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Abstract

This paper addresses changes in topological relations as they occur when
splitting a region into two. It derives systematically what qualitative infer-
ences can be made about binary topological relations when one region is
cut into two pieces. The new insights about the possible topological rela-
tions obtained after splitting regions form a foundation for high-level spa-
tio-temporal reasoning without explicit geometric information about each
object’s shapes, as well as for transactions in spatio-temporal databases
that want to enforce consistency constraints.

1 Introduction

Efforts in spatio-temporal modeling have significantly enhanced the com-
putational capabilities of otherwise static models of geographic space. In
recent years the primary focus has been on moving objects (Wolfson et al.
1998), emphasizing point-like representations of objects and their trajecto-
ries. These investigations have led to a plethora of methods for querying
and indexing of space-time samples as they are stored in and retrieved
from spatio-temporal databases (Güting and Schneider 2005; Pfoser and
Jensen 2003). Methods for making higher-level inferences about changes
to spatial configurations, however, have been confined to objects that re-
tain their identity over time, considering such changes as movement, rota-
tion, expansion, and shrinking (Egenhofer and Al-Taha 1992).

More complex changes have been addressed at the level of the identity
of objects (Hornsby and Egenhofer 1998), covering the splitting of objects
into several autonomous pieces, the spawning off of parts from a continu-
ing entity, the merging of several items into a unified object, or an item
joining a collection. When such identity changes occur with respect to
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spatial objects these changes imply not only modifications at the level of
the individuals’ identities, but also involve spatial changes. Few consid-
erations, however, have been given to the spatial ramifications of such
spatio-temporal change operations, for instance topological changes when
merging regions (Clementini et al., 1995; Tryfona and Egenhofer 1997) or
by introducing holes into regions (Egenhofer et al., 1994).

This paper addresses changes in topological relations as they occur
when splitting an object into two pieces. For example, when subdividing a
land parcel with a building on it into two pieces, there are several possi-
bilities for the building to be located with respect to the two newly created
land parcels (Fig. 1). Unless the exact location of the newly introduced
boundary is known, the actual situation is one among several choices. Such
inferences without graphical or detailed geometric information typically
occur when analyzing and reasoning with verbal descriptions.

(a) (b) (c) (d)
Fig. 1. Three scenarios of subdividing land parcel A into two, A1 and A2, such
that building B has a different topological relation with respect to the two subdivi-
sions, A1 and A2: (a) A1 contains B and A2 is disjoint from B; (b) A1 is disjoint
from B and A2 contains B; and (c) A1 overlaps B and A2 overlaps B.

A comprehensive understanding of all possible topological configura-
tions would provide a basis for making temporal inferences about spatial
relations, which may yield interesting, high-level information without the
need of information about the actual geometric representations and, there-
fore, supports qualitative spatio-temporal reasoning. The inferences about
the changes in topological relations are also critical in transactions so that
one can assess whether a particular change was performed consistently
with the operation’s semantics.

The remainder of this paper is organized as follows: Section 2 summa-
rizes the model used for describing binary topological relations as well as
the inference mechanisms available for dealing with spatial objects that do
not change their identities. Section 3 defines splitting and introduces the
process used for deriving the set of topological relations that holds after
splitting a region into two regions. Sections 4 and 5 determine potential
and feasible relations, respectively, the results of which are integrated into
achievable splitting configurations (Section 6). Section 7 draws conclu-
sions and stimulates future work.
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2 Binary Topological Relations between Regions

A region is a non-empty proper subset of a connected topological space
such that the region’s interior is connected and the region is identical to the
closure of the region’s interior. Each region is closed, bounded, homoge-
neously two-dimensional, and homeomorphic to a 2-disk. For pairs of such
regions embedded in 

€ 

IR2  a set of eight binary topological relations has
been identified whose elements are mutually exclusive and provide a com-
plete coverage between any two regions, that is, there holds exactly one of
the eight topological relations (Egenhofer and Franzosa 1991). Their se-
mantics are captured by the 4-intersections (Equations 1a-1i) among the
two regions’ interiors (

€ 

A° and 

€ 

B°) and boundaries (

€ 

∂A  and 

€ 

∂B). The re-
gions’ exteriors (denoted by 

€ 

A− and 

€ 

B−) capture their regions’ comple-
ments (i.e., 

€ 

IR2 \ (A°∪∂A)  and 

€ 

IR2 \ (B°∪∂B) , respectively).

