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Abstract. Using wireless geosensor networks (WGSN), sensor nodes often 

monitor a phenomenon that is both continuous in time and space. However, 

sensor nodes take discrete samples, and an analytical framework inside or 

outside the WSN is used to analyze the phenomenon.. In both cases, expensive 

communication is used to stream a large number of data samples to other nodes 

and to the base station. In this work, we explore a novel alternative that utilizes 

predictive process knowledge of the observed phenomena to minimize 

upstream communication. Often, observed phenomena adhere to a process with 

predictable behavior over time.We present a strategy for developing and 

running so-called ‘tiny models’ on individual sensor nodes that capture the 

predictable behavior of the phenomenon; nodes now only communicate when 

unexpected events are observed. Using multiple simulations, we demonstrate 

that a significant percentage of messages can be reduced during data collection. 

Keywords: Sensors, wireless sensor network, model, continuous phenomenon, 

tiny models, process modeling, prediction, autonomous 

1   Introduction 

As the field of geosensor network research matures, the number of sensor networks 

deployed to collect data for geospatial phenomena is increasing. This trend is spurred 

by significant advances in wireless communication, the miniaturization of computing 

and storage hardware, as well as advances in sensor materials and technology [1]. 

Independent networks of sensors nodes are frequently deployed to observe and 

monitor the characteristics of an event. These characteristics are often comprised of 

dissimilar measurands of the target phenomena, which can span both 3D space and 

time. Consider for example, monitoring the intensity of light over a finite region, not 

necessarily a geographic region but for example an indoor space, which is illuminated 

by a controlled light source. The phenomenon of the light distribution follows an 

expected physical process, which can be captured in a formal model. This work 
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investigates strategies to minimize data collection in the sensor network, as sensor 

nodes do not need to exchange information with other nodes if the predicted process 

proceeds as expected. Thus, instead of communicating the ‘obvious’, the sensor 

network only initiates wider-spread activity in situations where there are measured 

deviations from the known model (for example, if an additional light source is added).  

A key challenge in developing a model-based decentralized monitoring strategy, is 

satisfying the storage and computing requirements that most large models will 

necessitate. These models should not exceed the 416Mhz and 32MB of storage 

provided by some of the most advanced sensor hardware offered today [2]. The goal 

of this research is to map a predictive, often large and complex model to a set of “tiny 

models”, which can be run on Micaz sensor nodes with limited memory and 

processing resources [3]. These tiny models will provide each node with sufficient 

knowledge to evaluate the expected process based on time and their spatial location 

with regard to the phenomena being observed.  

Our objective is to minimize overall data communication and reduce it to handling 

unexpected values. In such an event, sensor nodes will reason about the cause of the 

deviation; possible causes may include noisy sensor readings, an observed event, or 

incomplete (perhaps even inaccurate) model information..  

Streams of sensor readings represent 'snapshots' of objects and processes that 

continually change over time.  Models are generated from previous knowledge of how 

sensed objects and/or processes evolve over some temporal period, and are used to 

assist nodes in understanding and monitoring evolutionary changes in the network. 

An event is considered a record of a process change of interest, that is, a measured 

deviation from the known process model at some fixed time [4]. For example, a 

model may predict that light intensity at a measured location should be similar (e.g. 

within +/- 0.1 W/m
2
) to spatially and temporally adjacent sensor readings. In this 

scenario, the deviation is the reported event, the location the object of interest, and the 

sudden change in illumination an abnormal process state. Relative to the known 

process model, the sensed event, object of interest, and abnormal process state 

become the phenomena of interest, which initiates further node communication to 

reason about the abnormal sensor data.  

The next section introduces the research problem..   The remainder of this paper is 

structured as follows: a brief motivational example of how a prototypical model can 

assist in minimizing radio communication in a sensor network which is followed. by a 

discussion of the hardware constraints and operational requirements.. This will 

become a primer to a detailed study of methods for developing smaller models from 

detailed parent models that are complete and thus much larger. A formal framework 

and rationale is then introduced, that utilizes these 'tiny' models.We show that our 

strategy for decentralized areal estimation using tiny models will yield efficient, semi-

autonomous sensor networks by leveraging and evolving models of an understood 

process on resource constrained hardware. Finally, conclusions and plans for future 

work are discussed in the final section of this paper. 

