based on a generalization of the typical distance concept, 

which is defined between two 0-dimensional objects (i.e., points). Two lines, however, 

also require distance measures between 1-dimensional components, such as the lines’ 

interiors, and, therefore, the distance definitions need to accommodate such cases as well. 

The extended distance definitions used here are based on the concepts of largest non-

containing circle, smallest containing circle, largest non-containing buffer, and smallest 

containing buffer: 

Definition 1: Given a point P and a geometric object O, the largest non-containing 

circle around P with respect to O— ( , )LNCC P O —is a circle of maximum 

radius R, such that nothing of O is contained in the circle’s interior (Figure 

7a). 

Definition 2: Given a point P and a geometric object O, the smallest containing circle 

around P with respect to O— ( , )SCC P O —is a circle of minimum radius 

R, such that all of O is contained in the circle’s interior (Figure 7b). 

Definition 3: Given a line L and a geometric object O, the largest non-containing buffer 

around L with respect to O— ( , )LNCB L O —is a buffer of maximum offset 

distance R, such that nothing of O is contained in the buffer’s interior 

(Figure 7c). 

Definition 4: Given a line L and a geometric object O, the smallest containing buffer 

around L with respect to O— ( , )SCB L O —is a buffer of minimum offset 

distance R, such that all of O is contained in the buffer’s interior (Figure 

7d). 

Definitions 1-2 pertain to boundary-boundary and boundary-interior distances, whereas 

definitions 3-4 pertain to interior-boundary and interior-interior distances where the terms 
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circle and radius are substituted with the more general concepts of buffer and offset 

distance, respectively. A buffer of offset distance R around a simple line L is the area 

formed by continuously moving a circle of radius R from the starting to the ending 

boundary of the line. Based on these definitions we discuss the measures of boundary 

closeness, interior closeness, and interior-boundary closeness. For simplicity, the 

illustrated examples for each measure are given for disjoint lines, although closeness 

measures apply to any of the 33 relations realizable between two simple lines. 

4.1 Boundary Closeness 

The boundary closeness is a measure of the remoteness of one line’s boundary 1L∂  from 

the boundary of another line 2L∂  and should be expressed as some function of an 

appropriately selected set of distances that can be realized among four boundary points. 

There are eight such possible distances, realized by drawing LNCCs and SCCs from the 

boundary points of one line to the boundary points of the other line. This set can be 

reduced to four, because it comprises four symmetric pairs. Our goal is to isolate from 

these four distances an appropriate subset such that the derived metrics will always be 

conceptually equivalent and thus directly comparable for similarity. It is also desirable 

for the metrics to be independent of any labeling choices for the lines (object identity) or 

of their orientation (sequence of their boundary points), so that they can apply to more 

generalized cases when such information is unavailable. We describe the methodology 

for accomplishing this goal along with a justification of why a selection of different 

measures would fail to satisfy the stated requirements. 

We apply the concept of largest non-containing circle to derive only two of the four 

possible distances: (1) the minimum distance and (2) the maximum distance between the 

boundaries of two lines. In the case of boundary closeness the definition of those 

distances is restricted by the condition that the sets of boundary points between which 

minimum and maximum distances are derived must be mutually exclusive. 

The approach is as follows: (1) select arbitrarily one boundary point P of a line; (2) 

create the LNCC circle from P with respect to the boundary of the other line and measure 

its radius; (3) repeat step 2 for the remaining boundary point Q of the initially selected 
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line to create a second LNCC and measure its radius; (4) select the smallest of the two 

LNCCs and assign the value of its radius to the variable Dmin; (5) mark the two boundary 

points that define the radius of the selected LNCC as reserved; and (6) calculate the 

distance from the remaining point of the initially selected line to the remaining point of 

the other line and assign the value of that distance to the variable Dmax. This theoretical 

description of the methodology can be concisely expressed by means of the following 

pseudo code (Figure 8). 

This algorithm ensures that the value assigned to the variable Dmin is indeed the 

smallest realizable distance between two boundary points. The distance between the 

remaining set of boundary points is called the maximum boundary-boundary distance. 

Although the maximum distance is always larger than the minimum distance, it is not 

necessarily the largest realizable distance between two boundary points. The approach 

suggested results in a set of boundary-boundary metrics that are always conceptually 

equivalent for any two configurations consisting of two simple lines, and can directly be 

compared for similarity (Figure 9). 