A disjoint B: 

€ 

A°∩ B° =∅ ∧ ∂A∩∂B=∅ (1a)

A meet B: 

€ 

A°∩ B° =∅ ∧ ∂A∩∂B= ¬∅ (1b)

A equal B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B= ¬∅ ∧

€ 

A°∩∂B=∅ ∧ ∂A∩ B° =∅

(1c)

A overlap B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B= ¬∅ ∧

€ 

A°∩∂B= ¬∅ ∧ ∂A∩ B° = ¬∅

(1d)

A inside B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B=∅ ∧

€ 

A°∩∂B=∅ ∧ ∂A∩ B° = ¬∅

(1e)

A contains B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B=∅ ∧

€ 

A°∩∂B= ¬∅ ∧ ∂A∩ B° =∅

(1f)

A covers B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B= ¬∅ ∧

€ 

A°∩∂B= ¬∅ ∧ ∂A∩ B° =∅

(1g)

A coveredBy B: 

€ 

A°∩ B° = ¬∅ ∧ ∂A∩∂B= ¬∅ ∧

€ 

A°∩∂B=∅ ∧ ∂A∩ B° = ¬∅

(1h)

U is the universal relation {disjoint, meet, overlap, inside, covers, con-
tains, coveredBy, equal} and 

€ 

topRel ∈U. If several topological relations
are referred to, they are distinguished by indices topReli, topRelj, etc. The
set of eight topological region-region relations also enables qualitative
spatial reasoning in the form of the composition of relations, that is, given
a pair of topological relations A topReli B and B topRelj C the composition
derives candidates for the topological relation topRelk between A  and C
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(Egenhofer 1994). With the composition table—the complete set of all
possible compositions among the eight topological relations—one can
make topological inferences among the set of regions of a spatial configu-
ration using constraint propagation techniques (Egenhofer and Sharma
1993; Smith and Park 1992).

3 Splitting a Region into Two Regions

Splitting a region into two regions is defined in terms of the outcome of a
geometric operation. A region A is split into two parts such that each part
is a region as well and that the two parts meet (Figs. 2a-d). Such splitting
may be achieved by cutting A into two pieces with a non-self-intersecting
simple line starting at a point in A’s boundary and extending through A’s
interior back to a different point in A’s boundary than the starting point.
This type of splitting excludes related operations, such as creating a hole in
a region by cutting out an island (Fig. 2e), or partitioning the region into
more than two parts (Fig. 2f). Regions with holes are known to fall into a
different setting beyond simply connected spatial regions and their eight
basic topological relations (Egenhofer et al., 1994). Likewise, splitting ex-
cludes a separation of the two parts by inserting a non-linear object, as it
might be introduced when a flooded river ploughs through some terrain,
carving out another extended spatial object. Subsequently, let A1 and
A2—the parts of A—be two regions such that A1 meets A2 and the union of
A1 and A2 is equal to A.

(a) (b) (c) (d) (e)
Fig. 2. Scenarios with (a-c) legally split regions and illegally split regions (d) due
to the insertion of a hole and (e) due to splitting the region into more than two
parts.

The topological relations after splitting a region into two regions are de-
rived through three successive steps:

• Identifying potential splitting configurations that are based on the con-
straint that the two split regions must meet (Section 4). This first step is
performed as a consistency check using the composition property of bi-
nary topological relations.
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• Deriving systematically the set of feasible splitting configurations based
on the propagation of empty and non-empty intersections from the to-
be-split region to its parts (Section 5). This second step requires a de-
tailed elimination process based on constraints of the split parts’ inte-
rior, boundary, and exterior intersections with the to-be-split object.

• Integrating the results of potential and feasible splitting configurations
into achievable splitting configurations (Section 6).