2 Predictive Model-based Data Collection in Sensor Networks 



Scientists and engineers are frequently interested in monitoring an understood 

phenomenon in order to verify process stability, to identify the occurrence of 

abnormal events, and foremost be alerted to them. For example, engineers may want 

to identify abnormal machine vibrations to assist in predicting mechanical failure. 

Today, we can use wireless sensor nodes to autonomously monitor these phenomena 

at novel spatial and temporal scales. However, even the most state-of-the-art hardware 

still has limitations such as power consumption, storage capacity, and processing 

capability. In particular, this applies to the application of sensor networks for the 

observation of well-known phenomena whose process can be captured in predictive 

models. Traditionally, sensor nodes are used for the raw collection of data, which is 

then transmitted to a central base station for verification and comparison to a forecast 

phenomenon. Alternatively, communication costs can be significantly reduced if the 

sensor nodes could autonomously and intelligently make predictions, detect abnormal 

values locally, and only communicate alerts in exceptional cases. 

 To accomplish this, we propose breaking up traditional large, complex predictive 

models into ‘tiny models’ and loading these compact models of the target phenomena 

onto individual sensor nodes. By executing tiny models locally on sensor nodes, it is 

likely that a significant decrease in communication cost can be achieved due to a 

reduced need for transmitting raw sensor data readings to other nodes and throughout 

the network. Communication activity is limited to ‘unusual’ events by avoiding 

'obvious' data collection and instead only initiating wider-spread sensor activity where 

measured deviations from the known model exist.  Sensor readings are autonomously 

and locally compared to derivations from a tiny model to isolate unpredicted 

observations, which are further discriminated as sensor noise, environmental noise, or 

an actual event of interest. For example, a sensor could measure a noisy value or 

indeed an (unexpected) event. Local collaboration is reduced to nodes only interacting 

with neighboring nodes to analyze the cause for the deviation. In the case that an 

event happens, likely the neighboring nodes will sense similar values, and the 

boundary of the ‘event’ can be computed.  

The remainder of this paper explores various techniques for the creation and 

dissemination of a 'tiny model', methods for efficient boundary detection using this 

model, and techniques for in-network data suppression.  

2.1   Example 

Let's assume that the process being observed, for example the spatial distribution of 

light in an observed region over time, can be represented by a mathematical model of 

the variance in illumination intensity at any temporal snapshot T. All nodes are 

programmed with a minimalistic variation of this model, and once deployed, nodes 

persistently sample the spatial region of interest at a discrete interval that is 

appropriate to accurately observe estimated changes in light intensity (for example, at 

a frequency that is 1/100th the expected rate of change.) This observational process 

can be decomposed into three transition states, each of which progressively demands 

more node-node communication. The first state, field monitoring, is characterized by 

the node performing predictive sampling/validation of the environment relative to the 

model, requiring the least communication with neighbors. The second state, event 



detection, draws upon knowledge from neighboring nodes to identify events of 

interest, employing a balance of internal model validation and cross-comparison with 

neighbors. The third state, event contour processing, requires the highest level of node 

collaboration to accurately monitor the event boundary. 

 Our objective for using tiny models is that they will permit nodes to collect data 

samples locally and then cross-validate this data with the model prediction. Ideally, 

the model will facilitate independent operation of the nodes and no radio transmission 

within the network would be required. However, due to spatial knowledge 

requirements nodes may still need to periodically communicate with each other in 

order to synchronize the model with reality, validate on-board sensor readings, and be 

responsive to neighboring requests for validation. That is, intermittent readings from 

neighboring nodes are necessary to refresh model predictions and also to determine if 

a deviation from these calculations is due to noise or some unpredicted event. In the 

latter case, a sensed deviation from ambient light that exceeds a predefined limit for 

some temporal period will trigger further processing within the network, commanding 

all neighboring nodes to cross-compare their sensed values of the field and 

collaborate to determine potential noise in the measurement or the extent of 

aberrations from the prediction.  

