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ABSTRACT

While physics education research (PER) has traditionally focused on introductory physics,

little work has been done to organize and develop a model of how student come to make sense of the

material they learn.  By understanding how students build their knowledge of a specific topic, we can

develop effective instructional materials.  In this dissertation, I describe an investigation of student

understanding of mechanical and sound waves, how we organize our findings, and how our results

lead to the development of curriculum materials used in the classroom.

The physics of mechanical and sound waves at the introductory level (using the small-

amplitude approximation in a dispersionless system) involves fundamental concepts that are difficult

for many students.  These include: distinguishing between medium properties and boundary

conditions, recognizing local phenomena (e.g. superposition) in extended systems, using mathematical

functions of two variables, and interpreting and applying the mathematics of waves in a variety of

settings.  Student understanding of these topics is described in the context of wave propagation,

superposition, use of mathematics, and other topics.  Investigations were carried out using the common

tools of PER, including free response, multiple-choice, multiple-response, and semi-guided individual

interview questions.

Student reasoning is described in terms of primitives generally used to simplify reasoning

about complicated topics.  I introduce a previously undocumented primitive, the object as point

primitive.  We organize student descriptions of wave physics around the idea of patterns of

associations that use common primitive elements of reasoning.  We can describe students as if they

make an analogy toward Newtonian particle physics.  The analogy guides students toward describing a

wave as if it were a point particle described by certain unique parts of the wave.  A diagnostic test has

been developed to probe the dynamics of student reasoning during the course of instruction.

We have replaced traditional recitation instruction with curriculum materials designed to help

students come to a more complete and appropriate understanding of wave physics.  We find that the

research-based instructional materials are more effective than the traditional lecture setting in helping

students apply appropriate reasoning elements to the physics of waves.
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Chapter 1: The Need for Systematic Investigation of

Student Understanding of Physics

Introduction

Investigations of student difficulties with physics are growing in number and

sophistication.  As researchers gain deeper insight into student understanding of the

material taught in the classroom, they are able to create curriculum materials that are

more effective in improving a student's actual understanding.  At the same time,

growing understanding of student reasoning provides the opportunity to find more

systematic descriptions of how students come to make sense of the physics.  By

evaluating student performance in a modified curriculum setting, researchers can then

develop an understanding of not only the curriculum's effects on student learning, but

also the manner in which a curriculum can affect student learning.

There are many goals when investigating student understanding of physics.  As

researchers, we aim to recognize and “diagnose” specific difficulties while also

finding the most common difficulties related to a specific topic.  We try to help

individual students more effectively while also creating curriculum that helps the

highest number of students overcome the most common difficulties.  The general goal

is to help students understand what it means to understand physics.

In this dissertation, I will discuss the above ideas in the context of student

difficulties with the physics of mechanical waves.  The physics of mechanical waves

is common to most introductory physics curricula at the university level and provides

many interesting topics in which to discuss how students come to an understanding of

physics.  My investigations have taken place at the University of Maryland (UMd)

with engineering students taking a required three-semester sequence of physics

classes.  The students discussed in this dissertation were in the second semester of the

sequence.

In this chapter, I summarize the dissertation by giving an overview of the

issues that affect the discussion of physics education research on student

understanding of mechanical waves.  Rather than discussing the contents of each

chapter in order of its appearance, I will describe some of the issues that play a role in

the dissertation while pointing out where a discussion of these issues can be found.

Physics Education Research

The field of Physics Education Research (PER) has come about in reaction to

the growing need for innovative methods in education that address student difficulties

with the difficult material they are required to learn in our physics classrooms.  PER

involves

• investigations of specific aspects of student understanding of the physics,

• the development of investigative probes to help fulfill this goal,

• the development of statistical methods that help researchers organize,

analyze, and present their findings,
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• the design and implementation of curriculum materials that provide a more

effective learning environment for students, and

• evaluations of the effectiveness of these materials.

In chapter 2, I give an overview of PER by summarizing work done by some

of the leaders in the field.  In the course of the analysis, I discuss different methods of

analysis that have been used, including focusing both on specific aspects of

understanding only and on broader descriptions of common student difficulties.  In

addition, I discuss how PER can lead to curriculum materials that can be demonstrated

to be effective in addressing student difficulties with the physics.  The remainder of

the dissertation presents my own work, done as part of the Physics Education

Research Group (PERG) at UMd, which involved all the aspects of PER as described

above.

Wave Physics

In order to discuss student understanding of wave physics, it is necessary to

describe in detail what it is that we want them to actually learn in our classes.  A

mechanical wave is a propagating disturbance to a system, such as a wave traveling on

a long, taut string.  At the introductory level, we teach students a very simplified

model of waves.  In this model, there are no large amplitude waves and there is no

dispersion in the system.  Any disturbance will propagate indefinitely.

Mathematically, these traveling waves can be described by functions of the form

f(x±vt), where f is any function that describes the displacement of the mechanical wave

from equilibrium.

In chapter 2, I discuss the generally accepted model of waves that is taught at

the introductory level.  Many of the ideas of wave physics are subtle and rarely

addressed explicitly in textbooks.  For example, an understanding of waves requires an

understanding of the role of initial conditions to help create a wave, though the initial

conditions do not affect the manner of the wave’s propagation through the system.

Also, propagation occurs due to local interactions between “nearest neighbors” in the

system.  Student understanding of the distinctions between local phenomena and

global phenomena plays a central role in this dissertation.

After the discussion of the physics, I discuss previous research by summarizing

the literature of investigations into student difficulties with wave physics.  Very few

studies have been published, and the common themes among those that are available

suggests that wave physics is a rich topic for investigating more general patterns of

reasoning that we find in students.

Student Difficulties with Wave Physics

The wave physics topics discussed in this dissertation include

• wave propagation speed (and how to change it),

• wave superposition (point-by-point addition of displacement),

• the mathematical description of waves (the f(x±vt) dependence), and

• the physics of propagating sound waves.
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In addition, other topics play a role, such as wave reflection, though these have

not been investigated in as great detail.

The specific wave physics topics serve as a context in which to discuss

concepts and ideas that are more general to physics as a whole.  These general ideas

(displacement from equilibrium, for example, or the role of initial conditions in

describing the dynamics of a system) build on concepts that students have encountered

in their previous mechanics classes and also play a role in students’ future studies.  As

a result, the discussion of student difficulties in chapter 3 provides a context in which

to discuss how students build on the knowledge that they bring into the classroom.

Organizing Student Difficulties

In addition to investigating student difficulties with specific physics concepts,

we must also try to find ways to organize, explain, and discuss systematically how

students are coming to their understanding of the material.  An extensive literature has

grown in the fields of education and cognitive studies in which these issues are

addressed.  In chapter 4, I give a summary of some of these ideas that help account for

some of the difficulties we see students having with wave physics.  Each of the

different cognitive concepts that I discuss is presented with a typical example of how

student reasoning has been interpreted in physics through the use of these different

ideas.  By presenting these cognitive ideas, I suggest a model of learning that is

applicable to describing student difficulties with waves.

In chapter 5, I apply the proposed model of learning to the specific student

difficulties first presented in chapter 3.  We describe student reasoning in terms of

fundamental and very simple ideas that are consistently and generally applied to many

different situations.  These reasoning primitives are generally applicable to many

different situations in many different (possibly non-physics) settings.  In physics, the

same primitive may be applied in contradictory ways to a single physical situation.

We refer to the application of a primitive in a context as a facet of reasoning.

In chapter 5, I discuss a primitive not previously presented in the literature, the

object as point primitive.  Students often apply this and other useful and reasonable

primitives (helpful in mechanics, for example) inappropriately when thinking about

the topic of wave physics.  This provides us with a context in which to discuss

different aspects of student reasoning.  On the one hand, it is encouraging to see

students trying to make sense of new topics in terms of the material that they have

learned in previous semesters (though well-researched difficulties from mechanics

arise again).  On the other hand, we find that students do not have the ability to

determine whether the primitives that they apply to a situation are appropriate in that

setting.

Furthermore, many students seem to inappropriately use a set of primitives in

conjunction with each other.  We describe this as a pattern of association, meaning

that students seem to use more than one primitive inappropriately to describe a single

topic, but we do not claim that this is a robust model that students have in their head.

The pattern of association may serve to help guide a student’s choice of primitives in a

given context.  We refer to the pattern of association that many students use when

discussing the physics of mechanical waves as the Particle Pulses Pattern of



4

Association, because student responses indicate a simplification of finite length waves

to single points (rather than extended regions of displacement).  In addition, students

show great difficulties reasoning about force and motion with waves.

Designing Curriculum to Address Student Needs

To help students in their learning of physics, we have begun to develop and

implement a set of instructional materials that are designed to address specific student

difficulties with the material.  These materials, known as tutorials, are based on a

design by the University of Washington (UW) Physics Education Group, under the

guidance of Lillian McDermott.  In tutorials, students participate in a process in which

we

• elicit their difficulties, through questions that ask for their predictions or

descriptions of a physical situation,

• confront students with a weak understanding of the material with evidence

to show that their predictions were incorrect, and

• help students resolve their difficulties through guided questions and

activities designed to let the student build their own robust understanding

of the material.

The process of the development of research-based curriculum materials is

described in chapter 2 in the context of a UW tutorial.  Tutorials developed at UMd to

address student difficulties with wave physics are described in chapter 6.  This

description includes a summary of how the computerized videos used in the

instructional materials were created.  In addition, in chapter 6 data are presented to

indicate how effective the curriculum materials have been in addressing student

difficulties.  We have compared student performance from the beginning of an

instructional sequence (pre-instruction on waves), the middle of the instructional

sequence (after lecture instruction, but before tutorial instruction), and the end of

instruction (after all instruction in the class has been completed).  We find that student

performance improves greatly as a result of research-based curriculum materials.

Investigating the Dynamics of Student Reasoning

To better describe how student reasoning about the physics changes over the

course of instruction, we have developed a diagnostic test that allows us to gain deeper

insight into student reasoning on many different aspects of the physics at once.  By

using many questions that ask about the same topic, we are able to see the extent to

which students reason consistently about the physics.  By using the same questions

before and after instruction, we are able to compare the development of student

reasoning as a result of different instructional materials.

We find that students are not consistent in their reasoning.  We can describe

two patterns that students use to guide their reasoning: the Particle Pulses Pattern of

Association, mentioned above, and the community consensus model of waves.

Through the use of a short diagnostic test, we have been able to describe the dynamics

of student reasoning as moving from a primarily incorrect application of otherwise

useful and reasonable primitives to a state where they use both types of reasoning.
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The implications for instruction in physics are that students leave our classes with an

incomplete understanding of when to use which reasoning while thinking about the

physics.  I discuss the dynamics of student reasoning in chapter 7 of this dissertation.



1

Chapter 1: The Need for Systematic Investigation of

Student Understanding of Physics

Introduction

Investigations of student difficulties with physics are growing in number and

sophistication.  As researchers gain deeper insight into student understanding of the

material taught in the classroom, they are able to create curriculum materials that are

more effective in improving a student's actual understanding.  At the same time,

growing understanding of student reasoning provides the opportunity to find more

systematic descriptions of how students come to make sense of the physics.  By

evaluating student performance in a modified curriculum setting, researchers can then

develop an understanding of not only the curriculum's effects on student learning, but

also the manner in which a curriculum can affect student learning.

There are many goals when investigating student understanding of physics.  As

researchers, we aim to recognize and “diagnose” specific difficulties while also

finding the most common difficulties related to a specific topic.  We try to help

individual students more effectively while also creating curriculum that helps the

highest number of students overcome the most common difficulties.  The general goal

is to help students understand what it means to understand physics.

In this dissertation, I will discuss the above ideas in the context of student

difficulties with the physics of mechanical waves.  The physics of mechanical waves

is common to most introductory physics curricula at the university level and provides

many interesting topics in which to discuss how students come to an understanding of

physics.  My investigations have taken place at the University of Maryland (UMd)

with engineering students taking a required three-semester sequence of physics

classes.  The students discussed in this dissertation were in the second semester of the

sequence.

In this chapter, I summarize the dissertation by giving an overview of the

issues that affect the discussion of physics education research on student

understanding of mechanical waves.  Rather than discussing the contents of each

chapter in order of its appearance, I will describe some of the issues that play a role in

the dissertation while pointing out where a discussion of these issues can be found.

Physics Education Research

The field of Physics Education Research (PER) has come about in reaction to

the growing need for innovative methods in education that address student difficulties

with the difficult material they are required to learn in our physics classrooms.  PER

involves

• investigations of specific aspects of student understanding of the physics,

• the development of investigative probes to help fulfill this goal,

• the development of statistical methods that help researchers organize,

analyze, and present their findings,



2

• the design and implementation of curriculum materials that provide a more

effective learning environment for students, and

• evaluations of the effectiveness of these materials.

In chapter 2, I give an overview of PER by summarizing work done by some

of the leaders in the field.  In the course of the analysis, I discuss different methods of

analysis that have been used, including focusing both on specific aspects of

understanding only and on broader descriptions of common student difficulties.  In

addition, I discuss how PER can lead to curriculum materials that can be demonstrated

to be effective in addressing student difficulties with the physics.  The remainder of

the dissertation presents my own work, done as part of the Physics Education

Research Group (PERG) at UMd, which involved all the aspects of PER as described

above.

Wave Physics

In order to discuss student understanding of wave physics, it is necessary to

describe in detail what it is that we want them to actually learn in our classes.  A

mechanical wave is a propagating disturbance to a system, such as a wave traveling on

a long, taut string.  At the introductory level, we teach students a very simplified

model of waves.  In this model, there are no large amplitude waves and there is no

dispersion in the system.  Any disturbance will propagate indefinitely.

Mathematically, these traveling waves can be described by functions of the form

f(x±vt), where f is any function that describes the displacement of the mechanical wave

from equilibrium.

In chapter 2, I discuss the generally accepted model of waves that is taught at

the introductory level.  Many of the ideas of wave physics are subtle and rarely

addressed explicitly in textbooks.  For example, an understanding of waves requires an

understanding of the role of initial conditions to help create a wave, though the initial

conditions do not affect the manner of the wave’s propagation through the system.

Also, propagation occurs due to local interactions between “nearest neighbors” in the

system.  Student understanding of the distinctions between local phenomena and

global phenomena plays a central role in this dissertation.

After the discussion of the physics, I discuss previous research by summarizing

the literature of investigations into student difficulties with wave physics.  Very few

studies have been published, and the common themes among those that are available

suggests that wave physics is a rich topic for investigating more general patterns of

reasoning that we find in students.

Student Difficulties with Wave Physics

The wave physics topics discussed in this dissertation include

• wave propagation speed (and how to change it),

• wave superposition (point-by-point addition of displacement),

• the mathematical description of waves (the f(x±vt) dependence), and

• the physics of propagating sound waves.
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In addition, other topics play a role, such as wave reflection, though these have

not been investigated in as great detail.

The specific wave physics topics serve as a context in which to discuss

concepts and ideas that are more general to physics as a whole.  These general ideas

(displacement from equilibrium, for example, or the role of initial conditions in

describing the dynamics of a system) build on concepts that students have encountered

in their previous mechanics classes and also play a role in students’ future studies.  As

a result, the discussion of student difficulties in chapter 3 provides a context in which

to discuss how students build on the knowledge that they bring into the classroom.

Organizing Student Difficulties

In addition to investigating student difficulties with specific physics concepts,

we must also try to find ways to organize, explain, and discuss systematically how

students are coming to their understanding of the material.  An extensive literature has

grown in the fields of education and cognitive studies in which these issues are

addressed.  In chapter 4, I give a summary of some of these ideas that help account for

some of the difficulties we see students having with wave physics.  Each of the

different cognitive concepts that I discuss is presented with a typical example of how

student reasoning has been interpreted in physics through the use of these different

ideas.  By presenting these cognitive ideas, I suggest a model of learning that is

applicable to describing student difficulties with waves.

In chapter 5, I apply the proposed model of learning to the specific student

difficulties first presented in chapter 3.  We describe student reasoning in terms of

fundamental and very simple ideas that are consistently and generally applied to many

different situations.  These reasoning primitives are generally applicable to many

different situations in many different (possibly non-physics) settings.  In physics, the

same primitive may be applied in contradictory ways to a single physical situation.

We refer to the application of a primitive in a context as a facet of reasoning.

In chapter 5, I discuss a primitive not previously presented in the literature, the

object as point primitive.  Students often apply this and other useful and reasonable

primitives (helpful in mechanics, for example) inappropriately when thinking about

the topic of wave physics.  This provides us with a context in which to discuss

different aspects of student reasoning.  On the one hand, it is encouraging to see

students trying to make sense of new topics in terms of the material that they have

learned in previous semesters (though well-researched difficulties from mechanics

arise again).  On the other hand, we find that students do not have the ability to

determine whether the primitives that they apply to a situation are appropriate in that

setting.

Furthermore, many students seem to inappropriately use a set of primitives in

conjunction with each other.  We describe this as a pattern of association, meaning

that students seem to use more than one primitive inappropriately to describe a single

topic, but we do not claim that this is a robust model that students have in their head.

The pattern of association may serve to help guide a student’s choice of primitives in a

given context.  We refer to the pattern of association that many students use when

discussing the physics of mechanical waves as the Particle Pulses Pattern of
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Association, because student responses indicate a simplification of finite length waves

to single points (rather than extended regions of displacement).  In addition, students

show great difficulties reasoning about force and motion with waves.

Designing Curriculum to Address Student Needs

To help students in their learning of physics, we have begun to develop and

implement a set of instructional materials that are designed to address specific student

difficulties with the material.  These materials, known as tutorials, are based on a

design by the University of Washington (UW) Physics Education Group, under the

guidance of Lillian McDermott.  In tutorials, students participate in a process in which

we

• elicit their difficulties, through questions that ask for their predictions or

descriptions of a physical situation,

• confront students with a weak understanding of the material with evidence

to show that their predictions were incorrect, and

• help students resolve their difficulties through guided questions and

activities designed to let the student build their own robust understanding

of the material.

The process of the development of research-based curriculum materials is

described in chapter 2 in the context of a UW tutorial.  Tutorials developed at UMd to

address student difficulties with wave physics are described in chapter 6.  This

description includes a summary of how the computerized videos used in the

instructional materials were created.  In addition, in chapter 6 data are presented to

indicate how effective the curriculum materials have been in addressing student

difficulties.  We have compared student performance from the beginning of an

instructional sequence (pre-instruction on waves), the middle of the instructional

sequence (after lecture instruction, but before tutorial instruction), and the end of

instruction (after all instruction in the class has been completed).  We find that student

performance improves greatly as a result of research-based curriculum materials.

Investigating the Dynamics of Student Reasoning

To better describe how student reasoning about the physics changes over the

course of instruction, we have developed a diagnostic test that allows us to gain deeper

insight into student reasoning on many different aspects of the physics at once.  By

using many questions that ask about the same topic, we are able to see the extent to

which students reason consistently about the physics.  By using the same questions

before and after instruction, we are able to compare the development of student

reasoning as a result of different instructional materials.

We find that students are not consistent in their reasoning.  We can describe

two patterns that students use to guide their reasoning: the Particle Pulses Pattern of

Association, mentioned above, and the community consensus model of waves.

Through the use of a short diagnostic test, we have been able to describe the dynamics

of student reasoning as moving from a primarily incorrect application of otherwise

useful and reasonable primitives to a state where they use both types of reasoning.
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The implications for instruction in physics are that students leave our classes with an

incomplete understanding of when to use which reasoning while thinking about the

physics.  I discuss the dynamics of student reasoning in chapter 7 of this dissertation.
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Chapter 2: Review of Previous Research

Introduction

Work in physics education research (PER) seeks to understand how students

come to understand physics and, as a result, how better to teach them.  This work

includes the development of relevant measurement techniques that investigate student

reasoning in physics, the design of effective curriculum materials that address student

difficulties, and the development of techniques and statistical methods to describe and

organize our understanding of student difficulties.  Research into student understanding

forms a required basis for curriculum development.  Instruction consists of the

implementation of curriculum materials.  The cycle of research used by the Physics

Education Research Group (PERG) at the University of Maryland (UMd) is shown in

Figure 2-1.
1
  We believe that a model of learning can inform the research cycle at all of

its stages.

Because a knowledge of the research methods of PER is important for an

understanding of the later discussion, I begin this chapter with a brief overview of the

different methods used to investigate student knowledge in physics.  I then describe

previous PER results which are relevant to my work, including previous investigations

into how students make sense of introductory physics materials, student difficulties

with wave physics, and the development of research-based curriculum materials.

Research Methods

Research results in PER depend on a rigorous and repeatable methodology that

effectively probes student understanding of physics.  A variety of methods has been

developed to investigate student ideas, abilities, and concepts.  These include:

individual demonstration interviews, written questions on quizzes or exams, and

specially designed diagnostic tests.  When multiple research methods are used in

conjunction, the researcher is able to gain deeper insight into students’ reasoning

patterns, providing detailed knowledge that can be used to develop more effective

curriculum.

Figure 2-1

Curriculum

Development

Research

Model of

Learning

Instruction

The iterative cycle of research, development, and instruction, centered around an

understanding of student models of learning.
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Observations of students often start through informal observations during

lecture, office hours, help sessions, or discussion sections.  Student comments may

raise the interest of the researcher, or show where many students are having common

problems with the material.  Most often, informal observations are made in a setting

where the goal is to help students arrive at the right answer or, in a sense, certify that

they have stated the correct answer.

To describe how students approach physics, we must approach them with a

different investigative method that does not attempt to teach them but rather gives us

insight into their understanding.  This requires that we go beyond trying to help

students immediately and instead listen to what they are saying and doing.

Observations of their understanding can come from listening to their descriptions of

physical situations, asking them to explain their reasoning in solving problems, or

continuing a series of questions that follow the thread of a concept that students seem

to have difficulty with.

We call these investigations interviews.  We ask for student volunteers who are

then videotaped while answering questions in a one-on-one setting for approximately

45 minutes.  The students are usually getting A’s and B’s in their physics classes.  (We

have found that weaker students are usually shyer about presenting their understanding

of the physics.)  In demonstration interviews, a researcher presents questions about a

demonstration apparatus or situation to a single student.  The researcher probes the

student’s understanding by following up on the student’s predictions of the physical

behavior of the system or by asking for clarifications of the student’s descriptions of the

physics.  In problem interviews, a student solves (one or more) problems while the

researcher asks questions that help elaborate the student’s understanding of physics,

reasoning methods, and the manner in which the student approaches the problem.

What sets interviews apart from informal observations is that the researcher can

ask further, unscripted questions that probe deeper into student responses while flexibly

adapting to the student’s responses and not certifying or teaching the correct response.

The power of the individual demonstration or problem solving interview lies in the fact

that the researcher has chosen the context which the student must describe.  By

listening to many students describing the same physical situation, it is possible to

compare their results and gain deeper insight into the common difficulties they are

having.  Interview data are used as the basis for coming to an understanding of

students’ reasoning processes and knowledge, forming a “state space” of possible

student responses for other research investigations.

Interview videotapes must be transcribed, a time-consuming process.  The

transcript and the actual video of the interview are used to analyze student

understanding, reasoning, and performance in the interview.  Transcripts should be read

and analyzed by multiple researchers so that personal bias of a single researcher does

not skew the results.
2
  Due to the amount of time required to carry out a large number

of interviews (and often, the lack of students willing to volunteer to take part in this

aspect of the research), interviews are rarely used as the sole source of data.  The

detailed student interview responses are used to help make sense of other data that is

more easily collected.
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Using written questions allows data to be gathered from many more students.

Questions can be asked on examinations, in quizzes, in homework sets, or on pretests

(an aspect of tutorials, which will be described below).  Students are asked to answer a

question or solve a problem and explain how they arrived at their answer.  Student

explanations on written questions are not as detailed as those which can be found

through the use of interviews, but they help the researcher make a connection between

student solutions to the written question and other students’ explanations in interviews.

The state space of student difficulties that was developed through interviews can help

in interpreting student written responses.

I have used two types of written questions in my research.  The first and most

common is the free response (FR) question.  Students are given an open-ended

question and asked to give a response they believe is correct.  We have found that

students often do not give all answers they believe are correct, leading us to believe

that the responses they give are filtered in some fashion. The second type of question is

the multiple-choice, multiple-response (MCMR) question.  Students are given a

multiple-choice question with a long list of possible responses and asked to give all

responses that they believe are correct.  Individual students tend to use more

explanations and give more responses on MCMR questions than on FR questions.  It

seems that the many offered responses trigger students into giving more of the

explanations that they believe are correct than the free response leads them to.  (I will

address the issue of filtering and triggering in more detail in Chapters 3 and 5 of this

dissertation.)

Some student learning takes place when answering a physics question.

Students who have participated in interviews may do better on written questions than

those students who have not participated in interviews.  As a result, we usually try to

use different students in the same class or students from separate but identical classes

(or sections) for interviews and for written questioning.  At times, we have carried out

interviews on students who have previously answered written questions on a physical

topic.  Most commonly, we do this to see if they are answering the question

consistently in both settings.  We use these interviews to better understand the links

between the common written questions and common interview explanations.

In summary, using both written and interview questioning of students on a

single topic gives a rich understanding of how students approach the physics of that

topic.  The purpose of interviews in PER is to gain deeper insight into student

responses by providing the opportunity for deeper questioning through follow-up

questions asked in response to student comments.  The purpose of written questions

such as the diagnostic test is to help researchers gain a better statistical overview of the

distribution of student responses as understood from interviews.