Such a conceptual equivalence of the measures in different line-line configurations 

would not hold if the condition of disjoint sets of boundary points, for which the 

minimum and maximum distances are derived, was dropped. In that case the minimum 

distance would still be derived as before, but the maximum distance would be produced 

by applying the concept of the smallest containing circle. This method, however, yields 

problematic measures, as shown in the configurations in Figure 10. While they are quite 

different metrically with respect to their boundary closeness, their minimum and 

maximum boundary-boundary distances would imply that they are metrically very 

similar. The discrepancy occurs because the calculations of minimum and maximum 

measures, based on the concepts of LNCCs and SCCs, assume that such distances are 

captured between contiguous geometric objects. The boundary of a line, however, is 

unique as it consists of two disconnected points; therefore, relying only on definitions 1-4 

leads to a comparison of maximum distances that represent conceptually different 

quantities. 
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A similar problem would arise if one chooses to calculate all four possible distances 

between boundary points (when all boundary points are disjoint) by applying the 

concepts of largest non-containing circle and smallest containing circle from any 

boundary point of one line to the boundary points of the other line. It would create an 

undesirable reliance on the chosen labeling scheme for the points (Figure 11). This 

justifies the choice of selecting two global measures that can always be compared reliably 

and produce a similarity score indicative of the actual similarity of the spatial 

configurations, without any reliance on labeling choices. 

The two remoteness measures (Dmin and Dmax) are actual distances and, therefore, 

scale-dependent. For instance, a scaling by a factor of two would make any two lines 

appear to be twice as much remote. The normalization by the length of an arbitrarily 

selected line should be avoided, however, because it may distort similarity inferences 

(Figure 12). We choose to normalize by the sum of the lengths of the two lines, thus 

distinguishing two boundary closeness measures: (1) the minimum boundary closeness 

( minBC ) as the ratio between the minimum distance (Dmin) and the sum of the lengths of 

the two lines (Equation 5a), and (2) the maximum boundary closeness ( maxBC ) as the 

ratio between the maximum distance (Dmax) and the sum of the lengths of the two lines 

(Equation 5b). 

The boundary closeness measures apply to all 33 topological relations (Figure 1).The 

possible values for both boundary closeness measures are greater than or equal to 0 

without an upper bound. The boundary closeness measure minBC assumes a value of 0 for 

relations 24-33 and both minBC  and maxBC  become 0 in relations 21-23, thus adding 

essentially no refinement to those relations. 

min
min ( ) ( )i j

DBC
length L length L

=
+

 with , {1,2},i j i j∈ ≠  

max
max ( ) ( )i j

DBC
length L length L

=
+

 with , {1,2},i j i j∈ ≠  

(5a)

 

 

(5b)
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4.2 Interior Closeness 

The interior closeness is a measure of the remoteness of one line’s interior 1L °  from the 

interior of another line 2L ° . There are four distances that can be realized between 

interiors, a minimum and a maximum distance from each line’s interior to the other line’s 

interior. Those distances are derived based on the definitions of largest non-containing 

buffer and smallest containing buffer. The minimum distances are always symmetric and, 

therefore, equal, but the maximum distances may differ (Figure 13). We choose the larger 

of the two maximum distances as the measure of the maximum interior-interior 

closeness. 

The process of retrieving the minimum and maximum distances between two interiors 

(Figure 13) consists of the following steps: (1) select arbitrarily one line, say L1; (2) 

create the LNCB and the SCB from the interior of L1 with respect to the interior of L2; (3) 

assign the offset distance of the 1 2( , )LNCB L L° °  to the variable Dmin (minimum distance); 

(4) create the SCB from the interior of the other line L2 with respect to the interior of the 

first line L1 (5) compare the radii of the two SCB buffers—

1 2( , )SCB L L° ° , 2 1( , )SCB L L° ° —and select the SCB with the largest radius; (6) assign the 

value of that SCB to the variable Dmax (maximum distance). Although those steps describe 

the theory of the method, in practical computer representations lines are implemented as 

series of connected points and, therefore, the actual code for the interior-interior distances 

(Figure 14) can be based on a function that samples line points with a specified step (i.e., 

function pointSequence). 

This procedure results in a set of interior-interior metrics that are always conceptually 

equivalent for any two configurations consisting of two simple lines and can be directly 

compared for similarity. It also avoids any dependence on the labeling scheme chosen for 

the lines (the order of the lines as indicated by their labeling is irrelevant). To maintain 

that independence we choose to normalize the lengths by the sum of the lengths of the 

two lines, similarly to the boundary closeness measures. The two normalized closeness 

measures for interiors are: (1) the minimum interior closeness (ICmin) as the ratio between 

the minimum distance (Dmin) and the sum of the lengths of the two lines (Equation 6a), 
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and (2) the maximum interior closeness (BCmax) as the ratio between the maximum 

distance (Dmax) and the sum of the lengths of the two lines (Equation 6b). 

min
min ( ) ( )i j

DIC
length L length L

=
+

 with , {1,2},i j i j∈ ≠  

max
max ( ) ( )i j

DIC
length L length L

=
+

 with , {1,2},i j i j∈ ≠  

(6a)

 

 

(6b)

The interior closeness measures apply to all 33 topological relations (Figure 1).The 

possible values for both interior closeness measures are greater than or equal to 0 without 

an upper bound. The interior closeness measure minIC  is practically useful only for 

distinguishing among disjoint relations, since it assumes a value of 0 for all other 

relations. Both minIC  and maxIC  become 0 when the lines are equal. 