 To set the groundwork for a prototypical example, let's assume that twelve nodes 

are arranged in a fixed 3 x 4 spatial grid to monitor light intensity along the surface of 

a room. To simplify the illumination function, it is assumed that there is a stationary 

point source of light, centered in an empty room, at a fixed distance above the floor. 

These design constraints permit the use of a simple illumination function, which takes 

as input the power and location of the light source, its distance above the floor, and 

the measurement location. For a single light source this function is formalized with 

the following equation: 

 

       I = W / (4*pi * ((Mx – Sx)
2
 + (My – Sy)

2
 + D

2
)) .   (1) 

 

  Where:   I    = illumination, Watts/m
2 

   W   = bulb power, Watts 

   M(x,y) = Cartesian coordinates of measurement location, m 

   S(x,y) = Cartesian coordinates of bulb location, m 

  D = distance of the bulb above the floor, m 

 The formula above models illumination along the base of a room from a single 

source of light. For example, we consider a 60 watt bulb 3 meters above the floor and 

positioned at room center (i.e. Sx =0, Sy =0). The sensor nodes are equipped with a 

localized program that predicts the illumination based on the node’s spatial location 

(i.e. Mx =0, My=0). We call this a ‘tiny model’ since it can be stored and computed on 

a resource constrained sensor node. Communication activity is minimized by locally 

sampling the light intensity at a discrete point and then comparing it with the 

internally executed model. This sampling and comparison occurs at an interval 

sufficient enough to accurately capture an event, for example, a sudden drop in 

illumination within the monitored environment. If this is the case, it initiates an in-

network decentralized algorithm, which draws upon knowledge from neighboring 

nodes to determine the cause of the deviation, potentially isolating an event of 



interest. For example, if neighboring nodes do not sense a similar deviation, it is 

likely that the deviant reading is attributable to sensor or environmental noise. 

However, if a number of adjacent nodes detect similar departures from their own tiny 

models, more frequent and targeted sensing within this region of interest begins and 

data is communicated upstream to a central node for further analysis and estimation of 

the event's areal extent. 

2.2   Requirements 

The objective of this research is to minimize communication within the sensor 

network by verifying process observation locally, and by leveraging knowledge that is 

traditionally captured in large complex models of an understood process within more 

compact ‘tiny models’. These models need to be sufficiently constrained such that 

they can be executed on individual nodes within a sensor network. Characteristics that 

are considered include the hardware constraints of RAM, Flash, CPU, and power, as 

well as how system accuracy and precision are affected by design decisions such as 

the spatio-temporal sampling frequency of sensor data. This novel approach, known 

as ‘TinyModeling’, is expected to provide an energy reduction approaching 85% over 

raw data collection. This energy reduction is derived from a measured reduction in the 

number of messages transmitted during process observation and event detection. 

Message transmission is the primary consumer of a node’s hardware resources, thus, a 

reduction in sensor network communication offers significant opportunities for 

resource conservation. 

 MEMORY/CPU FOOTPRINT: A major challenge in designing tiny models is 

how to capture knowledge with models that are based on point samples (or close 

neighborhoods) and that must run in a severely hardware constrained environment. 

Alternatively, traditional ‘large’ models run on powerful CPUs with large reference 

data sets, comparatively unlimited persistent storage, and substantial RAM. To better 

understand the operational boundaries for tiny models, one must consider the 

overhead required by a node operating system such as TinyOS. For example, the 

TinyOS kernel only occupies approximately 400bytes of storage while the required 

nesC runtime primitives and radio interface use another 3.1Kb [5],[6]. This 

lightweight operating system retains a significant portion of the sparse resources 

available for storage of the tiny model and associated algorithms. For example, a 

MicaZ mote running TinyOS provides approximately 3.7Kb of RAM, 6.1Mhz of 

available CPU duty, and 124.6Kb flash memory for application programming. As can 

be seen from Figure 2.2, on most current node platforms at least 80% of all available 

resources can be used for tiny models. One can also expect a significant conservation 

of power by implementing tiny models rather than raw data collection and 

communication schemes. For instance, at peak load a MicaZ node consumes 

approximately 19.7mA of current while transmitting and receiving messages. 