Common Sense Physics

Previous PER has shown that students bring a common sense understanding of

the world around them to their study of physics.
3
  Many studies have investigated

student understanding of specific topics to illustrate how common sense reasoning

plays a role in how students come to understand physics.  The studies summarized
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below take two different positions about the manner in which we should pay attention

to student difficulties.  The first position states that PER should pay attention to

specific difficulties that students have and try to address these specific and profound

difficulties such that students improve their understanding of fundamental physics ideas.

The second position states that PER should focus on a broader understanding of

student difficulties in terms of the general types of reasoning that they use to describe a

large set of phenomena.  In other words, the two positions differ on the issue of the

domain size of the analysis.

By domain size, we mean the realm in which it is fruitful and meaningful to

study student understanding of the physics.  We use the term in an analogy with the

physics of ferromagnetic materials.  When considering a model of ferromagnets in

terms of aligned atomic spins within the material, it is often found that regions of the

material may have, on average, aligned spins (and therefore be magnetic) while the

whole system is, on average, only weakly aligned (and barely magnetic).  Two possible

domain sizes with which one can study ferromagnets are at the level of the individual

spins (fine graining) or at the level of the larger, aligned domains (coarse graining) (see

Figure 2-2).  Presently in PER, the investigation of student difficulties focuses primarily

on individual difficulties and not on sets of difficulties that involve more general

reasoning patterns.
4
  The domain size of these investigations is at the “spin” (fine grain)

level in the sense that only specific pieces of student knowledge are investigated, while

the self-organized, aligned domains (course grain) are not investigated.

One goal of this dissertation is to show that an analysis at a larger domain size

is productive and relevant to a study of student understanding of physics.  Furthermore,

there are connections between the different grain sizes used to investigate and describe

student difficulties with physics.

As an example of a small domain investigation in PER, consider early work

done by Clement.
5
  As part of a larger investigation of student’s understanding of force

and motion, Clement investigated student descriptions of the forces acting on a coin

tossed vertically in the air (see Figure 2-3).  Students were given a brief description of

Figure 2-2

Small Domain View,

Fine Graining

Large Domain View,

Coarse Graining

Blocking of spin states in a ferromagnet as an analogy to describe levels of analysis

possible in a system.  In the large domain view, a coarse graining creates an average

over the system, while in the small domain view, each individual element of the system

is considered and described.
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each system and shown a diagram.  They were asked to sketch vectors to show the

direction of the force acting on the coin at different points in its trajectory.

Clement studied the responses of a calculus-based engineering physics class on

interviews and on a diagnostic test, both given before and after instruction.  Before

instruction, 34 students (group 1) participated in the research, while 43 different

students (group 2) participated after they had received physics instruction.  Clement

points out that group 2 consisted of paid volunteers whose grades were all far above

the course mean.  A further 37 students (group 3) from another institution answered

the question after having taken two semesters of physics.  Eleven members of group 1

were interviewed.  No members of the other groups were interviewed.

Before instruction, only 12% of the students described the forces on the coin

correctly.  After instruction, only 28% of group 2 and 30% of group 3 answered

correctly.  Clement states that, before instruction, “virtually all (90%) of the errors …

involved showing an arrow labeled as a force pointing upwards” when the coin was on

its upward path.  Similar results were found in the post-instruction data.

Clement found that many students have what he called the “‘motion implies a

force’ misconception.”  Evidence of this was found in student interview comments

about the coin problem, done before instruction.  Clement quotes students using

phrases such as: “the ‘force of the throw,’ the ‘upward original force,’ the ‘applied

force,’ the ‘force that I’m giving it,’ ‘velocity is pulling upwards, so you have a net

force in this direction [points upwards],’ ‘the force up from velocity,’ and ‘the force of

throwing the coin up.’”  Students had difficulty separating the motion of the coin in one

direction from a force acting in another direction.  Students had similar difficulties even

after instruction.  Clement states that “most errors are not due to random mistakes but

rather are based on a stable misconception that is shared by many individuals.”  He

adds that “the data support the hypothesis that for the majority of … students, the

‘motion implies a force’ preconception was highly resistant to change.”

In focusing on the “motion implies force” misconception, Clement illustrates the

small domain size of his research.  He summarizes his findings in three comments.

First, “continuing motion, even at a constant velocity, can trigger an assumption of the

presence of a force in the direction of motion that acts on the object to cause the

Figure 2-3

A

C

B

E

D

A coin is tossed from point A

straight up into the air and caught

at point E.  On the dot to the left

of the drawing, draw one or more

arrows showing the direction of

each force acting on the coin

when it is at point B.  (Draw

longer arrows for larger forces

The Clement coin toss problem.  A correct answer would show only one force acting

on the coin when at point B (the force of gravity, pointing downward).  The most

common student response was to include a force that pointed in the direction of the

motion, often described as the “force of the throw.”
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motion.”  In other words, students will invent forces that point in the direction of

motion.  Second, “such invented forces are especially common in explanations of

motion that continues in the face of an obvious opposing force.  In this case the object

is assumed to continue to move because the invented force is greater than the opposing

force.”  Finally, students “may believe that such a force ‘dies out’ or ‘builds up’ to

account for changes in an object’s speed.”

Whereas Clement and others focus on a small domain size of descriptions of

student difficulties, Halloun and Hestenes
6
 choose a larger domain size with which to

analyze student difficulties.  They speak of the need for “a more systematic and

complete taxonomy of CS (common sense) beliefs” that goes beyond an identification

of “specific CS beliefs” (i.e. specific student difficulties).  Halloun and Hestenes

investigate student understanding of Newtonian particle mechanics.  Their study used

data gathered from 478 university physics (calculus-based) students.  These students

answered a pre-instruction and post-instruction diagnostic test.  From this population,

22 students were interviewed within a month of having taken the pre-instruction test.

The analysis that follows is based on pre-instruction results.  In a separate paper, the

authors show that overall student scores on the diagnostic (as measured by correct

responses) do not change very much over the course of a semester (from 51% to 64%).

Halloun and Hestenes state that “each student entering a first course in physics

possesses a system of beliefs and intuitions about physical phenomena derived from

extensive personal experience.  This system functions as a common sense theory of the

physical world which the student uses to interpret his experience.”  The authors use

three descriptions for the most common student responses: Newtonian physics,

Aristotelian physics, and impetus physics.

A single physical situation, such as Clement’s coin toss (used in modified form

by Halloun and Hestenes), can be described using all three theories.  A Newtonian

response would describe a constant force being exerted downward on the coin, causing

an acceleration which causes a change in velocity such that the coin slows and reverses

direction.  As an example of an Aristotelian response, Halloun and Hestenes describe

the idea that a force must act in the direction of motion to keep an object moving, and

that the “force does not move an object unless it overcomes (exceeds) the object’s

inertia, an intrinsic resistance (mass) which is not distinguished from weight.”  An

example of an impetus response would be “when an object is thrown, the active agent

imparts to the object a certain immaterial motive power which sustains the body’s

motion until it has been dissipated due to resistance by the medium.”  Thus, the motive

power eventually dies away, so that the object no longer moves.  The impetus theory

has been described in detail by McCloskey.  He states, “the act of setting an object in

motion imparts to the object an internal force or ‘impetus’ that serves to maintain the

motion … [A] moving object’s impetus gradually dissipates.”
7

Most students entering the course are not consistent in their use of theories.

Halloun and Hestenes use their observations of student responses to describe students

as predominantly Aristotelian (18%), predominantly impetus type (65%) or

predominantly Newtonian (18%).  Most of the students using theories inconsistently

have predominantly non-Newtonian ideas.  As the authors state, “no doubt much of the

incoherence in the student CS systems is the result of vague and undifferentiated
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concepts.”  Common incorrect responses given during interviews were: “every motion

has a cause,” elaborating with statements such as “a force of inertia,” “the force of

velocity,” or “it’s still got some force inside” (this force is seemingly in the process of

getting used up as time passes, showing evidence of the impetus theory).  On the

Halloun and Hestenes pretest, 65% of the students gave answers which Clement would

describe as “motion implies force.”  Other students state “the speed is equal to the

force of pull,” or “the energy of blast has to be greater than the force” (indicative of an

Aristotelian response).  Many of these students do not distinguish between force and

acceleration, think of force as a quantity that gets used up, and have difficulties

distinguishing between related quantities whose distinctions help build a detailed

understanding of physics.
8

One weakness of the classification scheme used by Halloun and Hestenes is that

they import “a ready-made classification scheme” taken from Newtonian mechanics.

Student difficulties are interpreted in terms of the correct response, which we hope

students will learn in our classrooms.  But, Clement’s research, described above, shows

that students bring their own level of understanding to the classroom, and they are

willing and able to invent forces to help analyze motion in their own framework.  Thus,

it may be that the description of student common sense beliefs according to a

Newtonian taxonomy may not provide the most insight into student understanding or

give the best guidance for our curriculum development.

Still, Halloun and Hestenes show that there is value in analyzing student

performance on many questions in order to gain a more complete understanding of how

students approach physics.  The “coarse grain” analysis emphasizes both individual and

specific difficulties while trying to analyze the whole system of reasoning that the

student uses.  Students answering pre-instruction questions have very little

understanding of Newtonian mechanics.  Individual students use many different

theories to describe the same physics.  Also, based on a comparison of pre- and post-

instruction results, student reasoning does not seem to change very much during the

course of instruction.

From the two summarized papers, one can conclude that the analysis of student

difficulties with physics can lead to a meaningful and rich discussion of how students

make sense of the physical world and the description of the physical world which they

must learn in our classrooms.  Both papers dealt with student understanding of

mechanics.  To improve student learning at all levels of instruction, issues of common

sense physics and multiple theory use must be investigated in other areas of physics.  In

the next section, I will discuss the physics of waves and the previous research into

student difficulties that forms the basis of the physics of this dissertation.

Wave Physics: Basic Concepts

A wave is a propagating disturbance to a medium.  At the level of wave physics

taught in introductory classes, mechanical wave phenomena occur via local interactions

between neighbors and the propagation of disturbances can be described simply

through spatial translations.  The discussion below will use one-dimensional waves

propagating on a taut string as an example (though also referring to sound waves when
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appropriate).  One fundamental assumption of the introductory model of wave physics

is that disturbances have only small effects on the system.  In the case of transverse

waves, this means that disturbances cause only small angle deviations from equilibrium.

In the case of sound waves, it means that the deviations of pressure and density from

equilibrium are very small compared to the unperturbed values.

Consequences of and problems with this assumption will be discussed below.

The purpose of this section is to discuss the way that the professional physics

community understands and describes wave physics.  Assumptions, mathematical tools,

and insights commonly used to think about wave physics are described below.  Issues

that might play a role in student understanding of wave physics will be raised.

Deriving the wave equation for mechanical waves

Consider a disturbance to a long, taut, ideal string consisting of a transverse

displacement of the string from equilibrium (see Figure 2-4).  In the case that the

deviation from equilibrium is small, one can assume that the tension, T, in the string is

constant.  The sum of the forces exerted in the transverse direction, y, on a string

element of mass density µ and length dx arises from the different angles at which the

tension is being exerted on the element.  Using Newton’s Second Law, !F = ma, in the

one transverse direction gives

2
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Because of the small angle approximation, the sine terms can be approximated

by saying
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Figure 2-4

Close-up of a

segment of the string

Tension vectors (of equal

magnitude) showing the

direction of the tension at

a given point (indicated

by a dot) on the string.

A small amplitude wave propagating along the length of a long, taut string.  The

vertical displacement in this diagram has been exaggerated to emphasize the string’s

displacement.
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Rewriting equation 2-1 in terms of this approximation gives
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Noting that the change in dy/dx on the left side of the equation is the change in

the slope of the line on either side of the string element, we get the wave equation in its

usual form,
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which can be rewritten in a form analogous to Newton’s Second Law,
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of the forces acting on the string element, while the right side of the equation contains

mass and acceleration terms of the displacement from equilibrium.

Deriving the wave equation for sound waves

Equations like 2-4 can be constructed for other systems that show wave

behavior.  A detailed derivation of the wave equation for sound requires the use of

fundamental concepts that may present some difficulty for students.  Consider a tube

filled with air extending infinitely in one direction with a movable piston at one end (see

Figure 2-5).  In the figure, the average equilibrium location of a plane of molecules and

the average displacement of these molecules from equilibrium is shown.  Note that not

all planes are displaced an equal amount.  Due to conservation of mass in the region

between the planes, the density of the air inside the tube is no longer uniform when a

sound wave is propagating through it.  Students may have difficulty with the idea of

mass conservation, since it is a fundamental concept that  is rarely used explicitly in

introductory physics.

Furthermore, the description of the motion of the air molecules may present

difficulties for students.  The air molecules are never motionless.  The intrinsic motion

of the medium is due to the temperature of the system (which is proportional to the

average kinetic energy of the molecules in it).  We can only describe the average

equilibrium location of a plane of molecules and the average displacement from

equilibrium of these molecules.  Students may not recognize the distinction between

Figure 2-5

Piston (moving back and forth)

A sound wave propagating through a long air-filled cylinder.  The average

equilibrium position of a plane of air molecules is shown by a solid line, the

average longitudinal displacement from equilibrium of a plane of air molecules

by a dashed line
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intrinsic motion described by the temperature of the system and induced motion caused

by the sound wave.

To derive the appropriate wave equation for sound waves, we can again use

Newton’s second law, as we did when deriving the wave equation for waves on a taut

string.  Consider a plane of air located (on average) at position x along the tube.  The

displacement due to a sound wave is described by y(x,t), where the variable y describes

a longitudinal and not transverse displacement from equilibrium.  In the same way that

we described the tension on a taut string, we can describe the equilibrium pressure on

the plane of air by P (a constant).  The change in pressure at that location at a given

time will then be !P(x,t).  In the same way that we described the linear mass density of

a string, we can describe the equilibrium volume density of the air by a constant, ", and

the density at a given location and time as "(x,t) = " + !"(x,t).

In this situation, Newton’s second law states that the force exerted on a plane

of air located at x consists of two parts.  At a given time t, the magnitude of the force

exerted by the air to the right of the plane is Fleft = A(P+!P(x)) and the magnitude of

the force exerted by the air to the right of the plane is Fright = A(P+!P(x+dx)).  The net

force is then equal to
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By Newton’s second law, we know that the net force equals the mass times the

acceleration of the gas.  Since the mass of gas in a region dx is A"dx and its

acceleration is given by 
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To develop this equation further, we must apply concepts from

thermodynamics.  In a sound wave, we assume that the oscillation of the system is such

that the temperature of the gas does not remain constant.  Instead, we can state that the

heat exchange of a region of gas with another region is zero, since all processes happen

too quickly for heat exchange to occur.  We can write an equation for the differential

change in heat, dQ,
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where the last part of the equation includes the definition of specific heat of an ideal gas

at constant volume and at constant pressure.

In a tube with cross-sectional area A, the volume of air between two planes of

air molecules separated by a distance dx will equal Adx.  When a sound wave is

propagating through the system, each plane will be displaced a different amount from

equilibrium.  The first plane will be displaced y(x) and the second y(x+dx).  Thus, the

volume of air between the two planes is equal to.
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Setting dQ = 0 in equation 2-8, we can use equation 2-9 to write

dx

dy
P

dx

dy

C

C
PdP

V

P !'='= (2-10)

where the term ( has been introduced to describe the ratio of the specific heats.

Using equation 2-10 in equation 2-7 gives the wave equation for the

propagating sound wave.  We find
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Note that the only difference between equation 2-11 and equation 2-4 is in the

variables that describe medium properties.  Otherwise, the mathematical form is

identical for waves on a taut string and sound waves, meaning that an analysis of the

mathematics and physics for the two types of waves should be very similar.

Physical meaning of the wave equation

Local interactions on a global scale

Because the wave equation for a wave on a taut string arises from Newton’s

Second Law, we can interpret the physics in terms of concepts that students have

learned in their previous mechanics course.  For example, a correct interpretation of

Newton’s Second Law requires that only those forces acting directly on an object

influence that object (this concept has been referred to as Newton’s “Zeroth Law”
9
).

Though this seems obvious, students have great difficulty with the idea when applied to

free body diagrams of point particles.
10

  The difficulties students have with this concept

when applied to point particles should exist when applied to continuous systems, also.

In continuous systems, the additional difficulty exists that Newton’s “Zeroth

Law” must be applied to every point in the medium.  Local interactions at all locations

in the medium must be considered.  The conceptual distinction between interactions on

a local level and the analysis of these interactions everywhere (i.e. globally) requires an

understanding of the relevant size of analysis of the system.  Since this is often a new

concept for students, we can expect them to have difficulties making the distinction

between local and global analyses of the physics.

For a sound wave, the interpretation of the wave equation uncovers a subtlety

with which many students may have problems.  The fundamental idea is that one

considers the pressure gradient across the region of air through which the wave

propagates.  For compression (high density) to be followed by rarefaction (low

density), the pressure gradient across the region of air must be both positive and

negative.  A model describing sound waves in terms of the transfer of impulses from

one region to another, only in the direction of wave propagation, would not account

for the rarefaction process.  An effective force in the direction opposite to the

propagation direction must also be exerted.  This effective force can only be described
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by considering the pressure gradient and not the pressure in the direction of wave

propagation.

Solutions of the wave equation as propagating waves

Solutions to the partial differential wave equation depend in a conceptually

difficult manner on two variables.  When describing the one-dimensional spatial

translation of particles whose location at time t = 0 is the origin, we can write x= ±vt

or x±vt=0.  More generally, we can say that the function,

vtxtxg ±=),( (2-12)

describes the location of a particle that starts out at any position x and moves either to

the left or the right with a velocity v.  Waves are also spatially translated at constant

speed, but they are spread out over a large region in space.  As such, the displacement

from equilibrium in the medium can be thought of as being translated independently.

We can expect solutions to the wave equation to have some similar form.

If we carry out a coordinate transformation on the variables in the wave

equation, we can find this form.  By substituting ! = x+ct and " = x#ct into equation

2-4 (where c is an as-yet undefined variable), we can rewrite equation 2-4 to say

$2y

$ $!
0

In the process of simplifying the equation, the variable c has been defined as

c
2
=T/µ and represents the speed with which the wave propagates through the medium.

Thus, the solutions to the wave equation have the form of x±ct.  The displacement of

the medium from equilibrium is then a function of a single function which is a function

of two variables,

y(g(x,t)) = y(x ± ct) . (2-14)

Since the quantity y describes the displacement of the medium from equilibrium at all

points (i.e. the shape of the wave), equation 2-14 describes the translation of this shape

through the medium.

Plugging equation 2-14 into the wave equation shows that this functional

dependence leads to correct solutions of the wave equation, as long as the velocity of

the wave is set equal to physical quantities in the wave equation.  (This will be

discussed in more detail below.)  Thus, the spatial translation of waves through a

medium arises as a consequence of the local interactions between elements of the

medium.  Spatial translation is a consequence of the local interactions of the physical

system.

The issue of the distinction between local and global descriptions of the system

again may cause difficulties for students.  The displacement of the medium is described

by y(x0,t0), where x0 and t0 are specific values of position and time.  Thus, an equation

of the form y(x0,t) describes the motion of a single point in the medium as a function of

time, while y(x,t0) describes the displacement from equilibrium of the entire medium at

one instant in time.  But, the shape of the entire medium at all times is described by

y(x,t), where the specific functional dependence describes the translation of the entire

shape to the left or the right (in one dimension).  The global translation of the entire
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system is the most visible phenomena of visible wave systems (ocean waves, waves on

a string or spring, etc.).  Thus, we can expect students to focus on the global

descriptions of waves rather than the local phenomena within the system that cause the

spatial translation.

Wave velocity depends on medium properties

One consequence of equation 2-14 being a solution to equation 2-4 is that the

wave velocity, c, is a function of properties of the medium.  We find that

c = T
µ (2-15)

for waves on a string or tightly coiled spring, while

!
"p

c = (2-16)

for the propagation of sound through air.

If we assume for the moment that the gas in which the sound is propagating is

an ideal gas, we can relate P to the temperature, T, of the system using the ideal gas

law, PV=nRT (R is the Rydberg constant).  Since !=M/V (M is the mass of the gas in a

volume V), the speed of sound in the system is equal to

c =
" RT

M
. (2-17)

Further analysis is possible, but the basic conceptual meaning of equations 2-15

and 2-16 is that the speed of propagation of a wave through a medium depends on the

properties of the medium and nothing else.

This concept may be difficult for students to understand.  In all other instances,

students have learned that some sort of force was necessary to cause a change in

motion.  (Note also that many students have felt that some sort of force was necessary

to continue a motion, see chapter 2).  In this situation, no external force is necessary

for the propagation of a wave through a system (where there are obvious changes to

the motion of elements of the system).  We can again expect students to have difficulty

distinguishing between the internal forces and the external observable elements of the

system.

In the case of waves, ignoring the internal forces of the system and focusing

only on the spatial translation of the waveshape may create a dilemma for some

students.  They may revert to the impetus physics or Aristotelian physics which Halloun

and Hestenes describe.  The description of wave propagation through a system can be

thought of as a large domain description.  An analysis of the internal forces that allow

the wave to propagate can be thought of as a small domain description of waves.  In

other words, a failure to understand the relevance of different domain sizes of wave

physics may push students toward incorrect reasoning.

Superposition

Since the wave equation is linear, any linear superposition of solutions of the

form y(x±ct) will also be a solution to the wave equation.  Thus, a wave described by
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y(x, t) = y1(x ! ct) + y2 (x + ct) (2-18)

leads to two separate wave equations, one for y1 and one for y2.

Buried within the summation of these individual waves is the concept that the

waves described by y1 and y2 can only add when their values of x and t are the same.

Though this seems obvious from a mathematical point of view, it may not be so for

students.  The dependence on two variables again plays a role here, and the fact that

both variables must be equal may be difficult to interpret physically and mathematically.

In addition, values of y1 and y2 are only added at a specific time, t, when the

values of x are equal, but they are added for all x.  The issue of local summation done

on a global level (i.e. everywhere) shows that the fundamental conceptual distinction

between local and global phenomena also plays a role in superposition.

It is possible, through superposition, to have the model which led to the linear

wave equation break down in certain situations.  For example, two waves individually

may still be within the small angle regime, but added together may fall outside the

regime.  Recall that there was a simplification in the derivation such that the sine terms

describing the vertical components of the tension on the string element could be

replaced by the slope of the string on either side of the string element.  If two waves

add in such a way that their sums no longer hold to the model because of large angle

deviations from equilibrium, then an inconsistency of the model is uncovered.

The role of modeling

The possibility of the linear model breaking down raises an issue with respect to

the way in which physical models are used in science.  Based on observations, we

develop or choose mathematical models to describe the physical world.  These

mathematical models can then be modified through mathematical transformations to

either account for other observations or make predictions.  Any predictions made by

the model must then be compared to the physical world.  A representation of the cycle

that describes the relationship between observations of the real world, the choice of

mathematical model and analysis, and the interpretation and comparison of the

predictions with the real world is shown in Figure 2-6.

In the case of linear superposition breaking down due to the inapplicability of

the small angle approximation, the difficulty lies in the use of the mathematical

transformation to interpret the new physical situation.  The choice of model for the

system seems appropriate because each wave satisfies the small angle approximation.

But, the choice of model is shown to be incomplete because it cannot adequately

describe the phenomena that it claims to.  The inconsistency between prediction and

model choice is not found until mathematical predictions are compared to physical

reality.  In chapter 6, I describe an instructional setting where exactly this breakdown in

the model of superposition occurs.
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Initial conditions and boundary conditions

The wave equation describes only the manner in which the wave propagates

through a system and how waves interact with each other but does not describe how

the wave was created nor its behavior at boundaries to the medium.  The speed of wave

propagation (which enters into the wave equation) depends on medium properties.

Linear superposition is a consequence of the wave equation.  But the manner in which

waves are created is determined by the initial conditions of the system (i.e. in terms of

time dependent events at a specific location or possibly many locations in space).  The

manner in which waves interact with the boundaries of the medium are determined by

the boundary conditions of the system.

To describe how a wave is created, we can discuss boundary or initial

conditions that are either continuous disturbances to the medium at one location or

disturbances that last a finite amount of time.  Because the disturbance to the system

propagates through the system, the former leads to a disturbance of finite length and

duration (such as a wavepacket) while the latter leads to a continuous disturbance

(such as a sine curve or sawtooth wave).  In this dissertation, I will describe the the

finite length waves as wavepulses and continuous waves as wavetrains.  An example of

each is shown in Figure 2-7.  I will use the term waves to mean both wavepulses and

wavetrains, i.e. all propagating disturbances to a system.

The boundary condition plays a role by driving the shape of the string at a given

location in space.  This type of boundary condition is a time dependent function for a

point in space.
11

  For example, the boundary condition can be given at some location x0

by a function depending on time.  For a sinusoidal wavetrain on a string which stretches

from x=0 in the positive x direction, this equation may be of the form

y(x=0,t)=Asin(2!ct/"), where ! is the wavelength of the propagating sinusoidal

wavetrain of amplitude A.  For a wavepulse with a Gaussian shape, the boundary

Figure 2-6

 Mathematical
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The interaction between the real world and a theoretical model which describes it and

predicts its behavior.  The choice of a model of physics affects the choice of

mathematical model and how the model is mathematically transformed.
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condition may be of the form y(x = 0, t) = Ae
! ct

b( )
2

, where b describes the width of the

wavepulse.