4.3 Interior-Boundary Closeness 

The interior-boundary closeness describes the remoteness of one line’s interior 2L °  to 

another line’s boundary 1L∂ . Previous closeness measures were derived between 

geometric objects of the same type, therefore, they have a global character because they 

are not specific to a single line and they provide an overall indication of the remoteness 

between two boundaries or two interiors for the whole configuration consisting of two 

simple lines. On the other hand, boundary-interior closeness measures are derived for 

geometric objects of different type (i.e., interiors and boundaries); therefore, they are 

specific to a single line. For example, the closeness of the interior of L1 to the boundary 

of L2 is different from the closeness of the interior of L2 to the boundary of L1 (Figure 

15). 

The process of retrieving the minimum and maximum distances between one line’s 

interior and another line’s boundary consists of the following steps (Figure 16): (1) select 

arbitrarily one line, say L1; (2) create the LNCB and the SCB from the interior of L1 with 

respect to the boundary of L2; and (3) assign the offset distance of the 1 2( , )LNCB L L° ∂  to 

the variable Dmin (minimum distance) and the offset distance of the 1 2( , )SCB L L° ∂  to the 

variable Dmax (maximum distance). Alternatively, we may choose to calculate these 
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measures as the distances from the boundary of L2 to the interior of L1 similarly to the 

methodology given for boundary closeness. The end result will be the same. The pseudo 

code for the interior-boundary distances (Figure 17) is similar to the code for the interior-

interior case. The distances here, however, are derived between 2 boundary points of one 

line, and a sampled set of the interior points of the other line. 

The minimum and maximum distances need to be normalized by a quantity that will 

yield scale-independent measures. We choose to normalize an interior-to-boundary 

distance by dividing it through the length of the line to which the interior belongs. The 

two normalized interior boundary closeness measures for each line are (1) the minimum 

interior-boundary closeness (IBCmin) as the ratio between the minimum distance 

( min ( , )i jD L L° ∂ ) and the length of Li (Equation 7a), and (2) the maximum interior-

boundary closeness (IBCmax) as the ratio between the maximum distance ( max ( , )i jD L L° ∂ ) 

and the length of Li (Equation 7b). 

min
min ( )

( )i
i

DIBC L
length L

=  with {1,2}i∈  

max
max ( )

( )i
i

DIBC L
length L

=  with {1,2}i∈  

(7a)

 

 

(7b)

The interior-boundary closeness measures apply to all 33 topological relations (Figure 

1). The possible values for both interior closeness measures are greater than or equal to 0 

without an upper bound. The interior-boundary closeness measure minIBC  will become 0 

if a line’s interior intersects a boundary point of the other line. Both minIC  and maxIC  

become 0 for a line when its interior intersects both boundary points of the other line. 

5. Representational Structures for Metric Details 

To become practically useful, the metrics need to be encoded in complete and efficient 

representational structures. Completeness requires that all applicable measures for a 

spatial configuration between two lines be encoded, whereas efficiency requires that the 

form of representation be organized such that it can be easily understood. In the context 

of efficiency, it is also desirable to combine the topological and metric properties for a 
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scene into a single form of representation. An important distinction between the two 

classes of measures is that all of the eight closeness measures apply for any line-line 

configuration, whereas the number of splitting ratios is variable. It is 0 in the case of 

disjoint lines, while there is theoretically no upper limit in the case of arbitrarily complex 

relations with multiple component intersections. Furthermore, the two types of measures 

are conceptually different since one of them depends on the interaction of intersecting 

components, whereas the other concerns distances between disjoint object parts. 

Therefore, we choose two different schemes for storing splitting and closeness measures. 

Both of these schemes are integrated into previously developed representational 

structures for storing topological details, thus maintaining compatibility with previous 

work. 

5.1 Representation of Splitting Ratios for Arbitrarily Complex Relations 

For a complex configuration, with many intersections of the same or different type 

between two simple lines, all of the splitting ratios may apply one or multiple times, 

depending on the number of existing components. In this case one needs to develop a 

representational structure, such that it allows a smooth transition from the representation 

of simple to arbitrarily complex line-line relations. We base our representation technique 

on the concept of the classifying invariant (Clementini and di Felice 1998). The 

classifying invariant captures in a matrix the values of the topological properties needed 

to describe a scene involving two simple intersecting lines. In this section we extend this 

matrix to include the splitting ratios in addition to the topological invariants. We call the 

resulting matrix a metrically-enhanced classifying invariant. 