However, without external communication the node only utilizes 8mA of current, 

conserving up to 60% of the available power during deployment. 

 



Fig. 2.2. Comparison of data collection platform (DCP) resource availability when 

running TinyOS 

ROBUSTNESS/ACCURACY: The system of nodes and ‘tiny models’ run within 

a specific context: we expect to observe a likely and anticipated process most of the 

time, and only need to occasionally measure this process to verify that the 

phenomenon is proceeding according to the model. However, the nodes must 

accurately and quickly, detect and analyze the unexpected, classifying it as either 

noise or an event, and only performing sporadic sampling and verification (to avoid 

false positives).  

The objective of developing tiny models is not to capture perfect knowledge of the 

observed process over some temporal period. We pose the accuracy of traditional 

complex models at the targeted precision, however, we assume that the compact 

models will be less precise. Tiny model implementation in its most compact form, 

must take an aggressive stance on balancing internal data collection and storage with 

external communication among neighboring nodes. A sufficiently significant data set, 

one that provides adequate temporal as well as spatial density, is required to meet the 

desired accuracy and precision requirements for trending and analysis. Model-based 

areal event detection targets the 'exceptional' case and not the 'norm', therefore, 

communication with neighboring nodes should only be instantiated for further 

clarification and examination of unexpected data. Depending on the architecture of 

the tiny model, periodic local collaboration between networked nodes must occur to 

verify sensor readings and perform model validation; however, this does not provide 

optimum performance. Strategies such as alternating wake and sleep cycles among 

nodes, as well as leveraging staggered local clocks instead of global synchronization 

can assist in minimizing power depletion due to communication.  

3   Designing Tiny Models 

The main goal in designing a tiny model is to sustain as much intra-node data 

processing as possible, in order to minimize network collaboration (and expensive 

communication) about obvious events. However, periodic node-node communication 

is required for model dissemination and is critical for process observation once an 

event has been detected. To facilitate node-node communication, an adequate network 

topology must exist. Although mobile WSNs offer a number of interesting challenges, 



currently we focus on a static network to develop and test the TinyModeling 

approach. We assume a sensor network is arranged as a collection of Ni sensor nodes, 

located in a uniform grid pattern defined by Cx columns and Ry rows (Figure 3.0.1). 

In order to avoid orphaned nodes, it is assumed that each node is positioned so that it 

can collaborate with at least one neighbor. That is, the distance between spatially 

adjacent nodes must not exceed the reliable transmission range of the hardware being 

used. Such a topology simplifies the algorithms used for location aware models by 

minimizing distance variation in the spatial distribution of sensors, allowing the 

communication paths between nodes to be predictable.  

 

Fig. 3.0.1. A prototypical sensor network composed of Cx columns and Ry rows. 

 

 Using this topological structure as our test bed for deployment of up to 289 sensor 

nodes, we introduce a first mechanism for disseminating prior knowledge of a 

phenomenon (e.g. the illumination model discussed earlier) to individual sensor nodes 

within the network. Overall, our interest is in ‘mapping’ large complex models into 

tiny models that can be run on individual sensor nodes. In the following research, we 

test our approach hypothesis using a well-understood physical process (light 

distribution from one or more light sources) that we can capture in an equation and 

simulate as a process. The objective is to compute the overall model, initialize the 

sensor network with these tiny models, and then test the model-based process 

(observation). Overall, the experiment consists of several steps: (1) setting up a 

communication topology to initialize the nodes with the tiny models, (2) initializing 

individual nodes with their tailored tiny models, (3) process observation and (4) in-

network localized event handling.  
 Starting with step 1, a single node is designated as the base station (i.e. root) and it 

is preloaded with the large complex model of the phenomenon being observed. It is 

assumed that the base station node is a line-powered device, connected directly to a 

PC via a physical connection such as serial or USB. At initialization of the sensor 

network the root coordinates communication between all nodes, helping to assert the 

routing protocol that will be used for future upstream and downstream communication 

among nodes. A discussion of these communication strategies is outside the scope of 

this paper, however, we encourage readers to review established techniques such as 

tree, star, and clustered topologies. For this research, the multi-hop tree collection 

schema provided by TinyOS has been utilized to flow messages to and from the root. 