Note that the creation of the wave does not determine the speed with which the

wave moves.  The velocity is determined by the medium through which the wave

propagates.  In both examples of initial conditions above, the velocity of the wave is

therefore a given that determines the relationship between the duration of the motion

and the width or wavelength of the propagating wave.  For sinusoidal waves, this

relationship is given by !=cT, where T is the period of the wave.  For a wavepulse

created on a taut string by moving one’s hand quickly back and forth, one can describe

the width of the wave (at its base) by W=cT, where T is the amount of time the hand

was in motion.  Of course, the creation of the wave may affect the validity of the

approximations we use to describe the system (for example, a large amplitude wave

may lead to large angles which may make the linear wave equation inadequate as a

description of the physical situation).

Students may have difficulty understanding wave motion without additional

discussion of how waves are created.  The interpretation of boundary conditions as the

source of wave motion is rarely emphasized in physics textbooks.
12

  Most commonly,

portions of the medium (either a string or air, for sound) are shown with a propagating

wave, without discussion of how that wave was created.  We know, from previous

PER, that students often have difficulty separating the cause of motion from the motion

itself (for example, the impetus model described above shows this confusion).  We also

know that students often invent forces to account for motion (for example, Clement’s

results described above).  We can expect students to invent causes or forces for the

wave motion that they see.

Furthermore, it may be difficult for students to distinguish between the velocity

as determined by the medium and the motion (described by boundary conditions) which

causes the wave.  Consider a person holding a long, taut spring lying on the ground and

shaking it regularly back and forth (this is a common demonstration done in

classrooms).  The time it takes for the demonstrator to complete either a full period of

a wavetrain or to create a wavepulse is determined by the speed with which the hand

Figure 2-7

Wavetrain: endlessly repeating

Wavepulse: finite length

The difference between a wavepulse and a wavetrain, illustrated with a finite length

sawtooth shape and a repeating sawtooth pattern.  Both shapes represent propagating

disturbances to the equilibrium state of the system, but, for example, the propagation

of the wave is more easily visible with a wavepulse than a wavetrain.
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moves back and forth.  If the hand moves faster over the same distance as in a previous

demonstration, the effect is to create wavetrains and wavepulses that are narrower.

The effect is not to make the wave move faster.  The distinction between transverse

velocity and propagation velocity may cause difficulties for students.

In order to describe the physical behavior of waves at the edge of the system in

which they are propagating, we again must use boundary conditions.  For example, a

string on which a wave propagates can either be attached or free to move.  In the case

of sound waves, similar distinctions exist between regions where displacement from

equilibrium is possible and where none is possible.  The boundary conditions then

describe the properties of reflection and transmission.  They whether or not there can

be a displacement and what sort of displacement can exist at the location of the

boundary.  For example, for a string fixed to a wall at location x0, the boundary

condition might be y(x0,t)=0 for all times t.

Students might have problems with this idea for a variety of reasons.  Rather

than showing a distinction between spatially local or global domains, the issue of

boundary conditions involves the distinction between constant situations (the boundary

condition) and instantaneous events (the shape of the string at an instant in time).

Previous PER has shown that students often have difficulties distinguishing between

two events that occur at different times, and that students often integrate all times into

a single description.
13

  We can expect to find the same types of difficulties in wave

physics.

Previous Research Into Student Difficulties with Waves

Very little previous research has been published on student difficulties with

mechanical waves. Maurines
14

 and Snir
15

 studied student understanding of wave

propagation, Grayson
16

 (also with McDermott
17

) and Snir studied student

understanding of the mathematical description of waves and the superposition of

waves, and Linder
18

 (also with Erickson
19

) studied student descriptions of sound.

In the discussion below, I will first describe the research setting and methods of

each of these researchers.  This will include a more complete description of the issues

and the student populations they investigated.  This brief discussion will be followed by

descriptions of the observed student difficulties with the wave physics topics outlined

above.

Research context and setting of previous research

The student populations investigated in previous research include pre-service

teachers, engineering students, physics majors, high school students, and physics

graduate students.

Maurines
14

 asked 1300 French students questions which dealt with the topic of

wave propagation and simple mathematical reasoning about waves.  Of these, 700

students had no previous instruction on waves and were in secondary school (the age

equivalent to American high schools) and 600 had previous instruction on wave

physics.  The latter group was a mixture of secondary school and university students.
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The investigation consisted of eight written free response questions.  The questions

addressed the topic of wave motion through a medium, the relationship between the

creation of the wave and its subsequent propagation, and the motion of an element of

the medium due to the propagating wave.

Maurines points out that results within each of the two groups were so similar

that “no distinction can be made between the different subgroups.”  Thus, Maurines

uses representative data from subgroups of her study to describe student difficulties.

There were differences between the students who had received instruction on waves

and those who had not.  Specific questions that Maurines asked will be discussed in

more detail below.

Linder and Erickson’s
18

 work on student understanding of sound waves took

place with ten Canadian physics majors who had graduated from college in the previous

year and were enrolled in an education program to get certification in teaching physics.

The ten interviewed students were enrolled in a one year course for teacher

certification to teach at the high school (secondary) school level.  Students were

interviewed for 40 to 80 minutes.  During this time, they answered a variety of

questions dealing with their personal experiences with sound, descriptions of simple

phenomena, interpretations of typical representations of sound waves, and predictions

of how the speed of sound can be changed in a medium.  Examples of student

comments and reasoning will be given below.  Data were gathered from an extensive

analysis of interview transcripts.  Data were analyzed by categorizing student interview

explanations in terms of elements common to other explanations given by the same

student and elements common to explanations given by other students.

Grayson and McDermott’s work was done at the University of Washington,

Seattle (UW), and Grayson continued this work at the University of Natal, South

Africa (UNSA).  The work done at UW consisted of investigations of the kinematics of

the string elements for propagating and superposing waves.  Student understanding of

two-dimensional kinematics was investigated to help develop a computer program that

would address student difficulties with the material.  At UW, individual interviews were

conducted with 18 students after they had instruction on waves and kinematics.  (The

questions will be described in more detail below.)  Grayson continued this research at

UNSA with two different student populations.  The first consisted of in-service

teachers taking a six week summer program that focused on the teaching of kinematics.

Most teachers were not physics instructors, so this was their introduction to

kinematics.  They were asked the same types of questions as the UW students before,

immediately after instruction, and then again on the final examination.  In a third study,

Grayson investigated the understanding of twelve introductory physics students who

had studied kinematics but not waves.  They were also asked the same types of

questions as the other students before and after instruction.  Instruction in both

instances at UNSA consisted of students using a program designed to help students

view the motion of string elements as waves travel along the string.  Grayson made

additional observations as the students used the programs, noting both difficulties with

the program and conceptual difficulties with the material.

Like Grayson, Snir developed a computer program to help students develop

their reasoning skills with waves.  In the development of the program, he investigated
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the difficulties of Israeli students with wave propagation and superposition after they

had completed instruction on waves.  Studies were conducted with tenth grade

students who were interviewed before and after instruction.  The complete research

protocol and results were never published.
20

  The number of students and the types of

questions asked are thus not known.  Snir’s results will be mentioned but not

elaborated upon below, since they are consistent with those of Grayson and Maurines.

Student difficulties with the propagation of waves

Maurines and Snir focus on the reasoning students use when describing wave

propagation on a taut string.  Linder (and Erickson) focus on student explanations of

sound wave propagation.  The similarities between some of the explanations indicate

that students have similar difficulties with the material.

Propagation on a taut string or spring system

Two questions by Maurines show student difficulties with the relationship

between wave creation and wave propagation.  In the first, students were asked if it

was possible to change the speed of a wavepulse by changing the motion of the hand

that creates it (see Figure 2-8).  In the second, Maurines describes the realistic scenario

that the wavepulse amplitude decreases over time, and students are asked if the speed

of the wavepulse changes as this occurs (see Figure 2-9).

Common student responses indicated that a majority of the students thought of

wave propagation in terms of the forces exerted by the hand to create the wavepulse on

the rope.  For example, students stated, “the speed depends on the force given by the

hand,” or “the bump will move faster if the shake is sharp” (i.e. if the movement of the

hand is faster).  Maurines gives results from subsets of the secondary school and the

Figure 2-8

O R

O R

A red mark is tied to the rope on point R.  A child holds the end O in its hand

The child moves its hand and observes the following shape at the instant t.

Question: Is there a way of moving the hand so that the shape reaches the

red mark earlier than in the first experiment?

     YES      NO
If yes, which one?

If no, why?

Question asked by Maurines to investigate how students viewed the relationship

between the creation of the wave and the motion of the wave through the medium.  A

correct answer would be “no,” because only medium properties affect wave speed.

See reference 14 for further discussion.
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university student population. (Recall that she said that results within each group were

similar, implying that the statistics she gives for the subgroup are consistent with the

statistics for the whole group.)

Very few students who had completed instruction gave the correct answer to

the question in Figure 2-8, which states that there is no way to move the hand to create

a faster wave.  Of 42 secondary school students who had no instruction in waves (and

16 university students who did), 36% (25%) gave the correct answer.  Of the students

who gave incorrect responses, 60% (75%) stated that it was possible to change the

wave speed through a different hand motion.  For these students, 84% (67%) gave

justifications that mentioned force, as indicated with the first quote above.  Students

seem to have profound difficulties separating the creation of a wavepulse (i.e. the initial

conditions of the system) from its propagation through the system.  The quotes given

above, though brief, indicate that students are using an impetus-like model to describe

the movement of a wavepulse through a medium.  The wavepulse propagates due to

the motion of the hand and a change in hand motion will affect wave speed.

Student responses to the question shown in Figure 2-9 also indicated that many

students did not separate the initial conditions from the propagation properties of the

wavepulse.  A correct answer to the question would state that the speed of the

wavepulse would not change while the amplitude decreased.  Maurines quotes a

student saying “The height decreases as the action of the hand gets weaker.  The speed

decreases also.  If the bump disappears, it is because the force which caused it

disappears as well.  During that time, the speed decreases.”  This student’s reasoning is

indicative of the impetus model of mechanics, described above.  The “force which

caused” the wavepulse disappears as the amplitude disappears, and as the force is used

up, “the speed decreases.”  Maurines states that of 56 secondary school students who

had not received instruction in waves (and 42 university students who had), 30%

(45%) gave the correct answer and 68% (55%) gave incorrect answers.  Of the

students giving incorrect answers, 58% (35%) used reasoning force-based similar to

the student quote above.  Again, the evidence indicates that students misinterpret the

physics of the creation of the wave with its propagation.

Maurines interprets student descriptions in terms of students’ notions of force

and a quantity she calls “signal supply.”  This signal supply is a “mixture of force,

speed, [and] energy.”  The impetus model often guides student reasoning with respect

to the signal supply.  Thus, the higher the signal (the more force is used to create the

Figure 2-9

O

This bump disappears before reaching the other end of the rope.  Does the

speed of the bump vary on the way?

     YES      NO

Why?

Question asked by Maurines to investigate how students interpreted damping in a

wave system.  A correct answer would be that the damping affects only the amplitude

but not the propagation speed.  See reference 14 for further discussion.
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wave, the wavepulse), the faster the wave.  Student comments are consistent with this

interpretation.  For example, some students state that the propagating wavepulse “is

losing its initial power,” and others state that “there is a [wavepulse] which is moving

because of the force F” exerted by the hand.  The latter student is confusing the force

needed to create the wave with the forces internal to the medium that allow the original

force to propagate through the medium.  Thus, we see that students are unable to

separate the creation of the wave from its propagation.  Maurines states that many do

not make the distinction between force and velocity.

Snir’s
15

 interpretation of student difficulties with the relationship between wave

creation and propagation is similar to Maurines’s, but he does not cite evidence for his

result.  He describes finding that students speak of a wave’s “strength,” or “energy,” or

“intensity,” much like Maurines describes “signal supply.”  He also implies that students

use impetus-like reasoning to say that waves with larger intensity (higher amplitude or

frequency) have more strength and therefore move faster.  Because he does not provide

evidence for his interpretation (as described above), it is difficult to interpret his

findings, but they seem to be consistent with Maurines’s.  In Chapter 3, I discuss

similar results have found at UMd.  In Chapter 5, I propose a more detailed explanation

for student reasoning than the one used by Maurines or Snir.

Sound wave propagation

Linder
18

 (also with Erickson)
19

 found that students who had completed their

undergraduate studies of physics (including wave physics and sound) have great

difficulties understanding the propagation of sound waves through air.  In one question,

they asked students to describe what would happen to a candle flame located near the

end of a tube when one clapped two pieces of wood together at the other end of the

tube (see Figure 2-10).  Student descriptions of the effect on the candle flame of the

sound wave caused by the clap showed that students thought of sound using incorrect

models and inapplicable analogies.  Similar questions involved sound due to the

popping of a balloon and sound caused by the vibration of a tuning fork.

Common student descriptions of sound waves in these settings involve the

incorrect descriptions of the motion of air or air molecules to account for sound.  For

example, one student states that “sound creates a wave that is emitted and is focused

on the tube - and so the wave travels down.”  The interviewer asks “Pushing air in front

of it?” as a provocative question to elicit possible difficulties the student may have with

Figure 2-10

Figure given students in the Linder and Erickson interviews.  Students were asked to

describe how clapping two pieces of wood together would affect the candle flame

located on the other end of a long tube from the location of the clap.  See reference

19 for further discussion.
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source to the ear that hears it.  Linder and Erickson observe that students describe the

motion of air as either the flow of large blocks of air from one point to another or as

the motion of specific air molecules that transmit sound while all other molecules

continue in their usual random motion.

Another common model that Linder and Erickson describe involves the impulse

transfer model, as if sound were transmitted linearly along a path of adjacent beads.

Rather than describe sound waves in terms of a pressure gradient, one student speaks

of forces only in the direction of wave propagation.  He states,

[J]ust consider a row of beads sitting on the table.  And you tap a bead at

one end and you knock all the beads along and at the other end you have

your finger and you can feel the tap.  That would be analogous to a book

dropping and creating the motion of all these smaller things in the air we

call molecules which act the same as the beads and move this disturbance

around until your finger at the other ends can feel it; in this case with the

ear at the other end that is feeling it.

This student is thinking of sound waves on a microscopic level of individual colliding

air molecules, but avoids the very difficult idea that density and pressure propagation

through air forms a sound wave.  The problematic physics of the impulse transfer

model of sound has been discussed above.

Linder observed an interesting variation of the impulse transfer model that

allowed a student to account for the sinusoidal path of sound waves that is commonly

drawn in textbooks.  In textbooks, the sinusoidal path describes the longitudinal

displacement of a region of air from its equilibrium position.  Linder observes that a

student who sketches a sinusoidal curve made up of colliding air molecules (see Figure

2-11).  Linder summarizes the student’s model as: a sound wave consists of “molecules

in the air colliding with each other in such a way that a transverse pathway” is created.

As Linder states, “The molecular collisions are generally not ‘head-on’ but rather tend

Figure 2-11

Student sketch to show how sound propagates.  Sound consists of glancing collisions

between adjacent particles such that the recognizable sinusoidal shape is created.  See

reference 18 for further discussion.
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to be ‘glancing’ in such a manner as to give rise to the ‘correct’ changes in direction to

form a sinusoidally shaped collision-wave.”  The student giving this response is

mistaking the graph of displacement from equilibrium as a function of position for a

picture that describes the interaction between elements of the medium through which

the wave travels.  This confusion of graphs and pictures has been investigated in more

detail with respect to student interpretations of graphs in the kinematics.
21

Linder and Erickson observe that some students think of sound as the motion of

a quantity (like energy or impetus) that is transferred from molecule to molecule.  This

is similar to the idea of “signal supply” described by Maurines and the “strength”

described by Snir.  Linder has observed that many students believe “changing particle

displacement, changing sound pressure, and changing molecular velocity all to be in

phase with one another.”  Thus, students do not distinguish between different variables

that describe the system, much like the students observed by Maurines and Snir do not

distinguish between velocity, frequency, power, and energy.

Other similarities also exist between Linder (and Erickson’s) findings and

Maurines’s results in the overall confusion students have about propagation speed.

Some students state that the speed of sound is determined by the physical obstruction

of the medium (thus, a denser medium should have slower sound waves, the opposite

of what actually occurs).  This idea seems related to the concept that Maurines

discusses, where students describe a wave exerting a force on the medium.  The less

force is exerted, the slower the wave.  Similarly, the less resistance from the medium,

the less force is needed to create a fast wave, and the faster a wave created with great

force will move.  The relationship to Maurines’s “signal supply” and Snir’s “strength”

is supported by Linder’s comment that some students state that wave speed is a

function of inertia reduction.  Thus, we see that students seem to use the same

descriptions of waves when describing mechanical waves on strings or springs and

sound waves.

Linder presents an interesting result which has not been discussed by others

who have investigated student understanding of wave physics.  He observed that

students have great difficulty with the idea of the equilibrium state of the air through

which sound waves travel.  As one student states (when describing the problem shown

in Figure 2-10), “Equilibrium position will be a position of rest.  Before you clap, all

the [air] particles are in a position of rest and as you clap you are causing particles to

move so particles start jumping all over the place; then they all return back because

they try and return to equilibrium.  Everything always tries to go to equilibrium.”  The

student is having difficulty distinguishing between the different scales of the system, air

molecules or regions that are, on average, at equilibrium.  If students have difficulty

with understanding the equilibrium condition of a system through which waves

propagate, their understanding of wave propagation may be much less robust than we

would like.  Similar difficulties have been observed and discussed in introductory

mechanics by Minstrell with respect to force and motion and the at rest condition.
22

The study of student understanding of sound waves is rich because it shows

evidence of many of difficulties found in other areas of PER.  Some students have

difficulties with the representations used to describe sound and misinterpret graphs as

pictures (as in the example of colliding air molecules traveling along a sinusoidal path).



29

Many students have difficulty with the equilibrium state of the system (as in the inability

to distinguish between air molecules and a description of the medium based on density

of a region of air).  One should note that many of the student difficulties are specific to

sound waves but also related to difficulties students have in other areas.  This suggests

that common descriptions can be found to account for a large variety of student

difficulties with physics.

Student difficulties with the mathematical description of waves

Grayson’s work investigates student use of two-dimensional kinematics to

describe the propagation of waves and the motion of the medium through which the

waves propagate.  Students were asked questions of the following type: given a graph

of y vs. x (vertical and horizontal position, respectively), of an asymmetrically shaped

pulse,
23

 graph y vs. t and x vs. t for a point, and v vs. x for the string (see Figure 2-12).

The discussion below uses results from written responses and comments and quotes

gathered by Grayson while observing students using a program to help them develop

their conceptual understanding of the topic.

A correct understanding of kinematics and physics in these questions would

include the idea that solutions of the form y(x±ct) propagate without changing their

shape (in an ideal, dispersionless medium).  The motion of the medium is transverse to

the motion of the wave.  To describe the velocity of a piece of the medium (a small

section of the string) over time, one can sketch the string at regular time intervals and

use the definition of average velocity (v=!x/!t) to describe the velocity at different

instants in time.  To describe the velocity of the entire string at some instant in time,

one can use the same method and find the velocity of each element of the string at one

time.

Grayson describes how students (both before and after instruction) approach

certain ideas algorithmically when she describes how students attempt to find the shape

of a v vs. x graph.  She found that many took the slope of the y vs. x graph rather than

thinking of the time development of the y vs. x graph and using a relevant procedure to

find the velocity at each point along the string (see Figure 2-13).  In other words, the

students did not have an operational understanding of how to find v vs. x

and used an incorrect algorithmic method instead.

Figure 2-12

x

y
propagation direction

Grayson presented students with a diagram like this one, indicating an asymmetric

wavepulse propagating to the right on a long, taut string.  Grayson then asked

students to sketch graphs of the following quantities:  y vs. t and v vs. t for a string

element as the wave passes that string element, and v vs. x for the entire string at the

instant in time shown in the diagram. See references 16 and 17 for further discussion.
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Data for the three student populations which Grayson investigated are shown in

Table 2-1.  The most common mistake students made was to take the slope of the y vs.

x graph incorrectly, as described above.  Grayson attributes the improved post-

instruction performance of the in-service teachers and UNSA students (in comparison

to the UW students) to the use of the computer program to help address student

difficulties.  She also notes that none of the in-service teachers took the slope of the y

vs. x graph when answering the question after instruction.

Student use of an inappropriate algorithmic method for finding answers to

questions they are otherwise unable to answer suggests that students do not imagine

Figure 2-13

x

y
Shape of string

at given time

x

v
Correct

response

x

v
Common incorrect

response

a)

b)

c)

Common student difficulty with a v vs. x graph of a string on which a wave is

propagating.  a) Given sketch of an asymmetric wavepulse propagating to the right,

b) correct response, showing velocity of each string element based on the motion of

the string, c) most common incorrect response, showing velocity of each string

element based on the slope of the given y vs. x graph.  See references 16 and 17 for

further discussion.

Table 2-1

Pretest Posttest Final Exam

UW phyiscs students

(N=18)
-- 22% --

UNSA introductory physics

students (N=12)
33% 75% --

In-service teachers (N=19) 53% 84% 79%

In-service teachers (N=23) 26% 65%

Percentage of correct responses for students sketching a v vs. x graph of an

asymmetric wavepulse propagating along a string (see Figure 2-13).  The UW students

were interviewed, the other students answered written questions.  Two different

populations of in-service teachers were investigated in successive years.  None of the

incorrect responses by in-service teachers used the slope of the y vs. x graph to answer

the question.  See reference 16 for further discussion.
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the motion of the medium when the wave passes through it.  A consideration of the

motion of the medium would show that the incorrect response found by taking the

slope of the y vs. x graph (shown in Figure 2-13c) is inconsistent with the motion of the

medium.  The leading edge of the wave is moving up, not down, as indicated on the

graph.  Thus, by investigating student understanding of the mathematics of wave

motion through a medium, we find results similar to Linder’s.  Both Linder and

Grayson observe that students have profound difficulties describing the motion of the

medium as a result of the wave.

Student difficulties with superposition

Grayson and Snir address the issue of student understanding of wave

superposition.  Since Snir does not give data to support his conclusions, I will focus on

Grayson’s work in the following discussion.  Grayson asked students to describe the

shape of a string on which two identically shaped wavepulses were traveling toward

each other on opposite sides of the string.  She asked specifically for the shape of the

string and the velocity of different elements of the string at the moment of maximum

overlap.  The situation and a correct response are shown in Figure 2-14.

Grayson finds that students consistently give the same incorrect responses.

Students state that waves will collide, and either bounce off each other or cancel each

other out and disappear permanently.  Grayson states that “some students did not

realize that pulses pass through each other.  Instead, several students said that two

pulses would bounce off each other and travel back towards where they came from.”

Figure 2-14

two wavepulses travel toward each other on

opposite sides of the string.

At the instant of perfect overlap, the

displacement of the string is zero, but the

velocity of the string at different points is not.

Superposing wavepulses on opposite sides of a long, taut string.  In the lower

sketch, the individual wavepulses are shown together with velocity vectors indicating

the direction of the motion of the string due to the wavepulse.  Note that the string

has zero displacement but that the velocity of the string is non-zero where the pulses

overlap (except at the exact middle point).  See references 16 and 17 for further

discussion.
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Grayson gives a possible explanation for the permanent cancellation of waves

when describing student difficulties in distinguishing between the displacement and

velocity of the medium through which the wave travels.  Students are often unable to

distinguish the two, causing problems in their description of continuing wave motion

after waves have interacted.  For example, students see a flat shape when two

symmetric wavepulses of identical amplitude on opposite sides of a string add

completely destructively (see the sketch of the correct response in Figure 2-14).  Those

who interpret the lack of displacement such that the velocity of the string is zero will

then state that nothing will move anymore.  Thus, an incorrect interpretation of the

kinematics (i.e. the difference between displacement and velocity) may be used by

students and lead to an incorrect physical interpretation of the situation.  This

interpretation may guide students to say that the wavepulses are permanently canceled

in this situation.

Snir describes similar results.  He also discusses how students will speak of

waves that bounce, collide, or cancel each other permanently.  Snir states that the idea

is borrowed from mechanical collisions, but he does not elaborate how this may be the

case.

Research as a Guide to Curriculum Development

The discussion of previous research into student difficulties with waves serves

as an example of PER done to come to a deeper understanding of how students

approach physics and build a functional understanding of the material.  Another aspect

of PER involves the building of curriculum materials that address student needs as

effectively as possible.  The paradigm of instructional design used by PERG at UMd is

based on that of the University of Washington, Seattle (UW) (see Figure 2-1).  To

show the background of the research-curriculum design paradigm, I will describe one

example from UW in detail.  Interested readers can find more information about the

UW methods by following references in summarized papers and in other sources.
24

Research by UMd PERG has also shown that tutorials are more effective in helping

students develop a deeper understanding of the physics.
25

The development of instructional materials begins with the investigation of

student difficulties.  Researchers at UW investigated student understanding of tension

in the context of the Atwood’s and modified Atwood’s machines (see Figure 2-16).
26

The apparatus consists of weights attached over an (ideally, frictionless) support by a

string.  Students often encounter this example in the classroom, solving problems from

the textbook or seeing a demonstration done by a professor.

McDermott et al. found that a similar situation elicited nearly identical

difficulties with the fundamental ideas of acceleration, force, and tension as the original

Atwood’s machine.  Rather than having the force of gravity play a role in the physics,

the UW question used an explicit external force to move two blocks (of mass mA and

mB (mA<mB)) connected by strings (see Figure 2-15).  One hundred students were

asked the question in Figure 2-15.  These students had previously had instruction on

tension and the course included a laboratory that dealt explicitly with the Atwood’s

machine.
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Students had fundamental problems with the concept of tension in this setting.