The general structure of the classifying invariant for two simple lines, denoted 

as ),( 21 LLCl , is a matrix of four columns and m rows where m +∈  (Table 2). Each row 

describes an interior-interior, interior-boundary, or boundary-boundary intersection 

between the two lines. These are the most essential intersections since they determine 

how the two lines interact. If all these intersections are empty then the lines are simply 

disjoint and no splitting measure or topological property applies. The four columns give 

the qualitative values of several topological properties, which are the intersection 
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sequence 2( )S L , the collinearity sense CS , the intersection type T , and the link 

orientation 2LLO . The generic entry ik  represents the label of the intersection 

component. This set of topological invariants has been proven sufficient and necessary in 

order to establish topological equivalence with any configuration for a pair of simple 

lines. 

The intersection sequence describes the order in which the various components of the 

intersections occur. One first follows line L1 from its first point and assigns numeric 

labels to the intersections until the last point is reached. The intersection sequence is then 

the sequence of numbers established by traversing line L2 and recording the labels that 

were previously assigned to L1. For example, the intersection sequence in Figure 18 is 

[0,1,3,2]. 

First establishing a clockwise orientation and then recording at the intersection node 

the sequence of incoming and outgoing arcs, starting from the boundary of one line, 

defines the intersection type. For instance, for Intersection 0 in Figure 18 the sequence is 

1 2 1 2, , ,i i o o< > , assuming that we record the arcs starting from the incoming arc of 1L . 

The choice of the sequence’s starting arc is irrelevant, since the sequence remains 

invariant under cyclic permutations. The number of arcs in the sequence can be less than 

four. For example, for Intersection 2 in Figure 18 the sequence is 1 1 2, ,i o i< > . Although 

the choice of the first arc to start the sequence is arbitrary, their order must be preserved 

as it implicitly stores information about whether the intersections are crossing or touching 

(Herring 1991). 

For 1-dimensional intersections, the collinearity sense distinguishes whether the 

segments that make these components are traversed following the same or the reverse 

orientation in the two lines. If the former is true the value of the collinearity sense is 1, if 

the latter holds it is -1, whereas for 0-dimensional intersections it takes the value of 0. For 

instance, since the 1-dimensional Intersection 2 (Figure 18) is traversed in reserve 

orientation, its collinearity sense is –1; Intersections 0, 1, and 3, however, are 0-

dimensional, therefore, their collinearity sense is 0. 
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The link orientation depends on the notion of a link, which is the part of line 2L located 

between two consecutive—according to the intersection sequence—intersections ( , )h k . If 

the cycle obtained by traversing the link 2 ( , )L h k and coming back to h traversing the line 

1L  has a clockwise orientation, the link orientation value becomes r (i.e., right), 

otherwise l (i.e., left). For example, the link orientation for the pair of intersections (0,1) 

is l whereas for the pair (3,2) it is r (Figure 18). Since the link orientation invariant 

depends on two consecutive intersections, its value is undefined for the last row of the 

classifying invariant matrix. Figure 18 demonstrates how these concepts apply for a 

complex configuration of two simple lines and the construction of its classifying invariant 

(Table 3). 

Besides the intersection sequence, which records the order at which intersections occur 

and assigns a number and a row to each intersection of interest, an examination of the 

three remaining invariants suggests a one-to-one correspondence with the three splitting 

ratios. The first correspondence is between the collinearity sense and the line alongness 

measure. Instead of using 1 and -1 to denote whether the segments along the common 

interior have the same or reverse orientation, respectively, we use a positive or negative 

value between 0 and 1, equal to the line alongness ratio. For 0-dimensional intersections, 

the value of the collinearity sense remains 0 and represents the extreme case of the line 

alongness measure, where the common segment degenerates to a single point. 

The second correspondence is between the intersection type and the interior splitting 

ratio. The encoding sequence of the arcs can be extended with numeric information that 

relates each arc to an interior splitting ratio measure between 0 and 1. The interior 

splitting ratio for each arc is derived by dividing the length of the arc through the length 

of the line that contains it. The length of each arc is taken equal to the length of the line 

between the intersection that is being recorded and the immediate previous intersection or 

starting boundary of the line for incoming arcs (i.e., arcs entering the intersection), or the 

immediate next intersection or finishing boundary of the line for outgoing arcs (i.e., arcs 

exiting the intersection). The labels of arcs (i.e., i1, i2, o1, o2) must also be recorded, 

because they may occur in different orders, depending on the intersection type, and such 

information must be maintained in order to distinguish different topological relations. 
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The third correspondence between a topological invariant and a splitting measure is 

between the link orientation and the exterior splitting ratio. The link orientation describes 

the orientation of the circular section between two consecutive intersections. This circular 

section, however, always creates a bounded exterior. Therefore, one can combine the link 

orientation and the exterior splitting measure by recording only the value of the exterior 

splitting ratio for each bounded exterior component. The value is preceded by a plus sign 

if the link orientation is clockwise and by a minus sign if it is counter-clockwise. The 

topological configuration between two simple lines (Figure 18) is annotated with metric 

details (Figure 19). Table 4 displays the matrix for this scene’s metrically-enhanced 

classifying invariant. 