 Upon successful self-organization of the sensor network, with regard to the 

initialization routing tree, the root node queries the spatial location of all other nodes. 

These coordinates are fed into the larger, complete model, with the resulting output 



being the coefficient(s) describing the phenomenon at the prescribed node location. 

This information becomes the basis for a ‘tiny model’, which will be transmitted back 

to the node and stored for future in-network sensor validation. For example, let’s 

assume a node at location (2, 4) transmits its position to the root of the network tree. 

The root then calculates the intensity coefficient of the light at the node’s reported 

location. Assuming a ninety watt bulb located at the center of the room (0,0) and 

positioned three feet above the floor, the calculation per equation (1) is: 

 

I = 90 / (4*pi *( (2 – 0)
2
 + (4 –0)

2
 + 3

2
)) . 

I = 0.247 . 

 

The resulting coefficient is transmitted back to the node and becomes the basis for the 

most simplistic type of tiny model, a single coefficient, which describes the 

anticipated sensor reading at the current measurement location. This process repeats 

iteratively until each sensor node has received its own miniaturized version of the 

larger model from the root node (albeit in this case only a coefficient). Thus, this 

framework permits model prediction at all node locations. 

 
 

Fig. 3.0.2.  The graph above demonstrates sensor values and their various states of 

adherence to predictions made by a tiny model of the observed phenomenon, 

represented here, by the dotted line at the ordinate 0.3. Thus the process can be 

described as (a) compliant, readings 1-10 and  (b) uncertain, readings 11-14 

Upon receipt of the tiny model definition, phase 3 starts, and each sensor node is 

released to begin internal data acquisition and autonomous comparison to the 

predicted nominal value. Should the sensor value remain within a predetermined 

upper and lower tolerance band (i.e. upper spec limit, USL; lower spec limit, LSL) 

about this nominal, the node’s radio remains off and it is assumed by the root that the 

process (e.g. illumination) remains compliant (Figure 3.0.2a). Alternatively, the 

sensed value may drift outside of the permissible tolerance thresholds, indicating the 



presence of data uncertainty or the occurrence of some event (Figure 3.0.2b). Before 

either explanation of variation is considered plausible, additional analysis must first 

occur to deduce the cause. 

4   Event Detection Based on Tiny Models 

During the comparison of sensed data to the tiny models’ prediction, nodes must be 

empowered to classify the detected result as either: (1) a non-event, i.e. the process 

behaves as expected, (2) uncertainty due to environmental noise, (3) faulty readings 

due to sensor failure, or (4) an event that requires further action to isolate its 

boundary. We define an event explicitly to be drift from the predictive model, which 

is characterized by a discrete spatiotemporal dimension. This value is defined by the 

system user, and quantifies the threshold between noise and event detection. For 

example, if the sensed illumination suddenly exceeds a permissible threshold (e.g. the 

upper specification limit -USL) beyond the model prediction, the node must have the 

necessary logic and resources to reason about the cause of the drift. Possible events 

may be an object passing through the network, which induces a shadow, or the 

introduction of a second light source, which increases the light intensity at specific 

node locations. 

 Once a significant departure from the tiny model has been identified, the node 

attempts to mitigate the cause autonomously. This is achieved by comparing the 

noncompliant sensor reading to an internal cache of historical sensor readings:  {R-1, 

R
-2

, R
-3

, … R
-n

}. The depth of the cache, n, must be sufficient enough interpolate 

trends which may be indicative of an event, but not so large that it consumes 

excessive hardware resources. This system parameter is highly dependent upon the 

temporal sampling schema, as well as the expected rate of change of the phenomena 

being measured. For instance, the illumination example may be understood to react as 

an approximate binary process, with a rapid and near constant drift from the expected 

value (e.g. a new light source is suddenly added or the original one goes dark). In 

such a scenario, a cache size of ten historical values may provide sufficient resolution 

to flag a recurring departure from nominal that requires additional investigation.  