They had the most difficulties when they were asked to compare the force exerted by

string #1 on block A with the force exerted by string #2 on block B.  (To have the

same acceleration, the force of string #1 on block A must be greater, since the force

exerted by string #2 on B is equal to the force exerted by string #2 on A, but in the

opposite direction, and the sum of the forces must still be to the right for block A.)

Only 40% stated that the force exerted by string #1 was greater than that exerted by

string #2.  The other two most common responses were to say that the tensions were

equal and that the tension on string #2 was greater.  Students who gave the latter

response used the reasoning that the accelerations were equal, F = ma, and mA<mB to

say that the force exerted by string #2 was greater.  As McDermott et al. state, “these

students seemed to believe that the force exerted by each string depended only on the

mass of the block to which it was directly attached and which it was pulling forward.”

Students who stated that the tensions were equal (20%) are quoted as saying “it is the

same force,” and “the force exerted on string 1 goes through [block A] onto string 2.”

This implies that students believed that the force exerted by string 1 was transmitted

through block A to string 2.  Further analysis of a similar question, not discussed here,

showed that this thinking was robust in more advanced situations.  Furthermore,

graduate students asked the same question had similar difficulties (though only 40%

were incorrect).

Figure 2-15

B A String #1String #2

Diagram from the UW pretest.  A hand was pulling to the right on string #1.  Students

were told to assume the strings were massless.  They were asked to compare the

acceleration of Blocks A and B and to compare the forces exerted on Blocks A and B.

See reference 26 for further discussion.

Figure 2-16

The Atwood’s Machine Modified Atwood’s Machine

M

MM

M

Atwood’s machine and Modified Atwood’s machine apparatus.  In both cases, a

string is stretched between two masses and the string hangs over a pulley.  The UW

research project involved an investigation of both apparatuses.  See reference 26 for

further discussion.
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In summary, the students answering the question incorrectly failed to isolate

each block and identify the forces acting on it.  Also, many failed to correctly analyze

that string #2 was pulling on both blocks, not just block B.  Thus, in applying Newton’s

second law to a situation like the Atwood’s machine, they were unable to adequately

describe which “F” and which “m” to use, even when most knew the “a” was the same

for both masses.

To address these difficulties, McDermott et al. designed a tutorial to address

student difficulties.  Tutorials
27

 are a research-based instructional method developed at

UW which place students in small groups and get the students to actively think through

the physics content of the worksheets they are completing.  Tutorials replace traditional

TA-led recitations.  The worksheets are designed to challenge students and their

understanding of a physical situation and the model they use to understand the

situation.  Students without a functional understanding of the material (i.e. unable to

apply the conceptual ideas relevant to the situation to new and novel topics) will have

difficulty with the material and will be helped to develop a functional understanding.

The premise of tutorials is elicit-confront-resolve.
26

  First, tutorials are designed

to elicit from students any difficulties they might have with the material by asking for a

prediction of a physical situation that has been shown through research to be difficult

for students.  Then, questions asked in the worksheet or by the facilitator-TA confront

students with observations or reasoning which contradict students’ incorrect

predictions.  Finally, once students have been confronted with inadequacies (if any) in

their understanding, they are led to a resolution that helps them gain a deeper

understanding of the physics involved.

For the student, the tutorial cycle consists of four aspects.  Students take a brief

pretest during lecture every week.  Pretests are conceptually based, non-graded quizzes

which usually follow lecture discussion of a topic.  Most commonly, pretests are given

after students have completed homework problems dealing with the physical topic

addressed in the pretest.  After the pretest, students participate in tutorials (attendance

is not mandatory, but at UMd, 85% to 100% of the students attends tutorial section).

Students have tutorial-based homework which give them the opportunity to apply and

develop the ideas they have learned in tutorial in order to further build their functional

understanding of the material.  Finally, on each examination, one question is based on

tutorial materials.  These examination questions also help evaluate student performance

based on tutorial instruction.

To provide students with an opportunity to develop their understanding of

tension, the UW researchers developed a set of activities related to the question in

Figure 2-15 and the Atwood’s machine apparatuses shown in Figure 2-16.  Students

are asked to analyze situations where two blocks on a table are in contact with each

other (a hand pushes one block which pushes another), where two blocks are

connected by a massive string (a hand pushes the first which then pulls the second), and

where two blocks are connected by a massless string (and a hand pushes the first block

which pulls the second).

In the tutorial,
28

 students are required to apply the concepts and skills they have

learned in class, such as Newton’s second law, free body diagrams, and Newton’s third

law to analyze the situation.  Questions are designed to elicit difficulties that have been
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found through the analysis described above.  Students analyze each situation in detail

before moving on to the next, getting help from the TAs in the classroom as needed.

For example, many students have difficulty making correct free body diagrams of the

strings (both massive and massless strings).  Also, many students have difficulty

isolating each of the masses in their analyses.  After a series of exercises, students

extend their understanding by applying the concepts they have worked on to new

situations.  For example, they repeat the above analyses with friction between the

blocks and the table.  They also apply their developed reasoning to the actual Atwood’s

machine.

To investigate whether students who participated in tutorial instruction came to

a deeper understanding of the material than students who did not, McDermott et al.

asked identical examination questions of two different student populations.  In one

lecture-only class, students had four lectures a week, while in two tutorial classes,

students had three lectures and one tutorial a week.  As the authors state, “none of the

tutorials had dealt with the particular systems involved.”  Also, all classes used identical

textbooks.

Student understanding of tension, as measured by their performance on an

examination problem (shown in Figure 2-17) was significantly better than before,

though not as good as an instructor would hope.  In the examination question, students

consider a modified Atwood’s machine.  They are asked to compare the tension in a

string when a force holding a mass in place is removed.  The most common incorrect

response students gave was to say that the tension would not change since only block

A was affected by the removal of the force.  In other words, the students were looking

only at the local information about block A and not the entire system.  In the non-

tutorial class, only 25% of the students gave the correct response (that the tension was

now less than the weight of block B, since the block would accelerate downward).  In

the tutorial classes, more than 50% gave this response.  McDermott et al. point out

that far fewer students treated the blocks and string as independent systems.  Thus,

students who had participated in tutorial were able to think of the global system more

Figure 2-17

A

B

PUSH mB = 2mA

Examination question asked at UW to investigate student understanding of tension

after instruction.  Students are told that masses A and B are originally at rest.

Students were asked how the tension in the string would change when the force

holding mass A in place was withdrawn.  The question was answered by both tutorial

and non-tutorial students.  See reference 26 for further discussion.



36

clearly than students who had received traditional lecture instruction on the same

material.

In addition, tutorial students were better able to use skills not specific to the

situation but important for a detailed understanding of physics, such as “drawing free

body diagrams… identifying third law force pairs, and … analyzing dynamical systems

qualitatively.”  Also, while non-tutorial students gave primarily justifications based on

algebraic formulas, the tutorial students applied dynamical arguments to the questions.

The evidence suggests that tutorials, though only replacing one hour of instruction a

week, give students the opportunity to develop their reasoning and skills in ways that

traditional instruction does not.

The authors find that the Atwood’s machine tutorial addresses student

difficulties with tension in such a way that students gain the basic and fundamental

skills they need in their study of physics.  As they point out, “the emphasis on concept

development that characterizes the tutorial materials is not intended to undermine the

need for instruction on problem-solving procedures.”  Instead, the success of the

tutorial lies in part with the idea that they do not teach by telling, but provide an

opportunity for students to “integrate the counterintuitive ideas that they encounter in

physics into a coherent framework” by giving students “multiple opportunities to apply

the same concepts and reasoning in different contexts, to reflect upon these

experiences, and to generalize from them.”

Summary

In this chapter, I have presented evidence that PER can play an important role

in helping instructors gain an understanding of student difficulties with physics.  PER

can also help instructors develop effective instructional materials that provide students

with the opportunity to improve their understanding of physics.  These materials can be

investigated to measure their effectiveness, such that a recurring cycle of research,

curriculum development, instruction, and research is put in place.  The curriculum

development described in this chapter dealt with issues in mechanics, but other areas of

physics have also been investigated.

For example, investigations have shown that students have difficulties with

some of the fundamental concepts of wave physics.  Some of these concepts, such as

the mathematics, the distinction between local and global phenomena, and the role of

initial conditions, provide physics education researchers with an opportunity to

investigate ideas that are important to an overall understanding of physics.  To

investigate student understanding of waves, one must first summarize the model that

we would like our students to learn.  By emphasizing the conceptual background in the

model of wave physics taught in the introductory courses, we are able to focus our

attention on the most fundamental ideas that we would like our students to learn in our

courses.  Published PER results on student difficulties with waves suggest that students

have profound problems that hinder them from developing as deep an understanding of

physics as we would like.  Furthermore, many of the difficulties that have been

described seem related to one another and to other PER results in areas such as

kinematics and mechanics.  This suggests that a detailed investigation of many areas of
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wave physics will give researchers a window into how students develop their

understanding of physics.
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Chapter 3: Student Difficulties with Wave Physics

Introduction

From the Fall, 1995 (F95) to the present, I (together with other member of the

Physics Education Research Group (PERG) at the University of Maryland (UMd))

carried out a series of investigations of student understanding of the physics and

mathematical description of mechanical waves on a taut string or spring.  (I will use

notation “F95” or “S96” throughout the dissertation to describe Fall or Spring

semesters and their years.)  Student difficulties with the physics and the mathematical

description of wave propagation and with the superposition of waves were

investigated.  From F96 onward, we also investigated student difficulties with sound

waves and the propagation of waves through air.  The research methods used in these

investigations have been introduced in chapter 2.

We find that many students have profound and meaningful difficulties with

fundamental ideas and concepts not just of wave physics but of the general ideas and

approaches of physics which are often taken for granted in physics instruction yet

which students must learn in our classes.  For example, many students are unable to

functionally describe the meaning of a disturbance to the equilibrium state of a system.

Many are unable to adequately describe the concept of linear superposition, having

great difficulty in considering many different points at once.  The mathematics which

describe wave propagation also cause trouble for students, and it seems that

misinterpretations of the physics guide many students in their misinterpretation of the

mathematics.  We have also found evidence of the opposite, that students use

misinterpretations of mathematics to guide their reasoning about the physics.  These

results are specific to the investigation of wave physics, but the manner in which we

find students unable to build a coherent and functional understanding of the physics

may cause problems for their study of physics in many other subjects.

Research setting

All data for this dissertation were collected from students in the Physics 262

class at the University of Maryland, College Park (UMd).  Physics 262 is the second of

a three semester, introductory, calculus-based physics course for engineers.  Topics

covered in the course include hydrostatics and hydrodynamics, oscillations, waves, heat

and temperature, and electricity.  Students are required to have taken physics 161 (or

an equivalent course in Newtonian mechanics), and they are also required to be

enrolled in a calculus II (or higher) course.  Physics 262 has a required laboratory that

meets once a week.

In the discussion section that accompanies the course, students participate in

either a traditional TA-led recitation or a tutorial.  In the TA-led recitation sections, a

TA typically works through problems at the board.  In some recitations, the TA leads a

broader discussion in which some students might solve problems at the board, but the

focus is still on a single person, and most of the students are not highly engaged in the
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discussion.  Tutorials are a research-based instructional setting that replaces recitations,

as has been described in chapter 2.

Students cover the topic of waves in a three or four week period (depending on

the professor).  Topics include wave propagation, superposition, intensity, power,

wave harmonics, and usually the Doppler shift and other advanced topics.  Since the

more advanced ideas depend on an understanding of the basic ideas that students learn

at the beginning of their study of waves, we have focused our research on the basic

concepts and fundamental ideas of waves.

Chosen wave representations

To investigate student understanding, we often ask questions about the physics

in an unfamiliar context that requires students to use what we hope is familiar physics.

When studying waves, students often encounter only infinitely (or very) long waves

which stretch (effectively) from negative to positive infinity.
1
  As has been described in

chapter 2, we have often chosen to investigate student understanding of wave physics

by using wavepulses rather than wavetrains.
2
  By a wavepulse, we mean a single

localized disturbance that propagates along the string.  By a wavetrain, we mean an

infinitely (or very) long (e.g. sinusoidal) disturbance (see Figure 2-6).

One of the goals of PER is to see how students are able to carry over their

understanding from one setting or topic to another.  Our decision to investigate student

understanding with wavepulses rather than wavetrains allowed us to see more clearly

how students were thinking of the propagation of a wave.  We could also see how

students approached superposition.  With a sinusoidal wavetrain, the mathematics to

describe the wave is simpler than for a wavepulse, but it becomes difficult to visualize

the motion of the medium due to the propagating disturbance.  It also becomes difficult

to interpret student responses (both sketches and descriptions) if a repeating pattern is

used.  Rather than simplifying the mathematics for students, we used wavepulses to

find how students made sense of wave physics on a conceptual level.

Student Difficulties With Wave Propagation: Mechanical Waves

A wave is a propagating disturbance to a system.  The medium of the system

does not propagate with the wave and is not permanently displaced from equilibrium.

Previous research (see chapter 2) has shown that students have difficulties separating

the initial conditions of a system through which a wave propagates (i.e. the manner in

which the wave is created) from the propagation of the wave itself.  This point is often

neglected when discussing wave physics, where it is possible to discuss relevant and

important concepts contained in the wave equation without ever discussing the initial

conditions of the system.  We find that students are unable to distinguish between the

manner in which a wave is created and the manner in which the wave propagates along

a string.
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Investigating student understanding

We chose to investigate how students view the relationship between how a

wave is created and how the wave propagates through the system with a variety of

instruments or probes.  Interviews provided us with detailed descriptions of how a

small number of students view the physics.  With the understanding of possible student

responses gained through an analysis of interviews, we can come to a better

understanding of student written responses that we can give to much larger populations

of students.
3

The general question asked in all our interviews and written questions involved

a taut elastic string held on one end by a hand and on the other end attached to a

distant wall.  A correct answer to the questions shown in Figure 3-1 and Figure 3-2

would indicate that the speed of a wave traveling along a taut string or spring depends

only on the tension and mass density of the medium.  The manner in which the

disturbance is created does not affect the speed of the wave.

In the question shown in Figure 3-1, students were asked to describe what

physical parameters could be changed to change the speed of the wave on a taut string.

Even though the question asked for possible physical parameters that could affect the

speed of the propagating wave (implying properties of the string on which the wave

propagated, not the manner in which the wave was created), many students stated that

the motion of the hand would play a role in the speed of the wave.  The wording of the

question may have lead more students to answer the answer the question correctly

(tension and mass density are physical parameters), since some students might not

consider the hand a physical parameter of the system.

Because the original wording of the question may have guided students away

from their personal beliefs about the correct answer, we changed the wording of the

question in later questions to the more open-ended wording shown in the free response

(FR) question in Figure 3-2 (Version 1).  The multiple-choice, multiple-response

(MCMR) question (Version 2 of Figure 3-2) was developed in order to investigate the

same student difficulties in a different fashion.  In this type of question, students are

asked to give all possible correct responses.  They are offered a long list of possibly

Figure 3-1

A long string is attached to the wall as shown in the picture

below. A red dot is painted along the string between the hand

and the wall. A single pulse is created by the person holding

the string and moving it up and down once. The string is

firmly attached to the wall, and cannot move at that point.

When a pulse travels along a taut, elastic string, we can

measure its velocity. What physical parameters could be

changed to change the velocity of the pulse?

Wave propagation Question, Fall-1995, pre-instruction, N=182.  Note the phrasing of

the question, implying that only physical parameters can change the speed of the pulse.
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correct responses.  While reminding students of the correct answer, the offered

responses could also remind students of many possible incorrect responses.  Details of

how the FR and MCMR question were asked at different times will be given when

specific data are discussed.

Two sets of interviews dealt with student understanding of wave propagation

concepts.  In S96, nine students were asked an FR question nearly identical to the one

shown in Figure 3-2 during an interview.  In S97, 18 students first answered the FR

question and then the MCMR question.  The interviewer did not allow them to go back

to change their answer on the FR question (an answer already captured on videotape).

Two students interviewed during the same investigation answered only the MCMR

question.  The S97 interviews were part of a diagnostic test that will be described in

greater detail in chapter 7.

Because of interview responses, we made two modifications to the original

MCMR question.  First, in the S96 interviews, we found that some students were

giving an answer that we had not included in F95.  They used the idea of the force

needed to create the wave to explain changes in wave speed.  They usually referred to

the “force of the wave” when giving this explanation.  This response will be described

in more detail below.  Second, we included the possibility of “none of the above” to

give students the opportunity to describe their own model of wave propagation, even in

the MCMR question.  Responses i, j, and k were included in the MCMR question from

S96 onward.

Figure 3-2

Version 2:  Multiple-Choice, Multiple-Response (MCMR) format:
A taut string is attached to a distant wall.  A demonstrator moves her hand to create a pulse

traveling toward the wall (see diagram).  The demonstrator wants to produce a pulse that takes

a longer time to reach the wall.  Which of the actions a!k taken by itself will produce this

result?  More than one answer may be correct.  If so, give them all.  Explain your reasoning.

a. Move her hand more quickly (but still only up and down once by the same amount).

b. Move her hand more slowly (but still only up and down once by the same amount).

c. Move her hand a larger distance but up and down in the same amount of time.

d. Move her hand a smaller distance but up and down in the same amount of time.

e. Use a heavier string of the same length, under the same tension

f. Use a lighter string of the same length, under the same tension

g. Use a string of the same density, but decrease the tension.

h. Use a string of the same density, but increase the tension.

i. Put more force into the wave.

j. Put less force into the wave.

k. None of the above answers will cause the desired effect.

Version 1: Free-Response (FR) format:  A taut string is

attached to a distant wall.  A pulse moving on the string

towards the wall reaches the wall in time t0 (see diagram).

How would you decrease the time it takes for the pulse to

reach the wall?  Explain your reasoning.

Free response (FR) and Multiple-choice, multiple-responses (MCMR) versions of the

wave propagation question.  Answers e and g are correct in the MCMR question, and

we considered answers like e and g to be correct on the FR question.
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Discussion of student difficulties

In this section, I will first describe student comments in interviews and then give

a statistical overview of their responses to written questions.

After students have completed instruction on waves, many still use ideas of

force and energy incorrectly when answering the free response (FR) question shown in

Figure 3-2 Version 1.  In both the S96 and S97 interviews, students had difficulties

with the fundamental concepts of wave propagation.  Some students used reasoning

based on the force exerted by the hand to create the pulse.  One student stated, “You

flick [your hand] harder...you put a greater force in your hand, so it goes faster.”

Other students state that creating a wave with a larger amplitude takes greater force

and thus the wave will move faster.  Some students state that shaking your hand harder

(in interviews, this was usually accompanied by a quick jerk of the hand) will “put more

force in the wave.” Another student used reasoning based on energy to describe the

effect of a change in hand motion.  He stated, “If we could make the initial pulse fast, if

you flick [your hand], you flick it faster... It would put more energy in.”  This student is

failing to distinguish between the velocity of the hand, which is associated with the

transverse velocity of the string, and the longitudinal velocity of the pulse along the

string.

To many students, the shape of the wavepulse also determines its speed.  One

student stated, “Make it [the pulse] wider, so that it covers more area, which will make

it go faster.”  In follow-up comments, this student explained that it took more energy

to create a larger pulse, and that the pulse would move faster because it had more

energy.  We have also found that some students state that smaller pulses will move

faster.  “Tinier, tighter hand movements” will allow the wave to slip more easily (thus,

faster) through the medium.

Students rarely give only one kind of explanation in interviews.  They can use

both correct and incorrect reasoning to describe changes to wave propagation speed.

One student described how to make a slower wave in the following way:

Well, I know that tension affects the wave speed.  … [And] the amplitude

would affect it {the student shows a hand motion with a larger

displacement but same time length}.  I think possibly, you see a slower

pulse … if the force applied to the string is reduced … that is: the time

through which the hand moves up and down [is reduced].

Though the student starts with the correct response, he then describes a mixture of

incorrect ideas: the “size” of the hand motion, the “force” applied to the string, and the

speed of the hand motion.  Of note is that there was a long pause between the correct

response and the other, incorrect responses.  During this time, the student was

obviously thinking of the physics, so the interviewer remained quiet.  Had the

interviewer immediately asked a new question, the insight into the student’s

understanding would not have been as deep and the student’s true understanding of the

physics would not have been uncovered.

The initial conditions that determine the creation of the wave and its size play a

large role in student explanations which use force and energy in their reasoning.
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Though the properties of the physical system determine the wave speed and the initial

conditions do not, many students believe the initial conditions play a role in

propagation speed.  Since a hand is used to create the wave, student explanations seem

to make use of an active agent that creates the waves.  This interpretation is consistent

with previous findings by Maurines
4
 and also with the Impetus model described in

chapter 2.

Student use of multiple explanations was also observed on written questions.

In F97, we asked both FR and MCMR questions on diagnostic tests at the beginning of

the semester before all instruction and near the end of the semester after all instruction

on waves had been completed.  In the beginning of the semester, students first

answered the FR question, turned it in, and were then handed the MCMR question.

This ensured that they did not change their answers on the FR question as a result of

seeing the list of MCMR options.  During the semester, instruction consisted of lecture,

textbook homework problems, and tutorials designed to address the issues discussed in

this paper.  (The instructional materials will be discussed in more detail in chapter 6.)

The data from before and after instruction illustrate the difficulties students have even

after working through specially designed research-based materials.  After all

instruction, students answered the FR and MCMR questions in successive weeks as a

supplement to their weekly pretests given during lecture.

By comparing student responses on the FR and MCMR questions, we can

probe the distribution of ideas used by students to understand the physics of wave

speed.  Table 3-1(a) shows how students answered both the FR and MCMR questions

before instruction.  Only those students who answered both FR and MCMR questions

both before and after instruction are included (i.e. data are matched).  Students’ written

explanations echo those given during interviews.  By comparing student responses on

the two question formats, we can see how consistently students think about wave

speed.

At the beginning of the semester, very few students give only the correct

answer, but most of them include it in the responses to one of the two questions.

Almost all of the students answer that the hand motion will affect the wave speed.

Students predominantly use only one explanation when answering the FR

question.  The offered responses on the MCMR question appear to act as triggers that

elicit additional explanations, especially from students who give the hand motion

response on the FR question.  Of the few students (9%) who answered the FR question

using only correct reasoning, most answered the MCMR question consistently (78%).

These students seem to have a robust understanding of the dependence of wave speed

on medium properties.  However, more than three-fourths of the students emphasize

the incorrect hand motion response at the beginning of the semester (77% of the

students give the hand motion response on the FR question).

Table 3-1(b) shows student responses at the end of the semester (after modified

instruction, described in more detail in chapter 6).  Student performance is somewhat

improved, with more students giving completely correct explanations.  Nearly all

students (98%) recognize the correct answer on the MCMR question, but a majority of

the class (58%) still believes that changes in hand motion play a role.
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In both the pre and post instruction tables, the most common off-diagonal

elements of the tables show that students who answer the FR question using only hand

motion explanations are triggered into additionally giving correct medium change

responses on the MCMR question.  Apparently, they recognize the correct answer, but

do not recall it on their own in an FR question.  Because fewer students are triggered in

the other direction (from correct medium change explanations to additionally giving the

hand motion response), we believe that the quality of understanding of those students

who give the correct FR response is higher than those who are triggered to give

multiple explanations.  Nevertheless, it is noteworthy that so many of the students

answer incorrectly even after explicit instruction on the topic.  The issue of instruction

will be discussed in more detail in chapter 6.

In summary, we find that students do not make a distinction between the initial

conditions and the medium properties of the system.  We see that most students give

correct answers to describe changes to wave motion when offered the correct response,

even before instruction, but they often do not think consistently about the physics, even

after instruction.  In a later part of the dissertation, I will discuss how individual

Table 3-1

(a) Student responses on free response question

 Speed changes due

to change in:

Only tension

and density

both the medium

and hand motion

the motion

of the hand other

Student

responses

only tension and

density
7% 1% 2% 1%

On MCMR

question

both the medium

and hand motion
1% 2% 60% 10%

the motion of the

hand
1% 1% 11% 3%

(a) Comparison of student pre-instruction responses on FR and MCMR wave

propagation questions, Fall-1997 (matched data, N=92).  Students answered questions

before all instruction.

(b) Student responses on free response question

 Student Response: Only tension

and density

both the medium

and hand motion

the motion

of the hand Other

Student

responses

Only tension and

density
40% 2% 2% 2%

On

MCMR

question

Both the medium

and hand motion
8% 17% 20% 2%

the motion of the

hand
2% 1% 2% 0%

(b) Comparison of student post-instruction responses on FR and MCMR wave

propagation questions, Fall-1997 (matched data, N=92).  Students answered questions

after all instruction on waves.
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students are able to give more than one response to describe a single physical situation,

and how students use more than one model to think of waves.

Student Understanding of With Wave Propagation: Sound Waves

We have also investigated student understanding of the fundamental issues

underlying a consistent physical picture of the nature of sound.  Our findings show that

the difficulties described in the previous section appear here as well.  We find that

students are unable to separate the medium from the wave, possibly because they are

unable to interpret how they visualize the system in which the wave is traveling.

Investigating student understanding

To investigate how students distinguish between the motion of the wave and

the medium, we posed two different types of questions about sound waves (see Figure

3-3).  We asked students to describe the motion of a dust particle sitting motionlessly

in front of a previously silent loudspeaker after the speaker had been turned on (Figure

3-3(a)).  In addition, we asked students to describe the motion of a candle flame placed

in front of a loudspeaker (Figure 3-3(b)).