4 Potential Splitting Configurations

When splitting region A into two parts, A1 and A2, the topology with re-
spect to region B (i.e., A topReli B) is captured by two binary topological
relations, A1 topRelj B  and A2 topRelk B. The domain of these topological
relations is the set of eight topological region-region relations; therefore,
83 = 512 different combinations would be possible, among the 64 combi-
nations of topRelj x topRelk. When considering all of these combinations,
however, one does not take into account any constraints imposed by the
splitting requirement that the two parts, A1 and A2, must meet and that both
A1 and A2 must be coveredBy A; therefore, the set of possible post-splitting
configurations is smaller. For instance, A1 contains B  and A1 contains B
cannot be realized, after splitting A into A1 and A2, because this conjunction
is inconsistent with the constraint that A1 meets A2. On the other hand, A1
inside B and A2 inside B would be consistent with A1 meets A2.

We define potential relations as those that can be obtained by applying
systematically a constraint satisfaction algorithm over the network of all
binary topological relations among the regions A, A1, A2, and B (Egenhofer
and Sharma 1993). Such constraint satisfaction enforces converse relations
(through the arc consistency constraint) and, along paths in the network,
ensures that inconsistencies based on the relations’ compositions are
eliminated. This approach implies that the set of binary topological rela-
tions that hold between each pair of each region is equal to itself; A covers
A1 and A2; A1 meets A2; the unknown relations with B are the universal re-
lation U, and converse relations are used consistently (Fig. 3).

By replacing iteratively the universal relations U from A to B, from A1 to
B, and from A2 to B with one concrete relation out of the set of eight topo-
logical relations, such that B topRell A is converse to A topReli B, B topRelm

A1 is converse to A1 topRelj B, and A2 topReln B is converse to B topRelk A2
(in order to satisfy the arc consistency constraint), one can perform a con-
sistency check for all possible configurations, eliminating inconsistent and,
therefore, impossible configurations.
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A A1 A2 B
A equal covers covers U
A1 coveredBy equal meet U
A2 coveredBy meet equal U
B U U U equal

Fig. 3. The sixteen topological relations between region A, its split parts A1 and A2
and another region B.

Whenever the path consistency constraint generates an empty relation,
the configuration is impossible; however, the converse inference of possi-
ble configurations from a consistent network of binary topological rela-
tions does not always hold true (Papadimitriou et al. 1999); therefore a
non-empty relation as the result of the path consistency constraint confirms
that a particular configuration is a potential topological relation after split-
ting A into A1 and A2 (Fig. 4).

A1 topRelj B potential topological relations for A2 topRelk B
disjoint disjoint 

€ 

∨ meet 

€ 

∨ overlap 

€ 

∨ covers 

€ 

∨ contains
meet disjoint 

€ 

∨ meet 

€ 

∨ overlap 

€ 

∨ covers 

€ 

∨ coveredBy 

€ 

∨ equal
overlap inside 

€ 

∨ coveredBy 

€ 

∨ overlap 

€ 

∨ meet 

€ 

∨ disjoint
coveredBy inside 

€ 

∨ coveredBy 

€ 

∨ overlap 

€ 

∨ meet
inside disjoint 

€ 

∨ meet
covers disjoint 

€ 

∨ meet
contains disjoint
equal meet

Fig. 4. Potential topological relations for the parts A1 and A2 with respect to B.

5 Feasible Splitting Configurations

Splitting a region into two parts requires the introduction of a new line,
which extends from the boundary of the region, through its interior, to a
point in the boundary. This line implies that some properties of the topo-
logical relations of the split regions can be derived from the topological
properties before splitting. These properties rely primarily on the intersec-
tions of the interiors and boundaries of the to-be-split region and, there-
fore, trigger propagations of empty and non-empty interior, boundary, and
exterior intersections from the to-be-split region to the parts (Sections 5.1-
5.3). Since the newly introduced boundary runs through the to-be-split re-
gion’s interior, corrective measures must be taken to account for the intro-
duction of the corresponding boundary intersections (Section 5.4).
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5.1 Interior Propagations

A’s interior, 

€ 

A°, has three relations with respect to B and its parts:

R1:

€ 

A° is a subset of 

€ 

B° (

€ 

A°⊆ B°).
R2:

€ 

A° is a true subset of B’s exterior (

€ 

A°⊂ B− ).
R3:

€ 

A° has non-empty intersections with all three parts of B
(

€ 

A°∩ B°≠∅

€ 

∧

€ 

A°∩∂B≠∅

€ 

∧ 

€ 

A°∩ B− ≠∅).