 For example, if the current sensor reading {R
0
}is non-conforming but the previous 

ten readings {R-1…R-10} match the prediction, the node assumes the uncertainty is 

attributable to environmental noise and no further action is taken. However, should a 

statistically significant number of these historical readings also exhibit a similar 

departure from nominal, further processing will be initiated to identify if the cause is a 

faulty sensor or the existence of an event.  Because the node has no additional internal 

knowledge available for reasoning, it must initiate radio communication within the 

sensor network to query if neighboring nodes have experienced similar departures 

from their own model predictions. If no neighboring nodes detect such departures 

from the model, the node assumes that the abnormal reading is due to a faulty sensor. 

It continues to analyze future data acquisitions, but waits a defined number of 

measurement cycles before it again queries neighboring nodes for the existence of 

confirmed model departures.    



Alternatively, neighboring nodes may return information that they have 

experienced a similar model departure. When such a confirmation occurs, nodes self-

organize to detect the extent of the occurring event. Based on previous work [7],[8] an 

energy efficient algorithm is used to identify only the boundary of the areal event and 

track its changes over time. Each node communicates with its direct neighbors to 

identify if it is located on the boundary of the event or “inside” of the event. In the 

case of being a node located ‘inside’ of an event’s region, all neighboring nodes show 

similar derivations from their models. In this case, the node stops communication 

again, and resumes regular local sampling. If a node, however, identifies that several 

of its neighbors experience no model derivation, but others do, it can identify itself as 

a boundary node and identify potential other neighboring boundary nodes.  

Once all sensor nodes have identified themselves as either boundary nodes or 

‘inside’ event nodes, the boundary nodes continue communication in regular intervals 

to observe the event boundary and its changes. Successive monitoring of the event 

boundary is only performed by these boundary nodes, and the one closest to the root 

is elected to transmit an aggregated list of the nodes which compose the event 

boundary. This decentralized algorithm permits efficient boundary estimation, 

minimizing the number of messages required to monitor the event. To improve the 

resolution of the sensor network, the boundary nodes may also increase their sensor 

sampling frequency in order to monitor the event with a higher precision. Should any 

node begin acquiring a consecutive number of sensor readings that are within normal 

operating parameters, it will stand down, and cease to transmit data until a future 

event is sensed (using the procedure prescribed above). This protocol permits nodes to 

minimize unnecessary radio communication, by only transmitting data when a 

confirmed event has been detected. 

5   Performance Evaluation 

The tiny model framework consists of several algorithmic parts: (1) initializing the 

nodes with their models, (2) continuous observation, (3) noise, event detection and 

identification. Since the initialization is run only once, or rarely (e.g. recalibrate), we 

assess the communication cost for this part separately. The major part of the 

performance testing is done with regard to steps two and three. We expect that 

phenomenon observation without event detection is the most interesting part of the 

performance analysis since we foresee the highest energy savings here. Event 

detection and handling is similar to other approaches in this research area (e.g. 

boundary detection algorithms); however, it is performed based on tiny model 

information. In our experimental set-up we test the communication cost for all three 

parts, and compare the observation with raw sensor data collection and tree based 

routing as a baseline.   

 For simulation and testing purposes, three 4m by 4m grid topologies of different 

sensor node ‘resolution’ were constructed (see Figure 5.0.1). The first is composed of 

25 nodes with a 2m spacing. The second contains 81 nodes with a 1m spacing and the 

most dense configuration contains 289 nodes with a 0.5m spacing. Each of these 

topologies has a relaxed signal to noise schema to facilitate predictable 



communication (i.e no delayed or lost messages) among all nodes in the network. 