The physics of these two situations merits discussion.  The dust particle, we

told the students in interviews, is floating motionlessly in a room with no wind (i.e. no

outside air currents).  This is plausible, when considering that buoyancy can support a

dust particle of the right density at the desired height.  The lack of air currents is not

plausible when considering the candle flame because the heat from the candle causes

convection currents.  These currents only occur in the near vicinity of the candle,

though, and add little to the effective size (i.e. width) of the candle.  For both systems

and at the appropriate size and time scale, we can assume that the medium through

which the sound waves travel is motionless except for the motion from equilibrium

caused by the sound waves themselves.

In both questions, we asked about audible frequency sound waves, between 10

and roughly 5,000 Hz.  Assuming a speed of sound in air of roughly 340 m/s, this gives

a range of wavelengths between 7 cm and 34 m.  All of these wavelengths are much

greater than the size of either the dust particle or the candle flame (roughly 1/2 to 1 cm

wide).  The shortest wavelengths occur at a frequency that is already outside of the

common frequencies heard on a daily basis in speech or in music. (The highest of these

are usually around 2000 Hz, giving a wavelength of 17 cm.)  Based on our choice of

dust particle size and candle flame size, we can treat them as point particles which

move in response to the motion of the medium in which they are embedded.

We expected students to point out that the dust particle and the candle flame

would oscillate longitudinally from side to side due to the motion of the air.  We

expected that the detailed physics of the differences between the dust particle (or

candle flame) and the medium of air discussed in the previous paragraph were beyond

the level of all the students probed .  None ever raised these issues.  This is consistent

with our use of interviews to help determine the state space of possible responses
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students might give in a situation.  Though we were prepared for the discussion, the

students had difficulties with different fundamental issues.

Two sets of individual student interviews gave us insight into how students

made sense of the physics.  In the first (F96), 6 students answered questions related to

the motion of both the dust particle and the candle flame.  These students had

completed lecture instruction on sound waves and most were above average (getting

either an A or B in the course) according to their descriptions of their grades.
5
  They

were asked to describe the motion of the object, if any, once the loudspeaker was

turned on.  They were also asked how that motion would change if the frequency and

the volume of the loudspeaker were changed (and the dust particle or candle flame

began its motion in the same location as the original object).  In the second set of

interviews (S97), twenty students who had completed either traditional or tutorial

instruction in waves answered the dust particle question.  In these interviews, a

multiple-choice, multiple-response (MCMR) format version of the dust particle

question was given.  Because of the interview setting, it was possible to probe their

responses to the question in this format to see how they arrived at their answers and

how they were using the offered responses to choose their own beliefs about the

movement of the dust particle.  Some students seemed to focus on only the first instant

of motion of the dust particle away from the speaker and did not state that there was

motion due to the rarefaction of air until asked to extend their first response in time.

The question responses were subsequently rephrased to account for this possibility and

to suggest to students that they consider more than just one instant in time.  The final

version of the MCMR question is shown in Figure 3-4.

Figure 3-3

dust particle

Consider a dust particle sitting

motionlessly in front of a

loudspeaker. Also, consider a

candle flame where the dust

particle had been.

Question: Describe the

motion of the dust particle (or

candle flame) after the

loudspeaker is turned on and

plays a note at a constant pitch

and volume.  How would the

motion change if the

frequency or volume of the

sound were changed?

(a)

(b)

Two different situations in which the sound wave question was asked, (a) the dust

particle sound wave question, (b) the candle flame sound wave question.  In

interviews, students were not given a diagram, but had a loudspeaker and a candle and

were asked to imagine the dust particle or the candle flame.  In pretests and

examination questions, students had a variety of diagrams, all equivalent to the ones

shown.
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Once we had used interviews to describe student difficulties with sound waves

in detail, we administered a variety of written questions to gain an understanding of

how common these difficulties were in the classroom during the course of the semester.

We asked the dust particle questions in three different situations: before any instruction

on waves, after traditional instruction on waves, and after traditional and tutorial

instruction.  In one semester (F97), we asked students both the FR and MCMR

versions of the dust particle question after they had completed instruction on waves.

We asked and collected the FR question first to ensure that students would not change

their response based on the offered MCMR answers.

Discussion of student difficulties

We found that students’ difficulties did not change during the course of the

semester, but the frequency with which they occurred did change depending primarily

on the type of instruction that students had on waves.  The state space of responses

that we had developed using the interviews was therefore productive in describing

student difficulties at all times of instruction.

In the interviews carried out in F96, we found that most students had great

difficulty separating the propagation of the sound wave from the motion of the medium

through which it travels.  One student’s responses were representative of the reasoning

used by 4 of the 6 students in the interviews.

“Alex” (names used are aliases chosen by the interviewed students), described

how the dust particle would be pushed away by the sound wave.  In the following

quotes, the interviewer is referred to with “I” and Alex with “A.”

I:  The loudspeaker is turned on, and it plays a note at a constant pitch.

Could you describe the behavior of the particle after the speaker is turned

on?

Figure 3-4

A dust particle is located in front of a silent loudspeaker

(see figure).  The loudspeaker is turned on and plays a note

at a constant (low) pitch.  Which choice or combination

of the choices a!f (listed below) can describe the motion

of the dust particle after the loudspeaker is turned on?

Circle the correct letter or letters.  Explain.

Possible responses for question 2:
a) The dust particle will move up and down.

b) The dust particle will be pushed away from the speaker.

c) The dust particle will move side to side.

d) The dust particle will not move at all.

e) The dust particle will move in a circular path.

f) None of these answers is correct.

loudspeaker dust particle

.

MCMR format sound wave question, F97, N=92 students (matched) answered this

pre and post-instruction on waves.
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A:  It should move away because the sound vibration, the sound wave is

going away from the speaker, especially if constant pitch means you have

one wave going … It’s going to move away from the center.

Later, when asked the same question in a slightly different fashion, Alex stated:

A:  It would move away from the speaker, pushed by the wave, pushed by

the sound wave …  I mean, sound waves spread through the air, which

means the air is actually moving, so the dust particle should be moving

with that air which is spreading away from the speaker.

I:  Okay, so the air moves away --

A:  It should carry the dust particle with it.

I: … How does [the air] move to carry the dust particle with it?

A:  Should push it, I mean, how else is it going to move it?  [Alex sketches

a typical sine curve.]  If you look at it, if the particle is here, and this first

compression part of the wave hits it, it should move it through, and carry

[the dust particle] with it.

Here, Alex was describing the peak of the sine wave exerting a force on the

dust particle, only in the direction of propagation.

Alex had a clear and complete description of the motion of the dust particle due

to the sound wave.  He believed that a sound wave consisted of air moving away from

its source, and that the dust particle would therefore move with the air, away from the

speaker.  The sound wave provided the force which acted on the particle to make it

move away from the speaker.  Alex did not use the idea of rarefaction during the

interview.

To see whether Alex used this description even when the physical situation

changed, he was asked the following question:

I:  We have the same loudspeaker, and we create the same situation as

previously.  We have the loudspeaker turned off, and you place a new piece

of dust, exactly like the previous one, in the same location as before.  Now

you turn the speaker on, but rather than having the original pitch, the

frequency of the note that is produced by the speaker has been doubled ...

How would this change the answer that you’ve given?

A:  That would just change the rate at which the particle is moving. … The

wave speed should be, it should double, too. … Yeah, speed should

increase.

I:  How did you come to that answer?
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A:  I was thinking that the frequency of the wave, a normal wave, shows us

how many cycles per some period of time we have.  … You can have twice

as many cycles here in the same period of time. …

I:  And what effect does it have to go through one cycle versus to go

through two cycles?

A:  If it goes through one cycle of the compression wave like this, then the

first wave should hit it here [points to the peak of the sine curve that he

had previously sketched].  And … the second wave which has frequency

which is twice as big should hit it twice by then, which should make it go

faster.

Due to a hand motion that he made repeatedly when referring to the “hit” on

the particle, Alex was asked the following question:

I:  So each compression wave has the effect of kicking the particle

forward?

A:  Yeah.

I:  So when you’ve been kicked twice, you’re moving twice as fast?

A:  Basically, yeah. Right, because the force … [referring to a sketch he

drew, like the one in Figure 3-5] If you have a box, and you apply a force

once, the acceleration is, force equals mass times acceleration, you can

find the acceleration.  Then, if you apply the same force a second time to

the same object, you give it more, more, well, it just moves faster.

I have given these lengthy interview excerpts to show the robustness with

which Alex could describe his conceptual understanding of sound waves and to show

the general difficulties Alex had with basic and essential physics concepts.

Alex’s misinterpretation of frequency illustrates how students can use language

correctly but misinterpret its meaning.  He stated, “the frequency of the wave, a normal

wave, shows us how many cycles per some period of time we have,” but he was unable

to use his definition when describing the physical behavior of the system.  At another

point in the interview, he indicated that he thought the wavelength of the sound wave

would stay constant when the frequency changed.  At no point during the interview did

he state that the speed of the sound wave depended on the medium properties of the air

through which it traveled.  In an equation like v = f!, he was free to choose one of the

Figure 3-5

Force
Dust ptcl. is

like a block

Alex’s sketch of the sound wave exerting a force on the dust particle.  Alex described

the wave exerting a force on the dust particle (and later candle flame) only in the

direction of wave propagation.
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variables to remain constant.  He could not clearly explain why he believed the

wavelength was constant.

Another point of interest is his confusion between acceleration and velocity

(possibly the confusion between acceleration and impulse).  The description that the

sound wave exerts a force only in the direction of wave propagation shows that Alex

thinks of the leading edge of the wave pushing everything in front of it away from the

sound source, much like a surfer riding on an ocean wave.  To explain the surfer

analogy, he described the motion of a ring on a string on which a pulse is propagating.

The effect of a pulse on a small ring placed on the string was to push it along.  (Alex

gave a partially correct answer for a ring that is on a string; the wavepulse will make

the ring move in some longitudinal fashion that depends on the angle of the string as

the wavepulse passes by.)  He used the term “impulse” to describe the wavepulse and

the effect of the wavepulse on its surroundings.

A:  This impulse will hit the ring here, and … should go and make it move

forward, the same way it should be with a dust particle in the air.

When I asked him the effect of changing the volume of the sound produced, he

stated the following:

A:  I guess I’m not thinking physics too much. … [I’m thinking of a] stereo

system at home, if you turn it up, you can feel the vibration from farther

away from the speaker, so basically [the dust particle] should move, once

again, it should move faster.

I:  What effect did changing the volume have on the compression wave?

A:  Increased the amplitude…

I:  And that has the effect of the compression wave moving faster?

A:  Not quite, it just hits the particle with more force. … If you kick the

thing, instead of kicking it faster, you’re just kicking it harder.  It’s going

to move faster.

Again, Alex described the effect of the wave exerting a force only in the

direction of propagation to make the dust particle move forward.  Of the 6 students

who participated in the interviews, four gave similar descriptions of the effects of the

sound wave on the dust particle.
6

Of the other two students, one student gave responses which were inconsistent,

stating the correct answer (horizontal oscillation) while also stating that the dust

particle would not move.  Even with continued questioning, the student was unable to

provide a clear response, showing that a profound confusion lay behind the student’s

correct responses.  It is possible that this student would perform very well on

examinations where the student is aware of the correct answers that the instructor is

seeking, but still not have an actual understanding of the physics of sound waves.

The last student interpreted the common sinusoidal graph used to describe

sound waves (either pressure or displacement from equilibrium as a function of time or
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position) as a picture rather than a graph and used this misinterpretation to guide his

reasoning. He described transverse motion by the dust particle (and no motion by the

candle flame, since it was unable to move up and down due to its attachment to the

wick).  This student misinterpreted the common sinusoidal graph of sound waves

(where the vertical axis describes horizontal displacement from equilibrium as a

function of position or of time), and used this misinterpretation to guide his

understanding of the motion of the medium.  He described that the longitudinal

compression of the sound wave would squeeze the dust particle to push it up or suck it

back down (due to the “vacuum” caused by a sort of rarefaction  between longitudinal

waves).  The longitudinal wave would cause transverse motion in the dust particle.

The detailed physical explanation this student gave is indicative of how seemingly

simple misunderstandings (reading a graph as a picture) can have a profound effect on

how students come to make sense of the physics they learn.

When asking the dust particle question of many students, we have found that

lecture instruction had little effect on student understanding of the relationship between

the motion of sound waves and the motion of the medium through which they travel.

Table 3-2 shows (unmatched) student responses from the beginning of S96 and the end

of F95.  Students answered a slightly different version of the question in which the

loudspeaker was enclosed in walls to form a tube.  A non-trivial number of students

(roughly 10% in both cases, listed within the “other oscillation” category) sketched

standing wave patterns (e.g. sinusoidal standing waves with the correct nodes and

antinodes at the end of the tube) to describe the motion of the dust particle.  The tube

walls were removed in later questions to remove this source of student confusion, but

the result is an important one.  Students seem to pick the familiar details or surface

features of a problem to guide their reasoning in their responses.  The tubes triggered a

response based on common diagrams with which they were familiar, but this response

showed the difficulties that students have in understanding the material.

Table 3-3 shows student explanations from F97 to the dust particle question

before instruction, after traditional instruction, and after modified instruction (described

in more detail in chapter 6).  We see that very few of the students enter our courses

with a proper understanding of the nature of sound wave propagation.  Before

instruction, half the students state that the sound wave pushes the dust particle away

from the speaker.  Some, like Alex, describe the dust particle moving in a straight-line

path.  Others describe the dust particle moving along a sinusoidal path away from the

speaker.  The latter students seem to misinterpret the sinusoidal graph of displacement

Table 3-2
Time during

semester:

MM used:

Before all

instruction

S96 (%)

Post

lecture

F95 (%)

CM (longitudinal

oscillation)
14 24

Other oscillation 17 22

PM (pushed away

linearly or sinusoidally)
45 40

Other and blank 24 14

Comparison of student

responses describing the motion

of a dust particle due to a

loudspeaker.  Data are from F95

post instruction and S96 pre-

instruction and are not matched

(S96, N=104. F95, N=96).
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from equilibrium as a picture of the path of the particle.  After specially designed

instruction, student performance has improved greatly, but lingering difficulties

remained. The curriculum materials and an analysis of their effectiveness will be

described in chapter 6.

With sound as well as with mechanical waves, students have great difficulty

distinguishing between the medium and the propagating disturbance to the medium.

The difficulties we have found include:

• the use of surface features of the problem and misinterpretations of graphs

to help (mis)guide reasoning about sound wave propagation, and

• the use of descriptions of force and pushing to describe the movement of

the medium only in the direction of wave propagation (like a surfer riding a

wave).

Student understanding of both mechanical and sound waves indicates that their

functional understanding of the physics is not as robust as we would like.  Their focus

on surface features of the problem indicates that they are unsure of their understanding

of the material and will try to make sense of the situation using inappropriate clues in

the problem.  Their focus on forces that are originally exerted on the system to create

the wave and make it move forward indicates that they are not thinking correctly about

the relationship between the creation and the propagation of waves.

Student Understanding of the Mathematics of Waves

One of the fundamental topics of wave physics when it is first introduced is the

mathematical description of propagating waves.  Students are confronted with

functions of two variables, often for the first time.  The difficulties they have with the

mathematics of waves (hereafter referred to as wave-math) can have lasting effects on

their understanding of such advanced topics as the wave equation (often not covered in

the introductory sequence), the propagation of electromagnetic radiation, and the

mathematical description of quantum mechanics.  The difficulties that we observe

should therefore indicate what sort of problems students might have with mathematics

Table 3-3
Time during

semester:

Explanation:

Before all

instruction

(%)

Post

lecture

(%)

Post lecture,

post tutorial

(%)

Longitudinal oscillation
9 26 45

Other oscillation 23 22 18

Pushed away linearly

or sinusoidally
50 39 11

Other 7 12 6

Blank 11 2 21

Student performance on sound wave questions before, after traditional lecture, and

after additional modified tutorial instruction.  Data are matched (N=137 students).  The

large number of blank responses in the post-all instruction category is due to the

number of students who did not complete the pretest on which the question was asked.
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at later stages in their careers.  We find that many students do not have a good

understanding of how an equation can be used to describe a propagating wavepulse,

and we find that some students have serious difficulties interpreting the meaning of the

equation which describes the wavepulse at a given instant in time.

Investigating student understanding

We investigated students using both interviews and written questions on the

following issues:

• the mathematical transformation that describes translation of a disturbance

through a system, and

• the physical interpretation of the mathematics that describe propagating

waves.

The question shown in Figure 3-6 presents students with an unfamiliar setting in

which to describe wave motion.  Students most commonly encounter sinusoidal shapes

when discussing waves due to the ease of the mathematical interpretation and the

usefulness of the sinusoidal description in physics.  By presenting students with a

Gaussian pulseshape, we are able to probe their understanding of the mathematics of

wave propagation while ensuring that they are not responding by using partially

recalled responses from previous questions.  Part A of the question asked students to

sketch the shape of a (Gaussian) wavepulse traveling to the right that had propagated a

distance x0 along a taut string.  Part B asked students to write an equation to describe

the shape of the string at all points once the wavepulse had traveled a distance x0 from

the origin.

Figure 3-6

Consider a pulse propagating along a long taut string in the +x-direction.

The diagram below shows the shape of the pulse at t = 0 sec.  Suppose the

displacement of the string at this time at various values of x is given by

( )
y x Ae

x
b( ) =

!
2

A.  On the diagram above, sketch the shape of the string after it has traveled

a distance x0, where x0 is shown in the figure.  Explain why you sketched

the shape as you did.

B.  For the instant of time that you have sketched, find the displacement of

the string as a function of x.  Explain how you determined your answer.

Wave-math question answered by N=57 students in S96.  The question has since been

used in other semesters and in interviews with individual students.
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We considered a response to part A to be correct when students showed the

pulse displaced an amount x0 and the amplitude essentially unchanged, as shown in

Figure 3-7(a).  We considered any answer to part B that replaced x with x - x0 to be

correct.

Three different student populations participated in individual interviews.  In the

first, students (N=9) had not seen the wave-math question before.  In the second, four

students (in a different semester) had seen the wave-math question in a post-lecture

pretest (i.e. pre-tutorial quiz) they had taken within the previous 48 hours.  We used

these interviews to validate the students’ pretest responses.  In the third student

population, ten students answered the wave-math question in a diagnostic test two

months after they had traditional and tutorial instruction on waves.

In addition to the interviews, which provided the basis for our understanding of

student difficulties, we asked the wave-math question in a number of written pretests.

These pretests were given after students had traditional instruction but before they had

tutorial instruction on the mathematics of waves.  As in the other areas that have been

investigated, the nature of difficulties did not change according to where the students

were in their instruction, only the frequency with which a group of students had specific

difficulties changed.

Discussion of student difficulties

Students often used misinterpretations of the mathematics to guide their

reasoning in physics or they used misinterpretations of the physics to guide their

understanding of the mathematics.  Though most students describe the physical shape

of the propagated wave correctly, those who do not have a consistent incorrect answer.

This provides an opportunity for us to gain insight into the ways in which students

Figure 3-7

(a)

(b) “Since e is raised to a negative
power . . . it’s going to reduce the
amplitude as x increases.”

Correct and most common incorrect response to the wave-math problem in Figure 3-

6.  (a) A correct sketch of the shape of the pulse at a later time, showing the amplitude

unchanged, (b) An apparently correct sketch of the shape of the pulse showing the

amplitude decreased - but typically accompanied by incorrect reasoning.
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arrive at an incorrect understanding of physics.

In S96, the correct answer was given by 44% of the students who were

interviewed and 56% of the students who took the pretest.  Most of the rest of the

students (56% of the interview-students and 35% of the pretest-students) drew a pulse

displaced an amount x0, but with a decreased amplitude, as shown in Figure 3-7(a).  On

the surface this appears to be a reasonable response in that it is consistent with what

would actually happen as a result of the physical phenomena (not mentioned in the

problem) of friction with the imbedding medium and internal dissipation.  However the

explanations given by students suggest that they are not adding to the physics of the

problem but are misinterpreting the mathematics.  All of the interview students and

many of the pretest students cited the equation describing the shape of the string at

t = 0 as the reason for the decrease in the amplitude.
7
  As one interviewed student

8

said, “Since e is raised to a negative power . . . it’s going to reduce the amplitude as x

increases.”

But the exponential given in this problem represents a decrease in y in space (at

t = 0) and not time.  These students are failing to recognize that x corresponds to a

variable which maps a second dimension of the problem, not the location of the peak of

the pulse.  Also, these students are interpreting the variable y as the peak amplitude of

the wavepulse, not the displacement of the string at many locations of x at different

times, t.

One student was explicitly misled by the mathematics of the Gaussian function,

though he originally stated the correct response.

Okay. Umm … Let’s see. “Sketch the shape of the spring after the pulse

has traveled (Mumbling as he rereads the problem)  … Okay. Over a long,

taut spring, the friction or the loss of energy should not be significant; so

the wave should be pretty much the exact same height, distance,  --

everything. So, it should be about the same wave.  If I could draw it the

same. So, it’s got the same height, just a different X value.

No, wait. Okay, “… the displacement of (More mumbling, quick reading)

… is given by” – B, I guess, is a constant, so – It doesn’t say that Y varies

with time, but it does say it varies with X. So – that was my first intuition –

but then, looking at the function of Y … Let’s see, that – it’s actually going

to be – I guess it’ll be a lot smaller than the wave I drew because the first

time – X is zero, which means A must be equal to whatever that value is,

because E raised to the zero’s going to be 1.  So, that’s what A is equal to.

And then as X increases, this value, E raised to the negative, is going to get

bigger as we go up.  So, kind of depending on what V is… Okay.  So, if X

keeps on getting bigger, E raised to the negative of that is going to keep on

getting smaller.  So the – So the actual function’s going to be a lot smaller.

So, it should be about the same length, just a lot shorter in length.

This student describes the physics (including relevant approximations and

idealizations) correctly, but then revises his physical understanding to fit his

misinterpretation of the mathematics.  Here we see a clear example of the way (first
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discussed when comparing student response to the FR and MCMR question) that

students can have two conflicting descriptions of the same situation.  In this case, the

mathematics triggers in the student a form of reasoning that contradicts the simple

physical description the student originally used.

Part B of this problem asked about the mathematical form of the string at a later

time.  We considered any answer that replaced x with x - x0 to be correct.  However,

none of the S96 interview students and fewer than 10% of the pretest students

answered this way (see Table 3-4).

The most common incorrect response was to simply substitute x0 for x in the

given equation.  These students write constant functions that have no x-dependence,

y(x) = Ae
!
x 0
b
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Aexy .  This response was given by 67% of the interview

students and 44% of the pretest students.  All students drew a string with different

values of y at different values of x, yet many of them wrote an equation for that shape

with no x dependence.  There were other students who wrote a sinusoidal dependence

for y, again in conflict with what they drew for the shape of the string.  Even after

instruction on waves, many students seemed to be answering the mathematical part of

this problem independently of the way they were answering the physical part.  In

another class (where students had participated in traditional instruction on this subject),

a modified version of this question was asked on a post-instruction midterm

examination.  In this case, 45% of the students gave a sinusoidal answer to

mathematically describe the shape of a pulse.

In S97, the pretest was asked of a another class (which had the same modified

instruction).  The percentages of correct and incorrect responses were nearly exactly

the same as for S96, as shown in Table 3-4.  More detailed analysis of student

responses showed that 2/3 of those students who drew a smaller amplitude displaced

wave explicitly mentioned the exponential in the equation when explaining how they

Table 3-4

Example(s)

% of interview

respondents

(N=9)

% of pretest

respondents

(N=57)

correct response y(x) = Ae
!

x! x
0
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0% 7%

Constant function

with no dependence
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67% 44%

Sinusoidal y(x) = sin( kx ! !t) 22% 2%

Other x = b ln
y

A
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dy

dx
= !
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a
2
Ae

! x
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2

11% 47%

Student use of functions to describe a propagating Gaussian pulseshape.  Students

were asked to write an equation to describe the shape of the string once the pulse had

moved a distance x0 from the origin.
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arrived at their answer (i.e. 25% of the class used this reasoning).  The other 1/3 of the

students describing a smaller amplitude wavepulse gave many different reasons, the

most common being that the variable “b” described a damping constant, so the

amplitude must be smaller.  These students are using a surface feature of the equation

(the variable “b,” used in their textbook to describe the damping constant in air

resistance) to interpret the physics.  Again, we see that students have difficulties

interpreting the mathematics they are presented and use a variety of interpretations of

the physics to guide their reasoning.

The difficulties described in this section include students failing

• to recognize the relationship between the physical situation and the

associated equation,

• to understand the meaning of a function, and

• to treat a coordinate axis as a mapping of a dimension.

The interpretations that students give the mathematics focus only on the point of

maximum displacement.  The misinterpretation of a wavepulse as a single point of

displacement rather than an extended area of displacement implies that students are

thinking of waves differently from how physicists understand waves.

Student Understanding of Wave Superposition

For multiple mechanical waves traveling through a one-dimensional system, the

concept of linear superposition describes the summation of the displacement due to

each wave.  As described in chapter 2, superposition occurs at each location in space

(i.e. the sum of displacement occurs locally and due to local influences), but every

location in the system must be considered (i.e. one must do the addition everywhere, or

globally).  The distinction between local and global phenomena is subtle in this

situation, though not new to students who have used free body diagrams of extended

bodies in their previous physics courses.  Also, the topic is of great importance for later

studies in physics.  We find that students have difficulty understanding wave

superposition to occur on a point-by-point basis, and some students have a “collision”

model of wave superposition related more to particle mechanics than to wave physics.