These three relations cover all possible cases and no other scenarios
need to be considered. For instance, because a region’s boundary has no
extent it cannot contain the non-empty interior or non-empty exterior of
another region (

€ 

A°⊂/ ∂B). Since the regions are embedded in 

€ 

IR2 , the in-
terior of a region cannot coincide with the exterior of another region
(

€ 

A°≠ B−). Finally, if the interior of a region A contains another region’s
interior B, this implies that A’s interior has non-empty intersections with
all parts of B (

€ 

A°⊃ B°⇒ A°∩ B°≠∅∧A°∩∂B≠∅∧A°∩ B− ≠∅ ), there-
fore, this last scenario is covered by R3. The three relations with respect to
A’s interior give rise to Theorems 1-3.

Theorem 1: 

€ 

A°⊆ B°⇒ A1°⊂ B°∧A2°⊂ B°
Proof: This follows from the definition of a subset (i.e., all parts of a con-
tained connected set are also subsets of the containing set). Since 

€ 

A1°⊆ A°
and 

€ 

A2°⊆ A° , 

€ 

A1° and 

€ 

A2° are transitively contained in everything in
which 

€ 

A° is contained. �

Theorem 2:

€ 

A°⊂ B− ⇒ A1°⊂ B− ∧A2°⊂ B−

Proof: In analogy to the proof of Theorem 1, substituting 

€ 

B° with 

€ 

B−. �

Theorem 3: 

€ 

A°∩ B°≠∅∧A°∩∂B≠∅∧A°∩ B− ≠∅⇒

€ 

(A1°⊂ B°∧A2°⊂ B−)∨

(A1°⊂ B°∧A2°∩ B°≠∅∧A2°∩∂B≠∅∧A2°∩ B− ≠∅)∨

(A1°⊂ B− ∧A2°⊂ B°)∨

(A1°⊂ B− ∧A2°∩ B°≠∅∧A2°∩∂B≠∅∧A2°∩ B− ≠∅)∨

(A1°∩ B°≠∅∧A1°∩∂B≠∅∧A1°∩ B− ≠∅∧

A2°∩ B°≠∅∧A2°∩∂B≠∅∧A2°∩ B− ≠∅)
Proof: When A’s interior has a non-empty intersection with all three parts
of B, then five constellations for the split interiors (

€ 

A1° and 

€ 

A2°) are pos-
sible: (1) 

€ 

A1° is completely contained in 

€ 

B° and 

€ 

A2° is completely con-
tained in the other extended part of B (i.e., 

€ 

B−) such that
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€ 

A° \ A1° \ A2° =∂B∩ A°, which is non-empty; 

€ 

A1° is completely contained
in 

€ 

B° and 

€ 

A2° has non-empty intersections with all three parts of B; (3) re-
versing in (1) 

€ 

A1° and 

€ 

A2°; (4) reversing in (2) 

€ 

A1° and 

€ 

A2°; and (5) 

€ 

A1°
and 

€ 

A2° both extend through all three parts of B. �

5.2 Boundary Propagations

Similar to the propagation of non-empty interior intersections, non-empty
boundary intersections between the to-be-split region and the related re-
gion are also propagated to the split regions’ parts. Relevant for this
propagation from A’s boundary to region B is that A’s boundary 

€ 

∂A  has six
relations with respect to the parts of B:

R4:

€ 

∂A  is a true subset of 

€ 

B° (

€ 

∂A ⊂ B°).
R5:

€ 

∂A  is a true subset of B’s exterior (

€ 

∂A ⊂ B−).
R6:

€ 

∂A  is a subset of B’s boundary (

€ 

∂A ⊆ ∂B).
R7:

€ 

∂A  has non-empty intersections with B’s interior and B’s boundary
(

€ 

∂A∩ B°≠∅ 

€ 

∧ 

€ 

∂A∩∂B≠∅ ), but no intersection with B’s exterior
(

€ 

∂A∩ B− =∅).
R8:

€ 

∂A  has non-empty intersections with B’s exterior and B’s boundary
(

€ 

∂A∩ B− ≠∅ 

€ 

∧ 

€ 

∂A∩∂B≠∅ ), but no intersection with B’s interior
(

€ 

∂A∩ B° =∅).
R9:

€ 

∂A  has non-empty intersections with all three parts of B (

€ 

∂A∩ B°≠∅

€ 

∧ 

€ 

∂A∩∂B≠∅  

€ 

∧ 

€ 

∂A∩ B− ≠∅).

Other set-theoretic combinations of 

€ 

∂A  and B’s parts are not meaningful
or would not yield further insights when splitting A. For instance, consid-
ering only the non-empty intersections of 

€ 

∂A with B’s interior and B’s ex-
terior (

€ 

∂A∩ B°≠∅ 

€ 

∧ 

€ 

∂A∩ B− ≠∅), while assuming that 

€ 

∂A∩∂B=∅  is
impossible, because of the role of a region’s boundary as a Jordan curve,
the non-empty intersections of 

€ 

∂A∩ B°≠∅ and 

€ 

∂A∩ B− ≠∅ imply that

€ 

∂A∩∂B≠∅  as well. These six relations with respect to A’s boundary give
rise to Theorems 4-9.

Theorem 4: 

€ 

∂A⊂ B°⇒∂A1 ⊂ B°∧∂A2 ⊂ B°
Proof: If the boundary of the to-be-split region A is fully contained in the
interior of another region B, then the boundary of each split part (

€ 

∂A1 and

€ 

∂A2) must be located in that region’s interior (

€ 

B°) as well. The newly in-
troduced part of the boundary between A1 and A2 must be a subset of 

€ 

B°,
because it falls into 

€ 

A°, which is a subset of 

€ 

B° at the same time as 

€ 

∂A  is a
subset of 

€ 

B°. �
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Theorem 5: 

€ 

∂A⊂ B− ⇒∂A1 ⊂ B− ∧∂A2 ⊂ B−

Proof: In analogy to the proof of Theorem 4, substituting 

€ 

B° with 

€ 

B−. �

Theorem 6: 

€ 

∂A⊆ ∂B⇒

€ 

∂A1∩∂B≠∅∧∂A1∩ B°≠∅∧∂A2∩∂B≠∅∧∂A2∩ B°≠∅
Proof: For region objects, 

€ 

∂A⊆ ∂B implies 

€ 

∂A =∂B , that is, when splitting
A into A1 and A2, the boundaries 

€ 

∂A1 and 

€ 

∂A2 will both have non-empty
intersections with 

€ 

∂B . In addition, a newly introduced boundary part,
which belongs to both A1 and A2 such that it separates 

€ 

A1° from 

€ 

A2°, will
need to extend through 

€ 

B°, yielding non-empty intersections of 

€ 

B° with
respect to 

€ 

∂A1 and 

€ 

∂A2. �

Theorem 7: 

€ 

∂A∩ B°≠∅∧∂A∩∂B≠∅∧∂A∩ B− =∅⇒

€ 

(∂A1 ⊂ B°∧∂A2∩ B°≠∅∧∂A2∩∂B≠∅∧∂A2∩ B− =∅)∨

(∂A1∩ B°≠∅∧∂A1∩∂B≠∅∧∂A1∩ B− =∅∧

∂A2∩ B°≠∅∧∂A2∩∂B≠∅∧∂A2∩ B− =∅)
Proof: If—after splitting A into A1 and A2—

€ 

∂A1 is completely contained in

€ 

B°, then, since (

€ 

∂A2 ⊆ ∂A \∂A1) 

€ 

∂A2 must have non-empty intersections
with B’s interior and B’s boundary (i.e., 

€ 

∂A2∩ B°≠∅ and 

€ 

∂A2∩∂B≠∅ )
no intersection with B’s exterior (

€ 

∂A2∩ B− =∅). Conversely, if 

€ 

∂A1 is not
contained in 

€ 

B° then both 

€ 

∂A1 and 

€ 

∂A2 must extend through B’s interior
and boundary, but not through B’s exterior. �

Theorem 8: 

€ 

∂A∩ B− ≠ ∅∧∂A∩∂B ≠∅∧∂A∩ B° =∅⇒

€ 

(∂A1 ⊂ B− ∧∂A2∩ B− ≠∅∧∂A2∩∂B≠∅∧∂A2∩ B° =∅)∨

(∂A1∩ B− ≠∅∧∂A1∩∂B≠∅∧∂A1∩ B° =∅∧

∂A2∩ B− ≠∅∧∂A2∩∂B≠∅∧∂A2∩ B° =∅)
Proof: In analogy to the proof of Theorem 7, exchanging 

€ 

B° and 

€ 

B−. �

Theorem 9: 

€ 

∂A∩ B°≠∅∧∂A∩∂B≠∅∧∂A∩ B− ≠∅⇒

€ 

(∂A1∩ B°≠∅∨∂A2∩ B°≠∅)∧
(∂A1∩∂B≠∅∨∂A2∩∂B≠∅)∧

(∂A1∩ B− ≠∅∨∂A2∩ B− ≠∅)
Proof : If 

€ 

∂A∩ B°≠∅ then it is impossible that 

€ 

∂A1∩ B° =∅  and

€ 

∂A2∩ B° =∅, which is equivalent to 

€ 

∂A1∩ B°≠∅∨∂A2∩ B°≠∅ . The
other three implications can be found accordingly by replacing 

€ 

B° with 

€ 

∂B
and 

€ 

B−, respectively. �
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5.3 Exterior Propagations

A’s exterior has four relevant relations R10–R13 to A’s and B’s parts. R13
is a stronger statement than R11, but yields additional inferences. Like-
wise, R10 and R12 may coincide with R13, but there are configurations in
which only R10 and R12 hold, but not R13. These four relations with A’s
exterior yield Theorems 10–13.

R10:

€ 

A− has a non-empty intersection with 

€ 

B°.
R11:

€ 

A− has a non-empty intersection with 

€ 

B−.
R12:

€ 

A− has a non-empty intersection with 

€ 

∂B .
R13:

€ 

A− is a superset of 

€ 

B− (

€ 

A− ⊇ B− ).

Theorem 10: 

€ 

A− ∩ B°≠∅⇒ A1
− ∩ B°≠∅∧A2

− ∩ B°≠∅

Proof: Splitting A into A1 and A2 implies that 

€ 

A1
− ⊃ A1 and 

€ 

A2
− ⊃ A2 . Also

€ 

A1
− ⊃ A−  and 

€ 

A2
− ⊃ A− . Therefore, 

€ 

B°∩ A− ≠∅ and 

€ 

A− ⊂ A1
−  implies

€ 

B°∩ A1
− ≠∅. Likewise, 

€ 

A− ⊂ A2
−  implies 

€ 

B°∩ A2
− ≠∅. �

Theorem 11: 

€ 

A− ∩∂B≠∅⇒ A1
− ∩∂B≠∅∧A2

− ∩∂B≠∅
Proof: In analogy to the proof of Theorem 10, substituting 

€ 

B° with 

€ 

∂B . �

Theorem 12: 

€ 

A− ∩ B− ≠∅⇒ A1
− ∩ B− ≠∅∧A2

− ∩ B− ≠∅
Proof: In analogy to the proof of Theorem 10, substituting 

€ 

B°  with 

€ 

B−. �

Theorem 13: 

€ 

A− ⊇ B− ⇒ A1
− ⊃ B− ∧A2

− ⊃ B−

Proof: Splitting A into A1 and A2 implies that 

€ 

A1
− ⊃ A1. By transitivity

€ 

A1
− ⊃ A1 ⊇ B− ⇒ A1

− ⊃ B−. Substituting 

€ 

A1
− with 

€ 

A2
− it follows 

€ 

A2
− ⊃ B− . �

5.4 Boundary Overwrite

When splitting a region into two regions a new piece of boundary is intro-
duced that must be connected to the to-be-split region’s boundary and must
run through its interior until it reaches the boundary again. Therefore, non-
empty intersections of the to-be-split object’s interior may overwrite empty
boundary intersections of the copied boundary intersections.