The metrically-enhanced classifying invariant matrix stores both topological and 

metric information about a spatial configuration between two simple lines. For the 

interior splitting ratios the topological information is stored explicitly along with the 

metric, whereas for the line alongness and the exterior splitting ratios it is encoded in the 

signs that precede the ratios. A closer examination of this matrix reveals that some of the 

line splitting measures may be repeated in two consecutive rows. The repetition happens 

because an outgoing arc from a previous intersection may change its label and become an 

incoming arc in the next; however, the length of the arc remains the same. The small 

redundancy in number storage is a ramification resulting from the original structure of the 

classifying invariant matrix, and not a shortcoming inherent to the extension with metric 

details. In addition, the redundancy may be used as a sentinel for consistency maintaining 

and error-checking for the metric description of a spatial scene. 

Another characteristic of the classifying invariant that affects the metrically enhanced 

classifying invariant is that its values may differ depending on labeling choices. Since we 

are concerned with scenes with two lines, where each line has two boundary points, then, 

depending on the labeling scheme, there can be 23 or 8 constructed classifying invariants. 

Unlike the 9-intersection, where one matrix may correspond to two or more topologically 

different configurations, in the classifying invariant model two topologically equivalent 

representations may be represented by different matrices (Figure 20). 
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This one-to-many correspondence between a spatial configuration and a set of possible 

classifying invariants for that configuration does not prevent us from representing the 

topology of a scene or even from obtaining metric enhancements. It does have 

ramifications, however, when comparing scenes for topological equivalence and, 

consequently, for metric similarity. In such a case, deriving the classifying invariant for 

two spatial scenes might only be the first step in assessing topological equivalence. If the 

resulting matrices are different, a second step is required. This step consists of finding a 

relabeling of lines and their boundary points such that the classifying invariant of one 

scene becomes identical to the other one. A brute-force approach is possible; however, 

more efficient algorithms have been developed to address this issue (Clementini and di 

Felice 1998). Only if the scenes are found identical during the second step is it possible to 

proceed to the calculation of the splitting ratios and the comparison of the corresponding 

measures so as to yield a similarity ranking. 

5.2 Representation of Closeness Measures 

For a spatial configuration consisting of two simple lines we defined eight closeness 

metrics, forming four pairs of minimum and maximum closeness measures: one 

describing the closeness of the boundaries, one describing the closeness of the interiors, 

and two describing the closeness between the interiors and the boundaries (one pair for 

each line). Each pair of minimum and maximum closeness measures can be stored in its 

corresponding cell of a 4-intersection matrix (Egenhofer and Franzosa 1991). The 4-

intersection is a subset of the 9-intersection, excluding considerations about the exteriors 

of the lines. We call the metrically-annotated 4-intersection matrix the closeness matrix 

for two simple lines. The topological configuration of two disjoint lines (Figure 21) is 

now annotated with metric details (Table 5). 

Similarly to the classifying invariant, the closeness matrix for a spatial configuration is 

not unique, because the interior-boundary closeness measures may differ depending on 

the labels of the lines. For instance, the metrics represented by the interior-boundary 

closeness measures of Table 5 would be transposed if the labels of the lines in Figure 21 

were switched. This dependency is undesirable, because it prohibits a reliable comparison 
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of the metrics of two scenes for similarity (i.e., a sketch-query vs. a database 

configuration). For every topological configuration besides the disjoint relation, the 

problem is solved by trying the different permutations of a classifying invariant for one 

scene and checking whether one of the permutations would be identical to the classifying 

invariant of the other scene. If that is indeed the case, then the splitting ratios as well as 

the closeness measures can consequently be reliably compared for similarity. 

In the case of disjoint relation, however, the classifying invariant is an empty matrix 

and only the closeness measures apply. The solution for similarity comparisons in this 

scenario consists of the following three steps: (1) perform an arbitrary labeling on the 

lines in both the sketched and the database scene; (2) estimate the closeness matrices for 

both scenes and compare them for similarity; (3) invert the labels of the lines in the 

database scene and repeat the second step; and (4) from the two similarity scores select 

the highest as the actual closeness similarity score between the two scenes (Figure 22). 