In wave “collisions,” waves are treated much like objects that bounce off each other,

such as carts or gliders on air tracks.

Investigating student understanding

In our investigations, we focused on three different elements of the physics of

wave superposition where students might have difficulties.  We investigated student

understanding of superposition for

• the instant when the peaks of waves overlapped,

• the instant when the wave overlapped and the peaks of the waves did not,

and

• an instant some time later, when the waves were no longer overlapping at

all and had passed through each other.
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Our questions used wavepulses rather than wavetrains so that we could clearly

separate what students thought was happening.

We chose these three topics in superposition for three reasons.  First, students

often are asked about wave superposition in instances where sinusoidal waves overlap

either perfectly constructively or perfectly destructively.  By asking for a sketch when

peaks are not overlapping, we are able to investigate whether students add

displacements due to each wavepulse at all points along the string or only at the peaks.

Second, by asking for the sketch when the peaks overlap exactly, we see how students

sketch the shape of the entire pulse, and if they change the width of the pulse in

addition to its amplitude. (Student comments in office hours led to this question.)

Finally, students rarely consider what happens to superposed waves after they no

longer have an effect on each other; wavetrains in problem sets never end, so the issue

never arises.  By asking for a sketch long after the peaks have passed through each

other, we can investigate what ideas the students have about possible permanent effects

of the wavepulses on each other.  We have used the same three time periods in our

questions, time limitations permitting.

A variety of questions was used to investigate student understanding of

superposition.  Figure 3-8 shows two wavepulses on the same side of a string

propagating toward each other.  Figure 3-10 shows two wavepulses on opposite sides

of a string propagating toward each other.  In both cases, students were asked to

sketch the shape of the string at the three times described above.  Correct responses to

the questions shown in Figure 3-8 and Figure 3-10 are shown in Figure 3-9 and Figure

3-11, respectively.

In each of the questions, a correct response would show point-by-point addition

of the displacement due to each wavepulse at every point along the string.

Furthermore, wavepulses that had superposed and then separated would look exactly

as they did before interacting, without any sign of a permanent effect on each other.

One of the reasons for the chosen representation of wavepulses was to facilitate the

drawing of these sketches and to allow easier interpretation of student sketches.

Two sets of interviews on the topic of superposition were carried out.  In S96,

in a tutorial class, four volunteers answered the pretest question shown in Figure 3-12

in an interview that came after their lecture instruction on the material but before any

tutorial instruction.  This allowed us to validate the written responses we saw on

pretests by comparing them with the more detailed verbal responses students given in

interviews.

In diagnostic test interviews carried out in S97 with twenty students who had

completed either traditional or tutorial instruction on waves, we asked a series of

questions similar to the ones shown in Figure 3-8 and Figure 3-10.  These were given

in multiple-choice format, and students had a long list of possible responses from which

to choose.  Each response could be a possible correct answer for more than one

question, and students were aware that they could use the same response more than

once when answering up to five different questions.  (This is a variation of a multiple-

choice, multiple-response question, as described in the wave propagation section

above.)  Because these questions were asked during an interview, it was possible to
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follow up on student responses and gain insight into the reasoning they used to explain

their understanding of physics.

In the S96 semester, after we had developed a tutorial to address student

difficulties with superposition, we asked a pretest question shown in Figure 3-12.  This

pretest followed lecture instruction on the basic concepts of waves (including

superposition) but preceded the tutorial on wave superposition.  Rather than using

symmetric wavepulses of different amplitudes, we chose to use asymmetric wavepulses

with the same amplitude.  Though we had found interesting student ideas about the

permanent effects of wavepulses meeting, we wanted to investigate in more detail how

students did or did not use superposition when only parts of the pulses (but not the

peaks) overlapped.  The correct responses and the most common incorrect responses

are shown in Figure 3-13.

During the F97 semester, we modified the pretest question from S96 and asked

for an additional sketch of the string when the peaks overlapped but the bases of the

pulses no longer perfectly overlapped.  This question was asked in pre-instruction and

post-instruction diagnostic tests.

Figure 3-8

Two wavepulses are traveling toward each other at a speed

of 10 cm/s on a long spring, as shown in the figure above.

Sketch the shape of the spring at time t = 0.12 sec.  Explain

how you arrived at your answer.

1 cm

Wave superposition question from a diagnostic test given, Fall-1995 semester,

N = 182 students.  Students had no instruction on waves when they took this

diagnostic.

Figure 3-9
(a) No permanent effect (correct) (55%)

Energy analogy: waves

cancel (20%)
(b)

Common responses to diagnostic question from Fall-1995.  (a) Correct response,  (b)

Most common incorrect response.
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Discussion of student difficulties

Our results show that students have difficulties with each of the three areas of

wave superposition investigated in our questions.  As in the other areas of wave

physics, a few student difficulties dominated the responses.  These difficulties did not

change during the course of instruction, but the frequency of their occurrence did.  I

will first discuss student descriptions of permanent effects of wavepulses on one

another.  Then I will describe the superposition of waves whose peaks do not overlap,

and finally I will describe the superposition of waves whose peaks do overlap.

In the F95 pre-instruction diagnostic test, 182 students answered the question

shown in Figure 3-8.  A correct response to the question, given by 55% of the students

(see Figure 3-9(a)), shows that the wavepulses pass through each other with no

Figure 3-10

Two wavepulses are traveling toward each other on a long,

taut string.

a.  Sketch the shape of the string at the moment of
maximum overlap.  Explain.

b.  Sketch the shape of the string a long time after the

moment of maximum overlap.  Explain.

Wave superposition question from a diagnostic test given, Fall-1995 semester,

N = 182 students.  Students had no instruction on waves when they took this

diagnostic.

Figure 3-11

Waves cancel

permanently (43%)
(b)

No permanent effect (correct) (46%)(a)

Common responses to part b of the diagnostic question in  Figure 3-10, Fall-1995.  (a)

Correct response,  (b) Most common incorrect response..  Note that response (b) is

correct for part a of the question in Figure 3-10.
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permanent effect on each other.  One student summarized the most common incorrect

response, given by 20% of the students (shown in Figure 3-9(b)), by saying “[Part of]

the greater wave is canceled by the smaller one.”  A further 8% of the students state

that the wavepulses bounce off each other.

In explanations, students implied that they were thinking of wave interaction as

a collision.  If we imagine two carts of unequal size moving toward each other at the

same speed and colliding in a perfectly inelastic collision (imagine Velcro holding them

together), then the unit of two carts would continue to move in the direction the larger

Figure 3-12

Two wavepulses are traveling toward each other at a

speed of 10 cm/s on a long spring, as shown in the

figure above. Sketch the shape of the spring at time

t = 0.06 sec.  Explain how you arrived at your

answer.
Wave superposition question from pretest given after traditional instruction, Spring-

1996, N= 65.  Students had completed lecture instruction on superposition.

Figure 3-13

(a) Point-by-point addition of

displacement (correct) (5%)

No superposition unless

peaks overlap (40%)
(b)

Addition of peaks

without overlap (20%)
(c)

Common responses to pretest question from Spring-1996.  (a) Correct response,  (b)

common incorrect response,  (c) common incorrect response.  These responses were

given on pretests and in interviews which followed lecture instruction on superposition

and preceded tutorial instruction.
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was originally moving, but at a slower speed.  The size of the pulse, in this situation,

seems to be analogous to the momentum or energy of the pulse.  One student’s

comment (given when answering a similar question in a later semester) supports this

interpretation: “The smaller wave would move to the right, but at a slower speed.”

These students appear to be thinking of wavepulses as objects that collide with each

other or cancel one another out.

Of the 182 students who answered the question on destructive interference in

Figure 3-10 before instruction, 43% had difficulties with the question related to the

ideas of bouncing or canceling waves.  Of the other students, 10% did not answer the

question, and 46% correctly indicated that the wavepulses continue in their original

directions with their original shapes.  The correct response and the most common

incorrect responses are shown in Figure 3-11.  We did not further investigate student

understanding of destructive interference because their difficulties were similar to

(though usually more common than) the difficulties students had with constructive

interference.  Students described the waves canceling out or bouncing off of each other

much like they did with unequal amplitude waves interfering constructively.  We

believe that the students who described the waves bouncing off each other interpreted

the shapes of the waves such that the wavepulses had equal strength or size.  Like in a

perfectly elastic collision between billiard balls, the wavepulses would bounce off one

another, rather than cancel each other out completely and permanently.

When investigating student understanding of superposition when waves overlap

but their peaks do not, we find that many students have a different type of difficulty

than thinking of the waves as colliding.  Very few students were able to answer this

question correctly on the pretest (only 5% sketched Figure 3-13(a)).  Of the students

who said that there was no superposition unless the peaks of the pulses overlapped

(40% of the students sketched Figure 3-13(b)), a common explanation was that “the

waves only add when the amplitudes meet.”

We have found that students giving this explanation use the word “amplitude”

to describe only the point of maximum displacement, and they ignore all other

displaced points in their descriptions.  These students view superposition as the

addition of the maximum displacement point only and not as the addition of

displacement at all locations.

Other students also had difficulty with the process of wave addition.  One-fifth

of them sketched Figure 3-13(c) and stated that the points of maximum displacement

would add even though they weren’t at the same location on the string.  This question

was also asked in an interview setting.  One interviewed student who used the word

“amplitude” incorrectly, as described above, explained, “Because the [bases of the]

waves are on top of each another, the amplitudes add.”  This student uses the base of

the wave (its longitudinal width) rather than the (transverse) displacement of a point on

the wave to guide his reasoning about superposition.

In investigating student difficulties with wave propagation, we found that

students were using more than one explanation to guide their reasoning.  We find

similar results in our investigations of student difficulties with superposition.  One

student who answered the question in Figure 3-12 drew a sketch like the one shown in

Figure 3-13(c).  He explained,
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[the pulses] are both colliding, and as they collide … if two of the same

amplitude were to collide, it would double their amplitude. And so I believe

this amplitude would get higher…  They would just … come together.

This student was using the idea of a collision between waves to explain how the

amplitudes (inappropriately) add up to make a larger wave.  He did not use the

collision analogy to describe the waves canceling each other out, though, and gave the

correct response for the shape of the string after the wavepulses had passed each other.

Rather than showing an explicitly incorrect prediction on his part, his comments give

evidence of the analogies he used to guide his reasoning.  (As previously noted,

students using the collision analogy often state that waves of equal size bounce off each

other and do not cancel out, so their shapes will be the same once the waves have

“passed through each other,” which, in the case of a bounce, they have not done.)

In summary we observe that students have the following difficulties in

understanding the physics of wave superposition:

• Waves are described as if they were solid objects which can collide with

each other, bounce off each other, or permanently affect each other in some

way.

• A wavepulse is described only by its peak point, and no other displaced

parts of the system are superposed.  When peaks do not overlap, the highest

point due to a wave is chosen rather than the sum of displacements due to

each wave.  When the peaks of wavepulses do overlap such that the waves

then add, only the peaks add.

In general, we find that students show difficulty with the concept of locality and

uniqueness of spatial location.  Students describe wavepulses with single points rather

than as extended regions which are displaced from equilibrium, much like they did

when answering the wave-math problem.

Summary of Specific Student Difficulties with Waves

In this chapter, I have described student difficulties with wave physics in the

context of the propagation of mechanical waves on a taut string or spring, the

propagation of sound waves, the mathematics used to describe waves, and

superposition.  In each case, the context has been used to uncover more fundamental

difficulties with wave physics.

From the research into student understanding of wave propagation speed, we

see that students have difficulty differentiating between the manner in which a wave is

created and the manner in which it propagates through a medium.  Many do not

understand the fundamental idea of a wave as a propagating disturbance.  Instead, as is

suggested by the results from student descriptions of sound waves, some students

believe that the wave actually exerts a continuous force in the direction of motion.

Many students seem to have difficulty with the idea of the equilibrium state of a system.

Student difficulties with mathematics indicate that the inability to understand a

wavepulse as a disturbance to the medium plays a role in how students interpret the

mathematics of waves.  Student descriptions of superposition indicate that students also
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have difficulty describing the interaction between two waves and do not think of a

wave as an extended region of displacement from equilibrium.  The concept of a

propagating disturbance, its cause, its effects, and the manner of its interaction with its

surroundings are all difficult for students.

                                               
1
 For example, look at the textbooks by Tipler, Serway, or Halliday and Resnick, where

few problems involve wave phenomena that deal with finite length disturbances from

equilibrium.

2
 Arons, A. B., A Guide to Introductory Physics Teaching (John Wiley & Sons Inc.,

New York NY, 1990). 202-218.

3
 The investigation of student difficulties with the relationship between the creation of

waves and their propagation through the system is similar to the research previously

done by Maurines.  See chapter 2 for a discussion of her findings.

4
 Maurines, L. “Spontaneous reasoning on the propagation of visible mechanical

14:3, 279-293 (1992).

5
 We did not have access to the students’ grades, so we relied on their comments for

this statement.  We have found that students are usually accurate in their knowledge of

their grades and are often more pessimistic than necessary about their future grade.

6
 Our results are consistent with those observed by Linder and Erickson, as described in

chapter 2.  While Linder and Erickson have focused on issues of what students mean by

sound and how they think of the medium, our focus has been on student use of force to

guide their reasoning on this topic.  Many of Linder and Erickson’s interpretations

apply to our observations, as our interpretations also apply to their observations.

7
 In the interview format, we had the opportunity to obtain an explanation from all of

the students.  In the pretests, not all of the students give explanations, but those who

do cite the exponential as the reason for the decay.

8
 This student was among the best in his class, and finished the course with the highest

grade of all students.
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Chapter 4: A Proposed Model of Student Learning

Introduction

One goal of physics education research is to go beyond the discovery and

recitation of difficulties that students have with a specific topic in physics.  By trying to

organize how we see students approaching the material, we have the opportunity to

gain deeper insight into how students come to make sense of the physics they are

taught in our classrooms.  We can then use our organization of student difficulties (and

strengths) to help develop curriculum materials that more effectively address sometimes

subtle and counter-intuitive student needs.  This chapter presents a brief discussion of a

possible organization of student difficulties according to a model of learning that will be

used in chapter 5 to analyze the data presented in chapter 3.

To describe how students learn in our classroom, we need to develop a

meaningful language that lets us describe, organize, and systematically discuss our

observations of student reasoning.
1
  Other fields, generally organized under the name

cognitive studies, can provide a source of understanding and suggest models that help

us make sense of student learning in physics.  Their validity in the physics education

research often lies in the suggestions these models make rather than in their exact

details, but these suggestions can play a profound role in the manner in which we

approach our classrooms.
2
  Those readers less interested in the details of this learning

theory are asked to read the conclusions of this chapter and Table 4-1 for a summary of

the ideas contained in it.

Reasoning Primitives

Consider a simple action that is common and repeated often enough that it is

not even consciously considered, e.g. pushing an object previously at rest across a

surface.  An effort must be exerted to get it moving.  Similarly, when delegating work

to another person, it is often necessary to motivate this person so that the work is

begun.  Though the two situations have little to do with each other, both are examples

of the need for an “actuating agency” to set events (or objects or people) in motion.
2

The actuating agency can be thought of as a reasoning primitive common to many

different settings.

In this sense, a primitive is a common and small logical building block that lets

us describe basic elements of common events in many different situations.  A suitable

analogy can be made to the way physicists and chemists think of the atom.  In many

settings, the atom is the smallest relevant description of nature.  One atom  (the

primitive) can be part of many different types of molecules (the situation).  Of course,

the substructure of the atom is of great interest, but not always relevant to the specific

model one is considering.  In the same way, one can discuss elements of primitives and

how they develop, but the primitive itself is a relevant grain size (as discussed in

chapter 2) for discussion.  We can think of primitives as the building blocks with which
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people build their thinking.
3
  Primitives can help simplify both everyday and physics

reasoning situations.

For example, the common use of actuating agency can help explain some of the

results described in chapter 2.  In Clement’s coin toss problem, students describe

the effort needed to throw the coin in the air and speak of this “force” remaining with

the coin as it rises.  In this description, students use the actuating agency primitive

when talking about the force exerted to set the coin in motion, but additionally assume

that the force stays with the coin after it is released from the hand.  Thus, students

make sense of the physics of the coin toss problem by incorrectly over-applying an

otherwise useful abstract idea that helps simplify our predictions about what happens

when an object should be set in motion.

The most productive and relevant discussion of the use of primitives in physics

has been carried out by diSessa
4,5

 and by Minstrell.
6
  diSessa’s work has focused on

very general reasoning elements used in a variety of situations including physics, such

as the actuating agency described above,
7
 while Minstrell’s work has focused on how

students apply primitives specifically in their reasoning in physics.

Table 4-1

Primitive Definition Example

(mechanics related)

Force as

mover

“A directed impetus acts in a burst on

an object. Result is displacement and/or

speed in the same direction.”

Clement’s coin toss problem as

describe in chapter 2.

Working

harder

“More effort or cues to more effort may

be interpreted as if in an effort to

compensate for more resistance.”

To make a box begin to move

across the floor, a larger force

needs to be exerted than to

keep it moving.

Smaller

objects

naturally go

faster

Larger objects take more effort to

create, see Intrinsic Resistance (to

which it is related).  Also related to

“Bigger is Slower.”

The same impulse delivered to

a small object (coin) as to a

large object (brick) will make

the smaller one travel faster

than the large one.

Intrinsic

Resistance

“Especially heavy or large things resist

motion.”

Heavier boxes are harder to

start moving across a floor (or

lift up) than are lighter boxes.

Ohm’s

p-prim

“An agent or causal impetus acts

through a resistance or interference to

produce a result.  It cues and justifies a

set of proportionalities, such as

‘increased effort or intensity of impetus

leads to more result’; ‘increased

resistance leads to less result.’ These

effects can compensate each other; for

example, increased effort and increased

resistance may leave the result

unchanged.”

The speed of a coin tossed in

the air depends on its mass and

the force exerted on it to throw

it in the air (see Force as

Mover example).
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Table 4-1 (continued)

Primitive Definition Example

(mechanics related)

Dying away “All motion, especially impulsively or

violently caused, gradually dies away.”

A coin tossed in the air slowly

loses speed and stops (related

to an impetus theory, that it has

“used up” the ability to move,

see chapter 2).

Guiding “A determined path directly causes an

object to move along it.”

A ball traveling a circular path

(guided by a wall, for example)

will continue on a curved path

even after the wall is no longer

there (see FCI question…)

Canceling “An influence may be undone by an

opposite influence.”

An object will move after one

kick (see Force as Mover) and

stop after another in the

opposite direction.

Bouncing “An object comes into impingement

with a big or otherwise immobile other

object, and the impinger recoils.”  (see

Overcoming below.)

An small object will bounce off

a large one, or two equal sized

objects will bounce off each

other.

Overcoming “One force or influence overpowers

another”

To get a box moving along a

rough floor, the exerted effort

must be larger than the

resistance of the object (related

to Ohm’s in terms of

competing proportionalities).

Primitives as defined by diSessa in his monograph (see reference 4).  For each

primitive, a general definition is given, and an example (if possible, taken from the

discussion in the chapter) is included.

General Reasoning Primitives

diSessa has developed a description of student use of primitives through

observations of students’ interpretations and generalizations of the everyday

phenomena around them and their use of these interpretations to guide their reasoning

in physics.  Even though he draws his conclusions mainly from extensive investigations

of student difficulties in the field of mechanics, he emphasizes the general nature of

student primitives.

To illustrate how diSessa discusses student use of primitives, let us consider

one example in detail (for a complete list of the primitives discussed in this chapter, see

Table 4-1).  The actuating agency primitive has already been introduced.  A refinement

of this primitive comes when one considers how different objects with different

properties (such as different masses) are to be brought into motion.  Consider two

boxes with different masses resting on the same rough surface.  The goal is to set them
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in motion.  More effort will be needed to move a larger box.  The physics of the

situation is complicated, requiring an understanding of normal forces, friction (both the

threshold nature of the friction force and difference between static and kinetic friction),

and Newton’s Second Law.  A simpler way to think of the situation is to use the

reasoning that “more requires more” (mass and effort, respectively) or “less requires

less.”  In the simple linear reasoning that we often use, it is possible to say that the

larger effort is then proportional to the resistance afforded by the larger mass such that

the two boxes are set in motion in the same fashion.

diSessa refers to the compensatory reasoning based on resistance as the Ohm’s

primitive.  The name comes from the correct physics reasoning found in Ohm’s law,

V = IR.  If voltage changes, the current depends on the resistance of the circuit.  We

often see students use the reasoning “bigger mass requires bigger force” in our

classroom interactions.  This is not necessarily incorrect, but it is often overly

simplistic.  A more refined use of the Ohm’s primitive than the example of setting a box

in motion is the analysis of the acceleration of an object due to a force exerted on it, as

described by Newton’s Second Law, F = ma.  In this case, the net force on the box and

the acceleration of the box after the exerted force is larger than the maximum possible

friction force can be compared.  The effect of the force is not simply motion, as is

implied by the simplistic application of the Ohm’s primitive, but acceleration of the box.

As illustrated by this situation, the use of the Ohm’s primitive may be correct and

appropriate, correct but overly simplistic, or even incorrect.

Student use of the Ohm’s primitive can be seen in other, more difficult settings

that are discussed at the introductory physics level.  In research done at the University

of Washington, students were asked to compare the change in kinetic energy and the

change in momentum of two objects with unequal mass which start from rest and are

moved a fixed distance by a constant force (see Figure 4-1).
8
  A correct answer would

say that the change in kinetic energy was equal for the two but the change in

momentum was unequal.  By the work-energy theorem (Net work equals the change in

kinetic energy, 
  

r 
F •d

r 
r ! = "KE ), both objects are moved the same distance by the same

force, so their change in kinetic energy is the same.  But the same force exerted on the

two objects leads to a different acceleration for the two and the lighter object will have

the force exerted on it for a shorter time.  By the impulse-momentum theorem (i.e. the

definition of force, rewritten as Impulse equals the change in momentum, ptF
vv

"=" ),

the object in motion for less time has a smaller change in momentum.  We often

encounter students who state that both the change in kinetic energy and the change in

momentum should be equal.  In the first case, they state that the mass is higher but the

velocity is less and therefore the kinetic energy, KE = 1/2 mv
2
,
 
is equal for the two

objects.  These students are getting the correct answer while using inexact reasoning

that does not sufficiently analyze the physics.  In the second case, these students again

state that the higher mass and lower velocity compensate each other such that the

change in momentum ( vmp
vv

= ) for the two objects is equal.  Obviously, both cannot

be true since the exponent on the velocity differs in the two equations.  But we see that

students are applying the Ohm’s primitive incorrectly to both questions.  In one case,
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Figure 4-1
F

at rest here
cart was initially

from here
cart glides freely

frictionless table

Two carts, A and B, are initially at rest on a frictionless, horizontal

table.  They move along parallel tracks (only one cart is shown in

the figure above).  The same constant force, F, is exerted on each

cart, in turn, as it travels between the two marks on the table.  The
carts are then allowed to glide freely.  The carts are not identical.

Cart A appears larger than cart B and reaches the second mark

before cart B.

Compare the momentum of cart A to the momentum of cart B

after the carts have passed the second mark.  Explain your

reasoning.

Compare the kinetic energy of cart A to the kinetic energy of cart

B after the carts have passed the second mark.  Explain your

reasoning.

Question asked to compare student understanding of momentum and kinetic energy.  A

correct answer to the first question would state that cart B spent more time being

accelerated by the force, so its change in momentum (from rest) was larger.  A correct

answer to the second question would state that both carts had equal forces exerted

over equal distances, so the change in kinetic energy (from rest) was equal for the two

carts.  Student responses to the question can be interpreted by means of common

discrete reasoning elements, called primitives that students apply inappropriately to the

situation.

though it is not linear, they get the right answer, while in the linear case, they give an

incorrect response.

The Ohm’s primitive involves proportional, compensatory reasoning and

involves the recognition of different elements of the system.  This makes it one of the

more complicated primitives that diSessa describes.  Rather than show how each of the

primitives described by diSessa was developed and how it is used, I will describe those

which will play a role in this dissertation and give examples of student reasoning which

can be interpreted as using these primitives.
9
  The primitives relevant to this dissertation

fall into two categories, those related to force and motion and those related to

collisions between objects.

Force and Motion Primitives

Three primitives effectively describe how students approach reasoning about

force and motion in a way that will be important in later parts of this dissertation.

These are the working harder, smaller is faster, and dying away primitives.
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The working harder primitive describes the “more is more” or “less is less”

element of the Ohm’s primitive.  This primitive describes reasoning where there is a

simple linear relation between different objects and the idea of resistance is not

included.  Examples of the common reasoning using the working harder primitive

include people who work more and get better grades or objects that have larger forces

exerted on them move faster.  This primitive seems very reasonable in some settings

but can be easily misapplied.  Force is proportional to acceleration, not velocity, for

example.

The smaller is faster primitive describes how a small object is more easily made

to go fast than a larger object.  This is closely connected to the bigger is slower

primitive.  (Elephants seem slower than mice, though they usually aren’t.
10

)  This

primitive makes sense, as long as one assumes that  the same force is exerted on the

light and the heavy objects (while again assuming that force is proportional to velocity

and not acceleration).  In terms of common sense reasoning, it is harder to move a

large object than a small object (See chapter 2 for a discussion of common sense

physics related to force and motion.)