This eases retransmission of messages due to signal variance and path loss, permitting 

a more accurate performance evaluation of event detection utilizing the tiny model 

framework. The varying choices of sensor network density are necessary to assess the 

detection accuracy.  

 

 
Fig.5.0.1. Prototypical sensor topologies used to measure the illumination gradient for 

a light source located at (0,0). (a) 2m spacing, (b) 1m spacing, (c) 0.5m spacing. 

  

 To organize the nodes, a multi-hop, tree topology-based network configuration is 

employed. The simulation is executed for twenty-four hours with sensor data 

sampling occurring at five minute intervals, testing the three different network 

densities. In the case, of raw sensor data collection, the sensor data is sampled and 

sent upstream to the base station without further aggregation. Analyzing tiny models, 

we test several sensing strategies to quantify the number of messages TinyModels 

require, and compare this with the number of messages in the raw sensor data 

collection case.  

 In the first test, we determine the simulation baseline for the TinyModels 

approach; here, we assume the tiny models are disseminated to the nodes once, and no 

further events, noise or even synchronization takes place. In the second test, we add a 

synchronization beacon to the TinyModel protocol, requiring all nodes to transmit a 

confirmation of functionality to the root every hour or two hours. In the third test, we 

additionally factor in that a percentage of the nodes experience sensor noise locally, 

which is characterized by internal sensor data exceeding model predictions but having 

no correlation with readings from neighboring nodes. This noise occurs for a finite 

period of time, at a frequency of once per hour. More specifically, scenario 3a tests 

20% of the nodes experiencing noise while test 3b five assumes 40% of the nodes 

experience noise. In the fourth test, we select a set-up that uses hourly 

synchronizations of nodes with regard to the tiny models and a 20% noise ratio. It 

should be noted that unclassified noise, which has both a spatial and temporal extent 

may be misconstrued as an event if clusters of nodes experience similar noisy data. 

Such false positives for event detection require the system user to later classify these 

occurrences as either events or noise. Additionally, we assume event detection over a 

discrete spatial area within the sensor network covering about a sixteenth of the 

overall observation area. We assume that three events are detected (at hours 6, 12 and 

18). It takes one cycle to detect an event, and can take several cycles to observe the 



event depending on its duration. In the simulation, the 6
th

 hour event is detected 

during a single five minute collection cycle; event detection spans four collection 

cycles during the twelfth hour, and two collection cycles during the eighteenth hour. 

The results of each simulation are shown in Figures 5.0.2 and 5.0.3. 

  These test scenarios demonstrate that the TinyModel approach significantly 

reduces sensor network energy consumption during routine monitoring of a well 

understood phenomenon. Most notably, the number of messages for the baseline 

scenario of raw data collection in a 289 node topology was reduced from 521,280 to 

46,583 messages using TinyModel-based event detection. This is due to the 

dissemination of intrinsic process knowledge that empowers network nodes to 

autonomously reason about the sensor data they acquire. The creation of tiny models, 

coupled with targeted distribution of this knowledge, enable in-network data 

evaluation that minimizes radio communication with the root node when the process 

is operating as expected. The results for each simulation and the associated reduction 

in messages are shown in Figure 5.0.4. 

 Based upon these results, TinyModel-based event detection benefits mostly those 

processes which are assumed to be relatively stable and that frequently operate within 

the prescribed specification limits of the model. Given such a process, tiny models 

significantly reduce overall network communication, permitting node radios to remain 

off, conserving both power and hardware resources. 

 
Fig. 5.0.2. Raw data collection vs. TinyModeling test results for a sparse topology 

(e.g. 25 nodes). 

 

 To enable more extensive testing of the hypothesis that TinyModels for a known 

process significantly decreases communication costs during event detection, we have 

developed a prototypical sensor network using TinyOS and the TOSSIM simulator. 

This system is sufficiently modular that additional knowledge models can be inserted 

into the simulation, as well as various communication protocols, and sources of noise. 

Additionally, the temporal frequency and spatial extent of events can be altered to test 

the robustness of the TinyModel framework. It is anticipated that continued testing 



and development will facilitate additional enhancements, which will further improve 

the performance of TinyModel event detection. 