Theorem 14:

€ 

A°⊆ B°⇒∂A1∩ B°≠∅∧∂A2∩ B°≠∅
Proof: The added boundary is part of A’s interior. If A’s interior is com-
pletely contained in some other component, then that component must in-
tersect with the newly added boundary, which belongs to both A1 and A2;
therefore, their boundaries must intersect with that component. �
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Theorem 15:

€ 

A°⊆ B− ⇒∂A1∩ B− ≠∅∧∂A2∩ B− ≠∅
Proof: In analogy to the proof of Theorem 14, substituting 

€ 

B° with 

€ 

B−. �

6 Achievable Splitting Configurations

The feasible splitting configurations yield a set of pairs of candidate rela-
tions that might hold between the two split objects, depending on the rela-
tion that the to-be-split region held prior to splitting. Among these candi-
date sets, only those relations are achievable that lead to potential (Section
4) and feasible (Section 5) splitting configurations. We derived systemati-
cally those patterns of topological relations that fulfill Theorems 1–15. The
stepwise elimination process leads to 21 achievable relations, each of
which was confirmed by generating an example drawing (Figs. 5–12). The
stepwise elimination also enabled us to confirm that all sixteen theorems
were necessary and no combination of a subset of these theorems would
yield the same result as one of the sixteen theorems.

A1 disjoint B A2 disjoint B

Fig. 5. Achievable splitting relations for A disjoint B.

A1 disjoint B A2 meet B

A1 meet B A2 meet B

Fig. 6. Achievable splitting relations for A meet B.

A1 covers B A2 disjoint B

A1 covers B A2 meet B

A1 equal B A2 meet B

A1 overlap B A2 overlap B

A1 coveredBy B A2 overlap B

Fig. 7. Achievable splitting relations for A covers B.
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A1 disjoint B A2 overlap B

A1 meet B A2 overlap B

A1 meet B A2 coveredBy B

A1 overlap B A2 overlap B

A1 overlap B A2 coveredBy B

A1 overlap B A2 inside B

Fig. 8. Achievable splitting relations for A overlap B.

A1 coveredBy B A2 coveredBy B

A1 coveredBy B A2 inside B

Fig. 9. Achievable splitting relations for A coveredBy B.

A1 contains B A2 disjoint B

A1 covers B A2 meet B

A1 overlap B A2 overlap B

Fig. 10. Achievable splitting relations for A contains B.

A1 coveredBy B A2 coveredBy B

Fig. 11. Achievable splitting relations for A equal B.

A1 inside B A2 inside B

Fig. 12. Achievable splitting relations for A inside B.
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This set of 21 splitting configurations enables a new sort of qualitative
spatial reasoning about change from successive snapshots. For instance,
with the knowledge that at some time t1 three regions X, Y, and Z have the
topological relations X contains Z  and Y  disjoint Z , then X  and Y could
have resulted from splitting region W into X and Y (Fig. 10) and at an ear-
lier time t0, prior to splitting, W would have contained Z. The cumulative
inferences from Figs. 5–12 show that such inferences about the pre-
splitting relation of X to Y are typically unique, except for four ambiguous
cases: (1) X overlaps Z and Y overlaps Z leads to W overlaps, contains, or
covers Z; (2) X covers Z  and Y meets Z  leads to W  covers or contains Z;
(3) X coveredBy Z and Y  coveredBy Z leads to W equal or coveredBy Z;
and (4) X coveredBy Z and Y overlaps Z leads to W overlaps or covers Z.

7 Conclusions

We have derived the set of binary topological relations that may hold for
each part if one splits a region into two region parts. Constraint satisfac-
tion, establishing an arc-consistent and path-consistent network of topo-
logical relations, lead to a set of potential relations. An elimination process
then propagated interior, exterior, and boundary properties from the to-be-
split region to its parts, yielding feasible relations. The combination of po-
tential and feasible relations led to 21 configurations that may occur for
such a region-splitting process, which enables qualitative spatio-temporal
reasoning from sequences of snapshots.
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