Finally, the dying away primitive can be related to our existence in a frictional

world.  Every motion we experience eventually comes to an end.  Many students

generalize this inappropriately to situations such as Clement’s coin toss example, given

in chapter 2, where the dying away primitive plays a role in the impetus theory

explanations given by students.  The force that is “used up” as the coin is thrown into

the air can be thought of as having “died away” in the process.  In this example, we see

how multiple primitives can play a role in the reasoning about a single physical

situation.

Primitives Describing Collision

The collision primitives will also play a role in our descriptions of student

difficulties with wave physics.  These primitives include canceling, bouncing, and

overcoming.

The canceling primitive is directly related to collisions and describes that motion

stops when two objects collide with each other (thus, their motions have been

canceled).  Another example of reasoning using this primitive is the description that a

box that is brought into motion by a force will be stopped by an equivalent force in the

opposite direction.   These forces can then be said to cancel out (even though the actual

physics of the situation is more complex than such a simple description).  This example

illustrates how students applying primitives may ignore various elements of the problem

to come up with a (in this case correct) answer through the use of overly simple

reasoning.

The bouncing primitive describes the common sense reasoning used to describe

a ball hitting a wall, for example.  While ignoring the detailed physics of collisions, one

can use the idea that objects simply bounce off of other objects that are in the way and

immovable.  This same reasoning (the object is in the way) plays a role in some

student’s descriptions of normal forces for objects lying on a surface, though the

element of collisions is missing in the case of normal forces.
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Finally, the overcoming primitive gives a less phenomenological and more

analytical description for the same bouncing phenomena.  For example, the force of the

wall overpowers the force of the ball and sends the ball back from whence it came.

This reasoning is very similar to the impetus theory described in chapter 2 in the sense

that the moving ball has an intrinsic force that is overcome by the larger force of the

wall.  The confusion lies in describing force as an object or quantity specific to an

object rather than the interaction between objects.
11

  (This same confusion seems to

play a role when students use the dying away primitive in Clement’s coin toss problem.)

Incorrect use of the overcoming primitive may be caused by students trying to make

sense of their experiences in the language of the physics classroom rather than the real

world description of the bouncing primitive (where balls just bounce off walls because

that’s what they do).

Facets of Knowledge: Context-Specific Interpretation of Primitives

diSessa is not the only physics education researcher to investigate the usefulness

of using common elements to describe student difficulties with physics.  Minstrell

developed the idea of “facets” to describe the common elements of student reasoning

that he found in his work as a high school teacher in Washington state.
12

  Minstrell’s

facets are similar to diSessa’s primitives in that they describe small observable relevant

pieces of student reasoning.  Minstrell chooses to look at specific observable elements

of student reasoning, which, he states, is only possible by choosing a “grain size” of

reasoning that is small enough to contain general ideas which can be applied in a great

variety of situations.  In the process, he focuses on the student’s reasoning and not the

correct physics  (Compare this to the description of Halloun and Hestenes’s work in

chapter 2.)

As an example of the use of facets when describing student reasoning about

force and motion in the classroom, Minstrell describes a set of facets commonly found

in classroom discussions of the physics of motion (see Table 4-2).  The Goal Facet is

the desired explanation that an instructor would like to see.  The others are examples of

explanations that students give.  The Mental Model Facet gives a broad description that

links together many facets that can be applied incorrectly to a given physical situation.

Note that none of the facets are always incorrect.  Instead, all but the Goal Facet are

often inapplicable in certain situations and are not general enough to be used in all

situations.

Minstrell describes an example of the application of facets in student reasoning

that comes in response to a question describing two students leaning (motionlessly)

against each other, where one student (Sam) is “stronger and heavier” than the other

(Shirley).  Students are asked to compare the forces Sam and Shirley exert on each

other.  Students are offered a series of choices: Sam exerts a greater force, they exert

equal forces on each other, Shirley exerts a greater force, or neither exerts a force on

the other.  The correct answer would be to say that they are exerting equal forces on

each other (by Newton’s third law).  Some students state that Sam is bigger and must

therefore exert a larger force (facets 475 and/or 478), but others state that they are

motionless because Sam is hard to move and Shirley must be pushing, so she exerts a
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larger force.  In a similar question, some students use the facet that “Passive objects

don’t exert forces.”  Thus, since Sam and Shirley are not moving, neither exerts a force

on the other.  Minstrell shows that these types of reasoning are consistently used to

describe forces relating to motionless objects, moving objects, and forces caused by

many different objects such as magnetic, gravitational, or pushing forces.

Student facets can be discussed as applications of diSessa’s primitives to a

specific setting.  The answer stating that Sam is bigger and exerts a larger force is

consistent with the overcoming and the Ohm’s primitives (he has less resistance and

therefore exerts a larger force).  But the idea that Shirley must be pushing harder is also

consistent with the Ohm’s primitive.  Thus, the same primitive can lead to

contradictory facets and answers.  We see that the Ohm’s primitive can be considered

the source primitive for facets 475 through 478 in Table 4-2.

Another example of facets as applications of primitives in a specific setting

comes from the description that Sam and Shirley are exerting no forces because they

are not moving.  This is consistent with the actuating agency primitive, because (in this

primitive) forces only occur when there is motion.

Neither diSessa nor Minstrell discuss how students come to apply specific

primitives in their reasoning, nor do they discuss how students choose and use specific

facets in a given setting.  A variety of questions remain.  How do students choose to

use one or another primitive when answering specific questions about specific physical

situations?  How do their choices manifest themselves in the facets that we observe?

And are students consistent in their use of facets?  These questions play a large role in

the dissertation. In later chapters, I will discuss how students come to choose specific

Table 4-2

470 Goal facet: All interactions involve equal magnitude and

oppositely directed action and reaction forces that are acting

on separate, interacting bodies.

472 Action and reaction forces are equal and opposite forces on

the same object

475 The stronger/firmer/harder object will exert the larger force

476 The object moving the fastest will exert the greater force

477 The more active/energetic object will exert the greater force

478 The bigger/heavier object will exert the larger force

479 Mental Model facet: in an interaction between objects the one

with more of a particular perceptually salient characteristic

will exert the larger force.

Common facets described by Minstrell that relate to collisions between objects.  Note

that the xx0 facet is the “goal facet” that we would like students to have in our

classrooms, while the xx9 facet is the “mental model facet” that is the organizing theme

for incorrect student facets.
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facets in a specific setting.  We find that students can be described as using guiding

analogies in their reasoning as they approach a specific physics setting.  These analogies

help determine which of the many (possibly contradictory) facets which could be

applied to a situation actually are.  This idea will be discussed in more detail in the

section describing mental models, below.

Parallel Data Processing

In some of the examples described above, students could be described as using

more than a single primitive (or facet) in their reasoning.  For example, in Clement’s

coin toss problem, it was possible to describe some students as using both the actuating

agency and dying away primitives.  In order to describe the manner in which multiple

primitives are used by students, we can ask how students connect primitives in their

reasoning.

Consider reading the word APPLE.  To perceive the individual letters in the

word, one can break each letter into its simplest shapes.  This creates a set of vertical,

horizontal, and diagonal lines along with half circles (see Figure 4-2).  Experienced

readers do not read each letter based on its parts and then piece together the word from

its constituent letters.  Instead, the entire word is perceived at the same time.

Researchers have effectively described the process of visual perception of entire words

by focusing on how the individual elements of the words are perceived and interpreted

in connection to each other.
13

  For example, the combination of diagonal lines and a

horizontal line in the right configuration creates an “A.”  The combination of vertical

and three horizontal lines when connected correctly creates an “E.”  By assuming that

the lineshapes are all interpreted and connected to each other at the same time (i.e. in

parallel), one can describe how a finite set of symbols can form a single word.  Because

of the way in which many small elements are connected simultaneously to present one

word to the reader, the theory of perception described in this example is called parallel

data processing, or connectionism.
14

  The latter term is used to emphasize the

connections between different “nodes” of information.  In this section, I will describe

how children’s learning of torque was modeled by using a connectionist model.

Figure 4-2

A P P L E

The word APPLE and the simple line shapes that can be combined to form all the

letters in the word.  According to connectionist theory, as the entire word APPLE is

perceived, each letter is interpreted as the conjunction of different line shapes; all

lineshapes are interpreted at the same time.
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The APPLE example shows how a description in terms of parallel data

processing involves taking individual, basic building blocks of perception and

combining them into much more complicated structures like words.  Most research into

the use of parallel data processing has taken place in perception or linguistics, where

the basic building blocks of perception (or grammar) are possibly quite different from

those in physics.  The purpose of this section is to show that the structure of parallel

data processing can be helpful for understanding how students apply primitives to their

reasoning.

Children investigated for their understanding of balance were asked to describe

whether a set of weights placed a certain distance from a pivot point would balance the

beam on which they hung  (see Figure 4-3).
14

  Pegs were placed at equal distances on

equal-length arms of a balance beam.  Small weights all of equal mass were placed at

different locations on the beam while the beam was held in place.  Subjects were asked

to predict how, if at all, the balance beam would rotate if released.  A correct answer

would explain that the number of weights (proportional to the mass and therefore the

force of gravity at that point) times the distance from the pivot point was the relevant

measure (i.e. the torque is proportional to force and distance by ! = Fd in this simple

situation).  The beam will rotate in the direction of the side of the beam with the largest

torque.

Observations show that children slowly come to realize that the relevant

variables are weight of the object and distance from the pivot point.
15

  Furthermore,

observations show that, over time, children develop four different levels or patterns of

reasoning with which they answer the question of how to balance the beam on which

weights are already hanging.

The first and simplest pattern involves counting the number of weights hanging

from each side of the balance beam.  In the second pattern, children still look for the

number of weights first, but if these are equal, then distance from the pivot is included

in children’s reasoning.  In the third pattern, distance and weight are both always

Figure 4-3

Pivot point

Possible location of weight

Sketch of the torque balance task.  Pegs are located at equal distances along equal-

length arms of a balance beam.  Small equal-sized weights were placed at different

locations on the beam while the beam was held in place.  Subjects were required to

predict how, if at all, the balance beam would rotate if released.
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considered, but with a special emphasis on equality.  If one is equal, the other

determines imbalance.  If both weight and distance are greater for one side, the child

states that side will drop.  If one side has greater weight and the other has greater

distance, the child using this model is unable to resolve the inconsistency.  Finally, in

the fourth pattern of reasoning, children learn to make a full explanation based on the

sum of the products of weight and distance.  Here, students are using both the weight

and the distance from the pivot point in their reasoning.  Evidence shows that children

progress through these four patterns of reasoning as they gain experience, and that

even college students are unable to consistently use the fourth pattern at all times in

their reasoning.
16

In describing the four patterns of reasoning that students use, the working

harder primitive was applied in two different fashions to lead to two facets that the

subjects appear to use in their reasoning.  The weight facet seems to involve counting

how many weights are being hung from each end of the balance beam.  In the first

pattern, if there is more weight, the balance beam will tilt in that direction.  The

distance facet involves the simple operational measurement of distance from the pivot

point.  In the second pattern, if the weights are equal but the distances from the pivot

are unequal, the balance beam will tilt in that direction.  In the second pattern, the

distance facet is less important and its use dependent on an inability to apply the weight

facet.  In the third pattern, students use a refined version of the second model.  Now,

the distance facet is isomorphic in its reasoning utility with the weight facet.  Balance is

determined by a combination of the two, but without a refined description of what

happens if they vary covariationally (i.e. one variable goes up while the other goes

down).  In the fourth pattern, the two facets are linked together to create a quantity

(torque) which determines balance.  One can describe the students using the fourth

pattern as applying the Ohm’s primitive, since they are now able to reason with three

variables, two of which compensate for each other covariationally.  Only when the two

facets are correctly linked together is the concept of torque fully operationally

understood.

Further research into student understanding of the physics of this situation has

shown that students more easily answer the question (i.e. use a better model) when the

weights or distances are very distinct, rather than nearly equal to each other.
17

  When

the weights or distances are distinct, it is possible to use only one facet to guide one’s

reasoning to the correct answer.  This suggests that it is more difficult to use two facets

at the same time than one.

Patterns of Association, Guiding Analogies, and Mental Models

In the previous sections, specific student difficulties were described as

inappropriate applications of sometimes useful facets of knowledge or reasoning

primitives. Primitives are too general, though, to be of much use by themselves.  They

are too general and can lead to contradictory responses.  The organizational structure

of primitives seems critical when we discuss how students make sense of the physics

through the use of primitives.  We use the idea of a “guiding executive” that guides

students to use and interpret particular primitives in particular ways to particular
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situations.  In general, we refer to this guiding executive as a pattern of association, or

a mental model when it is highly structured, complex, and coherent.

When students consistently use a set of primitives inappropriately in a given

setting, we can say that they have a pattern of association with which they approach the

physics.  The term is used to describe the semi-structured manner in which students

bring a large body of knowledge to a situation.  Some of this knowledge is applicable,

while other pieces of what the student believes may be problematic.
18

  Where primitives

are single, individual, prototypical units of reasoning, a pattern of association can be

thought of as a linked web of primitives and facets associated with a topic.  Note,

though, that analyzing student responses in terms of patterns of association can be

helpful in trying to make sense of what we observe but does not imply that students

have a specific fixed model in mind when they approach a situation.  Patterns of

association are more fluid and less precise than a physical model.

The term “model” has very specific meaning in physics.  Patterns of association

and even mental models are not physical models.  They have certain traits that possibly

make them problematic when used by students.  Student patterns of association are

often incomplete, self-contradictory, and inconsistent with experimental data.  Based on

the description of patterns of association as linked sets of primitives which students

often use incorrectly, this should be no surprise.  Note that incompleteness, self-

contradiction, and inconsistency are possible traits of physical models, too.  We may

refer to an accepted physical model, determined through theoretical and experimental

work and the agreement of the research community to be valid in certain physical

realms with certain limitations, as a Community Consensus Model (CM).  For example,

the model of waves that we present to students in the introductory level is only the

linear model, which is technically incomplete and sometimes inconsistent with the

experimental data.  Furthermore, the simple linear model of waves is sometimes not

self-consistent.  For example, as described in chapter 2, two superposing waves may

create a situation that violates the small angle approximation in some part of the

medium.  But, a trained physicist is able to know the limits of the given CM, while

students usually do not know the limits of validity of a given pattern of association.

Due to the accepted and understood limitations of the CM of waves, we can

describe it as a mental model.  Physicists agree on certain common elements to the

model and are aware of shortcomings of the model, but use it to guide their general

reasoning about a large number of wave phenomena.  The terminology represents the

distinction between the accepted and understood limitations of a mental model (as a

reasonably complex, coherent, but partially contradictory model) and the looser form of

a pattern of association.

Analyzing student reasoning in terms of patterns of association can be highly

productive in trying to make sense of student reasoning about advanced topics in

physics.  In a paper which organizes research into student difficulties with light and

optics, Igal Galili uses patterns of association to describe how students develop their

understanding.
19

  The paper builds on previous investigations of student understanding

of light and optics, many of which have been used to develop curriculum designed to

help students overcome their difficulties.
20
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Galili goes beyond a description of student difficulties and tries to explain the

cognitive structure of student thinking in order to better develop curriculum that can

address student needs.  A comparison can be made to the way in which Halloun and

Hestenes go beyond Clement’s investigations, as described in chapter 2.  A difference,

as will be pointed out, is that Galili focuses on students’ responses and does not

categorize students according to the correct model.  As Galili says, “Students’ views

are certainly organized.  However, their organization is different from that employed in

scientific knowledge.”  He cites Minstrell’s facets as basic building blocks of

knowledge, and writes, “clusters of facets, connected by causal links, are ... appropriate

to describe mental images and represent operational models.”  As an example, Galili

discusses three conceptual topics: understanding of light sources, image formation by a

converging lens, and image formation by a plane mirror.  In each case, he distinguishes

between the

• naïve (pre-instructional),

• novice (post-instructional), and

• appropriate formal (or community consensus)

facets of knowledge.  The novice facet of knowledge in each case is a hybrid between

the naïve and the formal facet.

In the case of conceptual understanding of light sources, the naïve facet of

knowledge is the “static light model.”  Some students, previous research has shown,

believe that light fills space, i.e. like a gas filling a room.  Researchers often find that

after instruction students state that light emanates only in radial directions from the

light source, with a preferred direction being toward the observer.  (Galili calls this the

“flashlight model.”)  This novice facet seems to be a hybrid between the naïve view and

the formal facet, which states that light emanates in all directions from all sources.  As

Galili points out, the “flashlight model” can be the source of many reported student

difficulties in unique settings (such as pinholes, lenses, mirrors, etc.) and more

advanced settings.
20

In the case of conceptual understanding of real image formation by a

converging lens, Galili describes the difference between what he calls the holistic

(naïve), the image projection (novice), and the point-to-point mapping (formal) facets

of knowledge.  In the naïve conceptualization of image formation, the full image moves

to the lens, is inverted by the lens, and moves to the screen, where it can be seen.
21

  The

novice facet of knowledge is a modified version of the naïve facet, containing the idea

of a light ray but with the idea of unique rays which are more important than others.

Furthermore, Galili states, in this facet “each ray carries structural information about

the point of origin,” meaning that physical significance is attached to each ray in a way

that is inconsistent with the formal, point-to-point mapping of object to image.  In the

formal facet of knowledge, light flux emerges in all directions from all points of the

object.  Some light rays interact with the lens and converge to an image point of each

individual point.  The role of the screen is not to create the image but to scatter light in

all directions for observers who are not in the region where light diverging from the

image source would reach them.

In the case of image formation from a plane mirror, Galili again describes

holistic (naïve), image projection (novice), and point-to-point mapping (formal) facets
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of knowledge.  Students using the naïve view state that the image of the object is “on

the mirror,” where it can then be observed.  Galili describes two versions of the novice

image projection conceptualization.  In the first, light rays move first to the mirror in

the shortest possible path, and then reflect to the observer.  This reasoning violates the

law of reflection (angle of incidence equals angle of reflection for a light ray).  In the

second novice conceptualization, the law of reflection is used correctly but students still

use only single, specific, individual rays to show where the image is.  They do not think

of light emanating from all points of the source in all directions, a concept which is part

of the formal conceptualization.  Again, the novice facet of knowledge seems to be a

mixture of the naïve and the formal conceptualization.

Table 4-3 summarizes Galili’s description of the different patterns of association

held by students.  Using the language we have introduced, the formal pattern of

association can also be referred to as the community consensus model.  Research has

shown that the novice mental model is often the one with which our students leave our

courses.
20

  Students use light rays, but rarely consider a full set of them.
22

  Students

describe the laws of reflection and refraction correctly, but only use special rays in their

reasoning.  This leads to difficulties where students believe that blocking one of the

special rays leads to an incomplete image being formed.
19

  Also, a screen is necessary

for images to be observed (even in an area where the light which forms the image can

be observed), since image formation and image observation are two distinct things in

the novice model.

Galili also discusses how the hybrid model might come into being due to

classroom instruction.  He describes possible conceptual change where students move

from a naïve, holistic mental model to the image projection mental model by “the

transformation of certain naïve facets of knowledge into other facets which often

implement the [image projection mental model].”  The idea of conceptual change will

be discussed in more detail below.

Certain issues and questions remain.  Galili describes three different primitives

(facets) that students use in the three patterns of association, but seems to assume that

students can be described by a single pattern of association at any given time in their

learning.  Galili does not discuss the possibility that students might use facets

Table 4-3

Pattern of

Association

Physical Topic:

Naïve Novice Formal

Understanding of

Light Sources

Static light

fills space

Special

Flashlight rays

Light emanates

in all directions

What a Lens Acts

on to Create an

Image

Full images

that travel

through space

Special rays

with physical

significance

All rays (some

then form an

image)

What a Mirror

Acts on to Create

an Image

Full image

(located on

the mirror)

Special rays, not

necessarily with

law of reflection

All rays (some

then form an

image)

Galili’s description of the facets students use in three different patterns of association.
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inconsistently in different physical situations.  Students might have more than one

association pattern for a situation and they might use different patterns of association

depending on which pattern the question brought up in the student.  In such a situation,

each association pattern might act as a guideline for student reasoning but not lead to

firm rules of use.  The pattern of association would act as a guiding executive in

helping students choose which primitives to apply to a situation.  I will discuss this idea

of patterns of association as guiding executives of student reasoning later in the

dissertation.

Models of Conceptual Change

A fundamental goal of education is to change the way that students look at the

world around them.  Previous research has shown that students do not enter our

classrooms as blank slates, but that they bring a body of knowledge to the lecture halls

and classrooms in which we teach them.  In the previous section, students after

instruction were described as possibly having a hybrid novice pattern of association

containing aspects of both the naïve and the community consensus (or formal) model.

For those students who are using the novice pattern of association, both the naïve

pattern of association and the formal mental model seem to contain reasonable and

useful elements.  In a teaching situation, one can create a situation where students

might apply the naïve pattern of association while also being aware of the formal and

correct response.  Thus, a situation of “cognitive conflict” may arise in the student

though an awareness of the inconsistency of one’s own beliefs.  This provides an

opportunity to help the student determine whether the elements of the naïve reasoning

are valid in a given situation.

To describe the process by which students change their ideas about the world

around them, we need a description that accounts for the development of student

understanding.  Such a model, referred to as the Conceptual Change Model (CCM) has

been proposed and developed by Hewson and others.
23!26 

 As stated by Demastes et

al.,
26

 the process by which a student’s conceptual model changes can be described in

two different fashions.  In the first type of conceptual change, a gradual change can

occur, where “competing conceptions remain but eventually only one is consistently

applied by the learner.”  Also possible are wholesale changes, which are not

evolutionary in nature but instead can be described as complete, relatively sudden

changes.  The distinctions between gradual and wholesale change of knowledge play a

fundamental role in this dissertation.
27

Hewson and Hennessey have used the CCM to investigate student

understanding of force and motion.  The task involved a book placed on a table.

Students in sixth grade were asked to choose which free-body diagram from a set of

offered responses best represented the book.  They were then asked to justify their

response with both written and verbal explanations.  The paper details how the

understanding of a single student, Alma, changed during instruction.

Alma began the semester by stating that only a downward force was needed to

keep the book on the table.  She spoke of how her response was consistent with other

responses she had given, and how the response was useful in her reasoning.  Thus, her
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original conception was satisfactory to her needs.  But, the authors point out, she was

not very committed to it.  In other words, though she gave an incorrect response, she

did not explain in detail how she arrived at the response.

At the midpoint of the semester, Alma says, “My theory has definitely

changed... I think that there are equal forces... because the book isn’t moving… The

two forces are equal.”  She has obviously changed her conception of forces from one in

which a single force is required to hold the book down to one in which equal forces

keep the book from accelerating from its present resting state (though she does not use

these terms).  She adds “I can now see why I picked [the previous answer], and I don’t

really believe this reason anymore.”  Alma has left a previous conception behind and

has shifted into a new understanding of force and motion.

By the end of the semester, Alma has not only correctly described the forces on

a book at rest, but she has been able to describe the need for these forces.  Hewson and

Hennessey refer to the process by which her ability to justify and explain the need for

her response as “conceptual capture.”  To her conception of force, she added the idea

that the table must be exerting an upward force.  In her own words, she now believes

that the table can exert a force (something she did not believe at the beginning of the

semester).

We can describe Alma’s learning during the semester in terms of facets and

patterns of association.  Alma’s description matches difficulties that Minstrell has

described.
28

  In terms of the primitives that Alma uses, only one is needed at first.

Gravity pulls down.  She seems to be using the primitive (actuating agency) that only

moving objects exert forces (i.e. the table is not exerting a force on the book).  As the

semester progresses, she learns to think not in terms of motion alone, but in terms of

sums of forces.  While dropping the actuating agency primitive, she must now account

for the book not moving.  To do so, she seems to add another facet to her reasoning:

the table can exert a force on the book.  Thus, the at-rest condition of the book can

now be described by the link between two facets, and her association pattern of motion

has changed from a simple to a more complex one.  In terms of the use of multiple

facets that must be linked together for a complete understanding of the physics, Alma’s

learning is similar to the development of children’s learning about torque and the

balance beam, as described above in the section on parallel data processing.

Demastes et al.
26

 have pointed out that students in biology do not necessarily

switch conceptions (or patterns of association, or mental models) in a wholesale

fashion.  Instead, Demastes et al. expand Hewson’s description to say that students can

go through different patterns of conceptual change which they describe as, “(a)

cascade, (b) wholesale, (c) incremental, and (d) dual constructions.”  Since their paper

does not deal with physics, I will not emphasize details here, but I will summarize their

most interesting findings.  They point out that “students are often not as logical or

exclusive in their cognitive restructuring as researchers assume.” Demastes et al. state

that students do not necessarily rebuild or exchange their conceptual understanding

when confronted with evidence that shows that their previous understanding is

incorrect or insufficient.  Instead, students may build a completely new and separate

conceptual model that accounts for the new observations.  The authors give an example
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where students have dual, conflicting conceptions, are aware of the conflict, and still

say, “I have no problem with that.”

The CCM, as described by Hewson and others and expanded by Demastes et

al., describes how students come to develop an understanding of class content.  The

model provides insight into events that happen within our students in our classrooms,

and it provides predictions about student performance in our research.  As illustrated in

the research by Hewson and Hennessey, the CCM model is consistent with the idea that

a shift in student understanding involves a change in the patterns of association used by

students to describe a physical situation.  Furthermore, the shift seems to function at

the level of new primitives being introduced to the association pattern.  But, as pointed

out by Demastes et al., we should not expect our students to completely change their

conception of a physical situation.  They may be learning the material while still holding

on to their previous beliefs about the applicability of specific facets of knowledge to

settings outside of our classrooms.