The second and third steps imply the existence of some sort of similarity. As a very crude 

estimate of similarity we choose to derive the difference table (absolute values) of two 

closeness matrices. Obviously, the smaller the sum of the elements in the difference table, 

the more similar the two configurations will be. 

The presented methodology ensures that the comparison of the closeness measures will 

yield a similarity score that is representative of the actual closeness between the lines and 

not some exaggerated and misleading value due to incompatible labeling for the two 

scenes. The labeling repercussions discussed pertain in essence to problems of object 

identity. Such problems were not explicitly addressed in previous work on metric 

enhancements, which focused on splitting ratios and closeness measures for topological 

configurations involving a region and a line (Egenhofer and Shariff 1998) or topological 

configurations involving two regions (Shariff 1996). In the case of a line vs. a region, the 

problem is not apparent or even relevant, because there already exists an a-priori labeling 

of the objects due to their different types (i.e., line vs. region) and, hence, the ability to 

uniquely determine them. However, the problem persists in the measures developed for 

region-region configurations as both objects are of the same type. Perhaps it is assumed 

that object identity is resolved through semantic annotations that demarcate the objects’ 
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nature (i.e., one line is denoted as a river and another as a highway). For an unambiguous 

comparison, however, such annotations need to be present in both the sketch query and 

the database representations. In our work, we provided extensions that allow the 

employment of metric measures even in the absence of knowledge about the identity of 

the objects. 

6. Conclusions and Future Work 

This paper introduced a computational model that extends topological information about 

binary relations between simple lines based on the 9-intersection with metric information 

in terms of splitting ratios and closeness measures. Three splitting ratios refine 30 of the 

33 topological relations distinguished by the 9-intersection: line alongness, which applies 

for 19 of the 33 relations and describes lengths of common paths; interior splitting, which 

applies for 30 relations and deals with the partitioning of lines through intersections; and 

exterior splitting, which can be applied to 23 relations, addressing areas enclosed by two 

lines with two or more common components. They all take values between 0 and 1 and 

grow linearly with the size of the intersection component that they measure. Closeness 

measures describe how far apart disjoint object parts are and their values are positive 

numbers with no upper bound. Three classes of closeness measures were derived: 

boundary closeness, interior closeness, and interior-boundary closeness. All closeness 

measures apply to all 33 relations since there is no constraint on their usage; however, 

values of 0 add in essence no refinement. Closeness measures are particularly useful in 

the case of disjoint relations where the splitting ratios are not applicable. 

To encode splitting ratios we converted Clementini’s and di Felice’s (1998) matrix, 

which stores values of topological properties for detailed topological relations between 

lines, into the metrically-enhanced classifying invariant. Each of the values of 

topological properties that describe an intersection has a natural correspondence with one 

of the splitting ratios. This allows capturing both topological and metric information for a 

scene, in a single representation. Closeness measures are stored in the closeness matrix, 

which is a table derived from the 4-intersection. Each cell of this matrix contains an 

ordered pair of numbers corresponding to the minimum and maximum measures. 
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The metric refinements may complement both coarse and detailed relations in the 

description of a spatial scene adding progressively more information about the scene. 

Metric refinements need only be calculated when necessary. An example of such a case is 

spatial similarity retrieval, where metric details may be used in order to sort query results 

when a user requests a scene by sketching (Egenhofer 1997). If the database returns more 

than one scene where objects have the same topology as those in the drawn sketch, metric 

details will enable an ordering of the most similar scene to less similar scenes. In addition 

to similarity retrieval, metric information can be used for preprocessing sketch queries in 

order to correct unintended errors (i.e., overshoots, undershoots) by the users and restore 

the proper topology for a query. Such corrections may also be facilitated by making 

semantic inferences from the annotation of the objects in the sketch. For instance, a user 

may draw a parcel incorrectly, having two edges of the parcel only slightly intersecting, 

instead of exactly meeting at the boundary. Absence of a topological match for this query 

may trigger a topology restoration operation, where metric details help detect small 

inaccuracies (Ubeda and Egenhofer 1997). The query with the new topology may now be 

submitted again to the database for retrieval of a new topological match. The exact details 

of such operations and the theory to support them are topics for future work. 