 

 
Fig. 5.0.3. Raw data collection vs. TinyModeling test results for a dense topology 

(e.g. 289 nodes) 

 

  

 
Fig.5.0.4. Simulation Results: an analysis of messages transmitted per 24 hour 

simulation for each of six testing scenarios and three network topologies. 

 

  

6   Related Work 

Due to a node's limited power capacity and the high cost associated with wireless data 

transmission, improving communication efficiency between networked sensor nodes 

has been an active area in geosensor research [9]. Many strategies have been 

introduced to make geosensor networks more efficient by decreasing node-to-node 

communication and the associated transmission costs. For example, data-centric 

routing, draws upon an in-network analysis of individual sensor readings to permit 

nodes to evaluate whether or not sensed data should be sent or received [10]. For 



instance, nodes may choose to only power on their radios if a message of interest (e.g. 

that of a detected event) should be transmitted to neighboring nodes [11].  

 Models of an understood process are also an integral part of ongoing research that 

aims to advance structural health modeling using sensor networks [12]. In this 

application, groups of sensors are distributed throughout an engineered structure (e.g. 

building or bridge) to monitor vibrations that may compromise the structure's safety 

or useful life. Groups of sensor nodes are strategically paired to process a single 

structural analysis algorithm in a coordinated manner. Nodes locally process sensor 

readings and the collective leader transmits an aggregated set of data, or 

recommended model adjustment parameters, back to a reference node. Our Tiny 

Model strategy further decreases the volume of messages exchanged between nodes 

by empowering each node to autonomously analyze sensor data, and only initiate 

radio communication if values deviate from known model predictions.   

 Another field of geosensor research, tracking the patterns of moving objects, 

utilizes models to efficiently track the current motion of an object as well as predict 

future movement of the objects. One such example leverages materialized and non-

materialized trajectories to improve sensing efficiency and overcome location 

imprecision due to uncertain data.. In addition to using the road network as a source 

of knowledge about the phenomena being measured, more robust moving object 

modeling techniques also consider velocity changes of the moving objects being 

sensed [12]. 

 Within the sensor network and database communities, models have been proposed 

to assist with user-based queries for data acquisition in sensor networks [13]. Sensor 

readings are supplemented with knowledge from predictive approximation models to 

augment the need to collect data from all sensors within the network. These strategies 

typically use statistical modeling techniques to account for issues in spatial sampling 

by extrapolating missing or faulty sensor data. In this paper, instead of model 

predictions being generated by a central coordinator and issued to downstream child 

nodes, we propose empowering all nodes with a miniaturized version of the process 

model..  

7   Conclusions and Future Research 

This research is different from previous work in the area of efficient sensor 

networking in that it utilizes localized tiny models to perform energy efficient data 

collection and boundary analysis of events, by leveraging characteristics of an 

understood phenomenon to achieve process monitoring and unexpected event 

detection similar to that realized with a fully detailed model. Comparing locally 

sensed data to the tiny models’ prediction, nodes must be empowered to classify the 

detected result as either: (1) a non-event, i.e. the process behaves as expected, (2) 

uncertainty due to environmental noise, (3) faulty readings due to sensor failure, or 

(4) an event that requires further action to isolate its boundary.  

 When a process behaves as expected, nodes only perform predictive 

sampling/validation of the environment relative to the model, requiring the least 

communication with neighbors. If deviation from the model occurs, nodes employ a 



balance of internal validation and cross-comparison with neighbors to isolate sensor 

noise and detect event boundaries. Using a simulation approach, this work has 

demonstrated that ‘TinyModeling’ is able to provide an energy reduction exceeding 

85% over raw data collection (measured in transmitted messages). Additional testing 

will quantify the accuracy and precision of boundary detection for events, by varying 

the spatial density of the sensor topology and the temporal sampling schema. Future 

research will consider methods for achieving immunity to sensor failure, reasoning 

about abnormal event detection, model-evolution using back propagation, and the 

implications of mobile nodes. 
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