An important distinction between closeness measures and splitting ratios is that the 

former may be compared for scenes that have identical or similar topology, whereas the 

latter can only be compared for scenes with identical topology. This difference is a result 

of the closeness measures having a more global character since they deal with disjoint 

object parts, whereas the splitting ratios operate at the component level and are heavily 

dependent on the labels of the lines and their boundary points. It would be desirable to 

compare splitting ratios for scenes of different topologies. An additional topic of interest 

that is germane to this problem is the establishment of a set of invariants that create a 

one-to-one correspondence for a scene and its classifying invariant matrix. Finally, a 

comprehensive similarity model for spatial configurations is needed so that it can 

simultaneously consider topological, metrical, and directional information, determine 

when finer levels of detail need to be employed in the similarity assessment, and also take 

under consideration semantic correlations and weighting issues. 
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Table 1: Area and length measures applied to the 9-intersections of two lines. 

 
2L °  2L∂  2L −  

1L ° 1 2( )length L L°∩ ° — 
1 2( )length L L −°∩  

1L∂ — — — 

1L −  1 2( )length L L− ∩ ° — 
1 2( )area L L− −∩  
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Table 2: Representation of the general form of  the classifying invariant in tabular form. 

2( )S L  CS  T  
2LLO  

0k  0( )CS k  0( )T k  
2 0 1( , )LLO k k  

1k  1( )CS k  1( )T k  
2 1 2( , )LLO k k  

… … … … 

… … … 
2 2 1( , )L m mLO k k− −  

1mk −  1( )mCS k −  1( )mT k −  - 
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Table 3: Representation of a classifying invariant in tabular form. 

2( )S L  CS  T  
2LLO  

0 0 
1 2 1 2( , , , )i i o o  l 

1 0 
1 2 1 2( , , , )i o o i  r 

3 0 
1 2 1 2( , , , )i i o o  r 

2 -1 
1 1 2( , , )i o i  - 
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Table 4: Metrically enhanced classifying invariant matrix for the configuration in Figure 19. 

)( 2LS  CS  T  
2LLO  

0 0 
1 2 1 2( , , , )i i o o , (0.18, 0.10, 0.16, 0.23) -0.05 

1 0 
1 2 1 2( , , , )i o o i , (0.16, 0.37, 0.17, 0.23) 0.14 

3 0 
1 2 1 2( , , , )i i o o , (0.23, 0.37, 0.15, 0.21) 0.11 

2 -0.09 
1 1 2( , , )i o i , (0.17, 0.23, 0.21) - 
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Table 5: The closeness matrix for the two lines of Figure 21. 

 
2L °  2L∂  

1L °  minIC , maxIC  min 1( )IBC L , max 1( )IBC L  

1L∂  min 2( )IBC L , max 2( )IBC L  minBC , maxBC  

 



 41

 

 

Figure 1: The set of 33 line-line relations realizable in 2 (Egenhofer 1994). 
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            (a)   (b) 

Figure 2: Two configurations with different numbers of components. 



 43

  

       (a)         (b) 

Figure 3: A global metric measure instead of one based on components would fail to add any refinement 

between these two topologically equivalent configurations. 
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Figure 4: Line alongness: the common interior separates each line into parts of inner and outer segments 

(more complex configurations may have multiple components in the intersection of the line interiors). 
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  (a)    (b)         (c) 

Figure 5: Interior splitting: (a) one line’s interior separates the other line’s interior into two parts (the 

common interior could also be 1-dimensional); (b) one line’s boundary separates the other line’s interior 

into two parts; and (c) the extreme case where lines meet at a boundary and the split segments equal the 

lengths of the lines. 
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 (a)        (b)   (c)         (d)   (e) 

Figure 6: Exterior splitting: a bounded exterior formed by (a) two interior-interior intersections; (b) one 

boundary-interior and one interior-interior intersection; (c) one boundary-boundary and one interior-interior 

intersection; (d) one boundary-boundary and one boundary-interior intersection; and (e) two boundary-

boundary intersections. 
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       (a)            (b) 

 

         (c)             (d) 

Figure 7: (a) The largest non-containing circle around P with respect to object O; (b) The smallest 

containing circle around P with respect to object O; (c) The largest non-containing buffer around line L 

with respect to object O; and (d) The smallest containing buffer around line L with respect to object O. 
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algorithm: boundaryBoundaryClosenessDistances 
input: two lines:  lineA and lineB 
output: minimum boundary-boundary distance dMin, maximum boundary-boundary 

distance dMax 
method: 

p1 := start(lineA) 
p2 := end(lineA) 
p3 := start(lineB) 
p4 := end(lineB)  
d1 := distance(p1,p3) 
d2 := distance(p1,p4) 
d3 := distance(p2,p3) 
d4 := distance(p2,p4) 
dMin := min(d1, d2, d3, d4) 
if dMin = d1 then dMax := d4  

elseif dMin = d2 then dMax := d3 
elseif dMin = d3 then dMax := d2 

else dMax := d1 
return dMin, dMax 

end 

Figure 8: Algorithm boundaryBoundaryClosenessDistances. 
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       (a)             (b) 

Figure 9: Boundary distances formed between disjoint sets of boundary points will yield metrics that are 

representative of the actual proximity of the boundaries of two lines. 
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       (a)             (b) 

Figure 10: Two metrically-different configurations may appear very similar without the condition of 

disjoint sets of boundary points between which distances are derived. 
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Figure 11: Considering all possible distances between boundary points creates label-dependent closeness 

measures. Even though the two configurations are very similar metrically, the different labeling schemes 

lead to comparisons (compared distances are indicated with the same integer numbers) that portray the two 

scenes as very different with respect to the metric property of boundary closeness. 
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       (a)             (b) 

Figure 12: (a) a sketch query and (b) a database configuration. Normalizing by the length of an arbitrarily 

selected line (L1 for Figure 12a and L2 for Figure 12b) may distort similarity inference, thus making the two 

very similar configurations appear significantly different with respect to their boundary closeness. 
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   (a)      (b) 

Figure 13:  The process of deriving (a) the minimum and (b) the maximum interior distance. While the two 

minimum distances are symmetric, the same does not necessarily hold for the maximum distances. 
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algorithm: interiorInteriorClosenessDistances 
input:  two lines: lineA and lineB 
output: minimum interior-interior distance dMin, and maximum interior-interior 

distance dMax 
method: 

pointsLineA := pointSequence(lineA) 
pointsLineB := pointSequence(lineB) 
for (i=1 to i<=pointsLineA.length) 

for (j=1 to j<=pointsLineB.length) 
d[i,j] := distance(pointsLineA[i], pointsLineB[j]) 

end for 
end for 
dMin := min(d[i,j]) 
dMax := max(d[i,j]) 
return dMin, dMax 

end 

Figure 14: Algorithm interiorInteriorClosenessDistances. 
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Figure 15:  The shortest distance from the interior of L1 to the boundary of L2 is different from the shortest 

distance of the interior of L2 to the boundary of L1. 
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Figure 16: Retrieving the minimum and maximum distances from the interior of L1 to the boundary of L2. 
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algorithm: interiorBoundaryClosenessDistances 
input:  two lines: lineA and lineB 
output: minimum interior-boundary and maximum interior-boundary distances of 

lines A and B: dMinL1, dMaxL1, dMinL2, dMaxL2. 
method: 

p1:= start(lineA) 
p2:= end(lineA) 
p3:= start(lineB) 
p4:= end(lineB)  
boundaryLineA := [p1, p2] 
boundaryLineB := [p3, p4] 
pointsLineA := pointSequence(lineA) 
pointsLineB := pointSequence(lineB) 
for (i=1 to i<=2) 

for (j=1 to j<=pointsLineA.length) 
dA[i,j] := distance(boundaryLineB[i], pointsLineA[j]) 

end for 
end for 
dMinL1 := min(dA[i,j]) 
dMaxL1 := max(dA[i,j]) 
for (i=1 to i<=2) 

for (j=1 to j<=pointsLineB.length) 
dB[i,j] := distance(boundaryLineA[i], pointsLineB[j]) 

end for 
end for 
dMinL2 := min(dB[i,j]) 
dMaxL2 := max(dB[i,j] 
return dMinL1, dMaxL1, dMinL2, dMaxL2 

end 

Figure 17: Algorithm interiorBoundaryClosenessDistances. 
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Figure 18: A complex configuration with four interior-interior intersection components formed by two 

simple lines. 
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Figure 19: A complex configuration with four intersection components enhanced with metric details. 

Numbers in black represent the interior splitting ratios for line L1; numbers in gray represent the interior 

splitting ratios for line L2; numbers in bold black represent the exterior splitting ratio for each bounded 

exterior component; and the number in italic represents the line alongness ratio. 
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Figure 20: Two topologically equivalent configurations with different line labeling produce different 

classifying invariants (equivalent incoming and outgoing arcs are represented by the letters a,…, f). 
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Figure 21: A configuration of two disjoint lines enhanced with metric details of closeness measures. 

Continuous segments represent distances derived for boundary closeness measures; dotted segments 

represent distances derived for interior closeness measures; black and gray dashed segments represent 

distances derived for interior-boundary closeness measures for L1 and L2, respectively. 
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Figure 22: (a) a database configuration; (b) a sketch-query; and (c) the initial database configuration with 

inverse labeling of the lines. The difference matrix (a,b) should be chosen as a measure of the actual 

similarity between the sketch and the database configurations. (boundary-boundary distances are drawn 

with continuous black segments and annotated in bold; interior-interior distances are drawn with dotted 

segments and annotated in italic; and interior-boundary distances are drawn with black and gray dashed 

segments and annotated in black and gray for lines L1 and L2 respectively). 
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