Summary

In this chapter, I have described a description of student understanding and a

model that may be used to describe student learning of physics.  This model has been

developed to serve as a productive simplification of the different elements of student

reasoning that occur in the classroom.

We have chosen to describe student reasoning in terms of basic logical elements

that are common to many areas of reasoning, not just physics.  These reasoning

elements are helpful in making sense of the world around us and are applicable in many

different situations.  For example, the notion that it takes effort to bring an object into

motion is similar to the idea that it takes effort to motivate a lazy person.  For both

phenomena, an actuating agency is needed to cause a movement from rest.  We refer to

logical building blocks like the actuating agency as primitives.  Primitives can be

applied to a specific context in a variety of ways, so that the same primitive may lead to

different interpretations of the situation.  We refer to each such interpretation of a

primitive in a context as a facet of knowledge.  It is possible to have a single primitive

lead to different and contradictory facets.

Students seem to use a variety of primitives (and facets) in connection with

each other to describe certain sets of phenomena.  We call these systems of primitives

(or facets) patterns of association, or , when they are coherent and consistent, mental

models.  Often, students are guided in their choice of facets by the association patterns

that they already have of what are deemed similar situations.  Patterns of association

can effectively describe analogies that students use to guide their reasoning.  Thus, a

researcher can use the idea of a pattern of association in two ways.  In the first, a

pattern of association describes the incomplete and possibly inconsistent knowledge

that students bring to a physics problem in terms of the facets applied in their

reasoning.  In the second, it describes the knowledge that they believe should apply to

the situation, and this knowledge they use as a guiding analogy to help guide their

choice of facets in their solution of the problem.
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In the context of student use of patterns of association and mental models, it is

possible to describe student learning in terms of the facets that students use to guide

their reasoning at different points of instruction.  Students may re-interpret old

primitives, learn new facets, or stop using certain primitives when they no longer apply

to the physical situation.  Also, depending on the domain size of analysis with which

one approaches student difficulties with the physics, one can say that an individual

student may use multiple patterns of association or mental models simultaneously.  This

can be interpreted at the level of facets, where students have different, non-overlapping

sets of facets, and at the level of mental models, where students use different guiding

analogies to develop their understanding of a given situation.
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Chapter 5: The Particle Pulses Mental Model

Introduction

In chapter 3, I describe specific student difficulties with physics in the context

of waves.  These topics included:

• a failure to distinguish between a disturbance to a medium and the manner

of the propagation of the disturbance in the  medium through which it

travels,

• the inability to consistently describe the condition of an equilibrium state of

the medium,

• the interpretation of the mathematics of waves in overly simplified terms

that often show no functional dependence on variables that describe changes

in both space and time, and

• the failure to adequately describe the interaction between two waves both as

they meet and after they have met.

In each topic of investigation, the specific difficulties are indicative of more

fundamental questions, such as how students understand and make sense of physics.  In

this chapter, I will use the context of student difficulties with wave physics to propose a

model with which we can organize the observed student difficulties.

Although I have described student difficulties with wave physics on a topic by

topic basis, there are certain similarities in student reasoning we can use in each case.

In chapter 4, I described a model of learning that helps describe and organize the

difficulties we see students having.  This model is built from the idea that students use

basic reasoning elements called primitives that are reasonable in one context but may be

applied inappropriately or incompletely in another.  We can describe a set of primitives

and the rules that tell students when to use them as a pattern of associations that guides

student reasoning in unfamiliar situations.  A pattern of associations is possibly

incomplete, incoherent, and self-contradictory, and serves as an example of the type of

guiding structure that students might have when dealing with unfamiliar material.

When a pattern of association has a reasonable level of completeness and coherence,

we can refer to it as a mental model.  Our analysis of the manner in which students

organize primitives into patterns of association can help us understand the manner in

which student beliefs about wave physics change over the course of instruction.  This

can serve as an example of how students come to make sense of physics in general, not

just wave physics.

In the first part of this chapter, I discuss the common primitives that students

use when describing wave physics.  I introduce a new primitive not previously

described in the literature, the object as point primitive.  As with other primitives, it is

often useful and helpful in simplifying reasoning in some areas, but problematic when

misapplied in wave physics.  Then, I summarize extensive interviews with four students

who answered questions on a large number of wave physics topics.  The interviews

illustrate how certain primitives are regularly but incorrectly applied to wave physics.
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Research results have been gathered using techniques and investigations previously

described in chapters 2 and 3.

In the second part of the chapter, I use student responses to describe the idea of

a pattern of association that we refer to as the Particle Pulses Pattern of Association

(which will be loosely referred to as the Particle Model or PM of waves).  This pattern

of associations describes the analogies that students use to guide their use of the

specific primitives.  In the second part of this chapter, I will discuss how the PM is used

by students to guide their reasoning.  In this case, the PM has not so much predictive as

productive powers, helping the student choose which primitive (or facet) to apply to a

given situation.  I will also compare how students use the PM in comparison to

reasoning based on the correct model of wave physics, as described in chapter 2.

Some of the interview or examination quotes have been given in the previous

chapter but will be repeated here for further discussion.  In some interviews, we see

that students use more than one guiding analogy in their reasoning.  This is consistent

with the results described in chapter 3, where we saw students using more than one

form of reasoning to describe a single physical situation.

Student Use of Primitives in Wave Physics

In chapter 4, I discuss a variety of primitives that have been studied mostly in

connection to student reasoning in mechanics.  In this section, I describe the common

primitives used by students who show difficulties with wave physics.  In addition to

those primitives describe in chapter 4, we find that in their reasoning about wave

physics, students seems to use at least one additional primitive not previously included

in the literature.  First, I use results from chapter 3 to illustrate student use of the

“object as point” primitive.  Then, I give a more detailed discussion of other commonly

occurring primitives in the context of interviews with four students who had difficulties

with many of the topics described in chapter 3.

The object as point primitive

The object as point primitive (henceforth called the point primitive) is based on

observations of student descriptions of waves, but has a more general applicability.

The point primitive plays a central role in this dissertation, being the focus of the mental

model which I will describe later in the chapter.  Before more rigorously defining the

point primitive, I will motivate why we believe it exists by quoting from interviews used

in the previous chapter.

In interviews in which students described their understanding of the

mathematics which describe waves (what I have called the wave-math problem),

students were presented with equation 5-1 in a situation in which they were asked to

describe the shape of a propagating wave.
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We observed students’ inabilities to properly describe the variables in the

equation.  Most notably, students could not adequately describe and use the variables x
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and y.  Most students who sketched a pulse whose amplitude had decreased gave the

explanation that the exponent value would decrease as the value of x increased.  They

were using the variable x to describe the location of the peak (originally at x = 0), and

then were interpreting the variable y to describe the peak amplitude of the wave, not

the displacement of the string at all points.  Many students were effectively interpreting

the entire wavepulse, an extended region of displacement from equilibrium, as a single

point.

Student use of the point primitive when answering the wave-math problem

shows how a primitive that may seem appropriate is actually inappropriate when

applied to a particular situation.  First, student descriptions of decreasing amplitude are

consistent with their observations of wavepulses whose amplitude decreases due to

friction with the floor while propagating on springs on the floor, as shown during

demonstrations in the classroom.  When working with students on this material in the

classroom, I have had some students state that the mathematics should be consistent

with their observations (though we find that many students are unable to operationally

carry out this general principle).  The correct application of the deep principle that the

mathematics and physics should be consistent (which we should encourage students to

develop) may lead to student difficulties in this situation.  Thus, the interpretation

students use is strengthened by the fact that they consider the result to be obvious, i.e.

consistent with their observations.

Second, students do not describe the possible physical reasons for the decreased

amplitude in their explanations.  Instead, they often cite the equation and the effect of a

change in x on the exponent.  Students fit the mathematics to the situation they observe

by using the archetypal example based on a classroom demonstration, and in the

process, they give (nonphysics) explanations which incorrectly use the mathematics.

We observe that students are trying to interpret the equation and make sense of the

equation (again, a skill which we should encourage them to develop), but that they

have difficulties knowing how to make sense of the mathematics.

Evidence from other areas of wave physics show that students seem to be

applying this primitive to more than the wave-math problem.  In wave superposition

questions, students who were asked to sketch the shape of the string when two

asymmetric wavepulses partially overlapped often sketched the shape of each individual

pulse without adding displacements at the appropriate points.  (See, for example,

Figure 4-13c).  Those students again appeared to be simplifying an extended region of

displacement down to one point.  Students often use of the word “amplitude” to

describe this point.  A student who drew a sketch like the one in Figure 4-13c

explained, “The waves only add when the amplitudes meet.”  Unless the two points of

the wavepulses which the student considers relevant overlap, these students assume

there is no summation of displacements (superposition) in the region where the

wavepulses do overlap.  Interviewed students who gave an explanation like the one just

described merely asserted that the shape was just as they had sketched it.  They were

unable to give a more detailed explanation, other than to say that there was no addition

until the peaks overlapped.  When asked about the other displaced regions, students

often had no explanation as to how they would interact.  Many students often are

unable to explain through more than an assertion.  It seemed that the assertion itself
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was sufficient as an explanation for these students.  This “non-dissociability” of an

explanation is a common characteristic of cognitive primitives.
1

We also see an application of the simplification of a wavepulse to a single point

in student descriptions of how to change wave propagation speed.  A more detailed

description of student explanations for changes to wave propagation speed will be

given below.  At this point, it is sufficient to say that students seem to make an analogy

between the wavepulse and an object like a ball.  By thinking of the wavepulse as a

single point, students can apply ideas to wave propagation based on analogies to the

motion of a point particle.  Furthermore, a student who states “You flick [your hand]

harder...you put a greater force in your hand, so it goes faster,” gives an example of the

heuristic principle which states that students will use simple body motions as part of

their explanations.  In interviews, students often make the hand motion of flicking their

wrist up and down slowly to describe slow pulses and quickly to describe fast pulses.

They use their body to help describe the base vocabulary of their reasoning, again

consistent with diSessa’s heuristic principles.

Another example of student simplification of waves to single points comes from

the research into student understanding of sound waves.  In the interview quoted at

length in chapter 3, Alex described the sound wave as exerting a force on the particle.

He sketched the wave as a series of pulses and described the pulse exerting a force on

the dust particle as a “kick” or a “hit.”  During the interview, he had simplified the

repeating sinusoidal wave to a succession of pulses, and then described each pulse as a

point which could exert a force, kick, or hit the dust particle which it encountered in

only one direction.

The point primitive is characterized by the description of a large, global object

or wave in terms of a single point. In the case of wave physics, it seems to function as

an interface between the shape of a wave (in some given or assumed representation)

and the manner in which the wave can be influenced or influences its surroundings.  We

have frequently encountered the point primitive in student responses to questions in all

areas of wave physics investigated for this dissertation.

Beyond the difficulties discussed in chapter 3, we have found additional

evidence of its use in student descriptions of wave reflection.  Students drawing a

wavepulse on a string attached to a wall state that the wavepulse will not be reflected

until the peak of the pulse has reached the wall.  These students have difficulties in

deciding on the shape of the string or pulse when the front of the wavepulse has

reached the wall but the peak hasn’t; they want to preserve pulse shape, but they also

know that the string remains attached at all times.

The point primitive is not necessarily problematic.  Instead, it is a perfectly

reasonable and useful reasoning method when quickly analyzing certain physics

problems.  For example, when solving simple trajectory problems in Newtonian

physics, the community consensus is to immediately simplify the object traveling along

the trajectory to a point particle.  Especially in situations where the rotation of an

object is unimportant and there are no collisions, we treat the center of mass as this

point, and ignore all other points.  The analysis by which the point primitive is applied

to the rigid body can be quite complicated.  Finding the center of mass of a non-

symmetric body involves complex integration and is today typically only briefly
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discussed in upper-division graduate mechanics or advanced engineering courses.
2
  The

source of difficulties in the use of the point primitive lies in how it is used in wave

physics, not to its existence in the student’s repertoire of reasoning tricks.

Common primitives in wave physics

Rather than again describing each of diSessa's primitives (see chapter 4) as they

apply to wave physics, I describe how they are used in the context of four student's

difficulties.  Table 5-1 gives a summary of the primitives used by each student.  Table

5-2 gives a brief description of each of the primitives first described in chapter 4 and

the wave physics topics in which students applied it.  (Note that Table 5-2 has been

split into three sections due to its size.)  For Table 5-1, some categories of Table 5-2

have been combined into one due to their similar nature in the context of waves.  The

reader is asked to refer to these tables during the discussion below.

In S96, we carried out a set of pretest interviews with four students over the

course of several weeks.  Each week, students were interviewed about their responses

to questions asked on the pretest given in preparation for that week’s tutorial.
3
  Five

weeks of interviews were carried out, where three addressed issues discussed in this

dissertation.  The four students were asked to answer the pretest questions while an

interviewer probed their responses and investigated whether their written and interview

comments were similar.  Certain issues were probed more deeply during the interview

than had been possible in the pretest.

In S97, 20 students from two different instructional settings participated in a

diagnostic interview.  Fifteen students had participated in early versions of tutorials

designed to address student difficulties with wave physics.  Five students participated

after traditional instruction in a class with recitations.  Most of the 20 students

answered 18 questions which dealt with wave propagation speed, superposition, the

physics of sound, wave reflection, and wave mathematics.  Two subjects, wave

propagation and wave mathematics, were investigated with both FR and MCMR

questions.  The sound question was asked in MCMR format only.  A copy of the final

version of the S97 interview diagnostic test is given in Appendix D-1.  It is discussed in

more detail in chapter 7.

Table 5-1

Students

Primitives

Ford David Kyle Ted

Object as point X X X X

Force and Motion (Ohm's,

actuating agency, smaller is

faster, working harder)

X X X X

Collision (bouncing, Canceling,

overcoming)
X X X X

Dying away (possible inter-

pretation of point primitive)
X

Guiding X X

Brief summary of primitives used by students.  For a more complete description of

each primitive, see Table 4-1, chapter 4.
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Not all students answered all questions for a variety of reasons.  Due to time

limitations, some students did not finish the diagnostic test.  Also, during the course of

the interviews, I made changes in the protocol based on student feedback and

responses.  Therefore, during the course of the 20 interviews, some questions were

rephrased, some dropped, others added.  The development of a diagnostic test to

investigate student understanding of wave physics will be described in more detail in

chapter 7.

Table 5-2a)

Primitive Definition (wave physics specific) Context (specific wave topic)

Object as

point

An object (i.e. a wavepulse) is

characterized by a single point (e.g.

of maximum displacement from

equilibrium); a large object is

simplified by referring to just one

piece of it, like the C of M …

propagation speed:

ball-toss analogy

superposition:

a) no peak addition

b) “global” addition

mathematics

a) x as peak location

b) plugging in x0 for eqn.

Sound

wave=pulse=point (exerts force)

Table 5-2b)

Collision Primitives

Primitive Definition (wave physics specific) Context (specific wave topic)

canceling A wave can be permanently

cancelled by another wave (see

dying away for opposing forces).

propagation speed: none

superposition:

rules for partial cancellation of

pulses

mathematics none

sound none

bouncing A wave (as an entire unit rather than

a region of displaced elements of the

medium) will hit another wave and

bounce off it.

propagation speed: none

superposition:

rules for partial cancellation of

pulses

mathematics none

sound none

overcoming Two competing forces (i.e. waves)

will interact such that one

overpowers the other (see Canceling

but for unequal amplitude waves).

propagation speed: none

superposition:

rules for partial cancellation of

pulses

mathematics none

sound none
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Table 5-2c)

Force and Motion Primitives

Primitive Definition (wave physics specific) Context (specific wave topic)

Actuating

Agency

A directed impetus (force) on the

medium causes a displacement of the

medium and/or a wave speed in the

direction of the impetus.

propagation speed:

more force into wave = faster

superposition: none

mathematics none

sound

force on medium in propagation

direction

Ohm’s

primitive

An agent or impetus (force) causes an

action whose effect depends on the

resistance of the medium or the effort

of the agent (i.e. strength of the force).

Effort and resistance are in a covariant

relationship with each other.

Propagation speed:

bigger pulse feels resistance and

is slow, so wave needs greater

force to go faster

superposition:

rules for superposition

cancellation

mathematics none

sound

increased loudness evens out with

decreased frequency.

Working

harder

The mechanism by which the Ohm's

primitive plays a role in the actuating

agency primitive, i.e. to make pulse go

faster, you have to put more effort into

it (hence, larger pulses took more

effort to create, and will move faster).

propagation speed:

bigger pulse needs more force

superposition:

bigger pulse has bigger force

mathematics none

sound

force increases with volume

Smaller

objects

naturally

go faster

Larger waves take more effort to

create because there is more resistance

to their creation; i.e. smaller “quicker”

pulses are faster since less force is

used to overcome the resistance of the

medium.

propagation speed:

tinier, tighter pulses go faster

superposition: none

mathematics none

sound

high f waves move faster

Dying

away

The motion of the wave must

eventually die away, i.e. the amplitude

of the wave decreases not due to

physical reasons but due to

unscientific observations.  By taking

away the internal "force" from an

object, it loses some of its amplitude.

propagation speed: none

superposition:

partial cancellation of pulses

mathematics

x increases, y decreases,

and pulse shrinks

sound none

Guiding A piece of the medium must move

along the track determined by the

wave, like the dust particle moving on

a sinusoidal path.

propagation speed: none

superposition:

partial cancellation of pulses

mathematics none

sound none

Common primitives and their use in wave physics.
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We found that some students had consistent difficulties across a broad range of

wave physics topics.  Many of the tutorial students did quite well on the diagnostic,

indicating the effectiveness of the specially designed curriculum.  (These results will be

discussed in more detail in chapter 6.)  Those students who had not participated in

tutorials showed more profound difficulties.

By looking at how the students who performed poorly answered questions in

each topic, we find suggestions that they are using a common set of primitives in

conjunction with each other.  Three students, “David,” “Kyle,” and “Ted,” stand out as

having similar difficulties on many of the topics in the S97 diagnostic test.
4
  One

student, “Ford,” stands out on the S96 pretest interviews.  David and Kyle had

completed tutorials on wave physics roughly two months prior to the interviews.  Ted

did not participate in any tutorial instruction.  Ford had not yet participated in tutorials

at the time of the interview.

Ford

In the S96 interviews, Ford showed difficulties with the topics of wave

propagation and superposition.  He had no difficulty with the wave-math pretest.

Ford’s most interesting comments came while describing how to change wave

propagation speed and while describing the collision of overlapping, superposing

pulses.  We began the interview by asking him how to create a single wavepulse on a

taut string.  He described a quick up and down hand motion and described the force

needed to create the wave, an indication of the actuating agency primitive.  When

asked how to change the speed of a wavepulse, Ford responded (Ford’s comments are

indicated with “F,” the interviewer’s with “I”):

F:  There are two scenarios that I have to think about, and since you want

me to say right now... I’d send a quicker one (He draws a much smaller

pulse, both in width and in amplitude, and he does a much quicker hand

motion to describe how this pulse would be created) ...

I:  By quicker you mean, you did your hand motion like this? (repeats the

motion)

F: shorter, I wouldn’t go (makes large hand motion) I’d try to make a

shorter hand motion (makes a quick flick of the wrist) …  It would get there

faster.

Or, I would send a huge pulse, where maybe [the pulse] could cover the

whole thing (i.e. the entire string) in one pulse and maybe get there as fast

as I put my wrist back down. (does long build-up during this, and then slams

hand down hard at the end)  The odd idea is that I don’t know which one

would work better.

Ford indicated two different reasoning methods in this excerpt.  On the one

hand, he showed with his body how to make a smaller pulse and indicated that the

smaller pulse would move faster.  He did not distinguish between transverse velocity
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and longitudinal, propagation velocity.  Note that his explanation makes use of a

physical motion.  This suggests that students are using a primitive in their reasoning.

Ford’s first explanation gives evidence of the smaller is faster primitive, since he spoke

of a smaller wavepulse moving faster.  At the same time, upon further reflection, Ford

indicated that possibly a larger pulse would move faster.  This explanation seems

strongly connected to his description that a larger pulse would take more area, and a

pulse with more area would move more quickly.  His body motion is indicative of the

working harder primitives, where a larger force is needed to create a larger pulse and a

faster pulse is the result.  Note also that the emphasis on the downstroke of the hand

motion implies that he thought specifically of the speed and force of the hand motion at

this time (showing difficulties with the idea that the leading edge of the wave would

already be propagating forward).  Ford’s difficulty and inability to resolve these two

descriptions caused a conflict in his thinking.  Even after further questioning during the

interview, he maintained that both explanations could cause a faster pulse, but he knew

that one of them must be wrong.

The following week, Ford answered questions about wave superposition.

(Before the interview began, he mentioned that the previous week’s tutorial had helped

him resolve his dilemma; he now knew that neither of his explanations was correct and

was able to correctly describe the medium changes which caused a faster pulse.)  We

gave him two questions concerning wave superposition, the first shown in Figure 3-12

and the second shown in Figure 3-8.

In his descriptions of superposition, Ford spoke of the wavepulses as single

units which collided with each other, and, as they collided, their amplitudes would

begin to add up even though the highest points of the wave were not at the same point.

“When they collide,” Ford stated in the interview, “they have the same base, and I just

added their amplitudes.”  His reason for adding the points of largest displacement, even

when they do not overlap, suggests that even the point primitive does not necessarily

restrict an object to one point.  Instead, Ford seems to use it to make the entire object

into one large point, where elements of the object then overlap and interact.  But full

interaction does not occur until the wavepulses completely overlap.  As Ford stated

when describing why the amplitude was not doubled during partial coincidence of the

wavepulses, “they haven’t fully combined yet, they haven’t fully interacted yet.”

Ford used the point, actuating agency, and working harder primitives to

describe changes in wave propagation, and he used the point primitive when describing

superposition.  The combination of point primitive and the force primitives implies that

Ford had a picture of waves that was at odds with the material being taught in the class.

He did not describe waves as disturbances to the medium, and did not have a clear

description of how waves interacted with each other.

Though Ford showed difficulties with only two of the physics topics, his use of

many primitives suggests the manner in which inappropriately applied primitives can

lead students to an incorrect understanding of the physics.  He used conflicting

primitives but did not accept that both would be valid, suggesting that the structure of

Ford’s understanding involved guidelines for reasoning that are not necessarily rigid,

fixed rules and that he was uncomfortable with this flexibility.
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David

David participated in the S97 diagnostic test interviews approximately two

months after completing tutorial instruction on waves.  The details of the instruction

will be given in chapter 7 when the diagnostic test is described in more detail.  David

had no problems with the questions dealing with sound waves and did not answer

questions about wave reflection due to time limitations during the interview.  His

difficulties with the other topics on the diagnostic test are consistent with those

described in chapter 3.

David described how one could change the speed of a wavepulse on a string by

saying,

D:  Well, I know that tension affects the wave speed, that is … the rate the

pulse moves down the string.  And… the amplitude would affect it. (He

shows a hand motion with a larger displacement while saying the last

sentence.)  I think possibly, you see a slower … pulse if the force applied to

the string is reduced, that is: the time through which the hand moves up

and down [is reduced].

In his comments, David uses the actuating agency primitive as the basis for the

incorrect part of his description.  His description is consistent with thinking of the

wavepulse as a point particle that moves faster due to a larger force (i.e. the point and

working harder primitives seem to play a role).  The reader should note that he begins

with the correct answer before giving other explanations.

In the question dealing with the mathematical description of waves, David

describes a decaying propagating wavepulse.  He states that the shape would stay the

same, but the amplitude would change, and says “this is a decay function” while

pointing to equation 5-1.  This shows clear evidence of the dying away primitive (and

again the point primitive, since he is letting the single maximum amplitude point guide

his description of the whole wavepulse).  David uses the variable, x, to describe the

position of the peak of the pulse.  Thus, he seems to use the point primitive to interpret

the mathematics with which he has difficulties.

David had two difficulties with superposition.  In one question, he described

two pulses meeting on a string as bouncing off each other, reversing sides on the string,

and returning from whence they came.  The collision analogy came quickly and

spontaneously.  With equal sized pulses, nothing cancelled out, and the pulses bounced

off each other.  The idea of one pulse overcoming another was probably not considered

because the pulse sizes and shapes were equal.  As soon as the interviewer asked him

to explain how he arrived at the answer, he changed his mind, and gave a different

description.  Rather than using the bouncing primitive, he suddenly gave the correct

answer that the wavepulses would pass through each other with no permanent effect.

David’s easy change of mind is consistent with our research results that, after any form

of instruction, very few students give explanations which are consistent with the

collision analogy.
5
  David’s changing explanation also supports diSessa’s comment that

many primitives related to collisions (overcoming, bouncing, and collision) are

generally weakly supported by students.
6
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When describing superposition of two pulses whose peaks had not yet

coincided but whose bases overlapped, David also showed difficulties consistent with

the use of the point primitive.  He gave answers which described no superposition in

the region between the peaks of the pulses.  The highest point of the string due to

either pulse determined the shape of the string.

David showed evidence of a variety of primitives in his explanations during the

diagnostic interview.  As with Ford, we see evidence for three classes of primitives.

David used the point primitive, some of the force primitives (actuating agency, working

harder), and one of the collision primitives (bouncing).  Furthermore, he applied the

point primitive to the mathematics of waves and made use of the dying away primitive

in the process.  David’s interpretation of wave physics seems based on reasoning that is

inconsistent with actual observations.  Instead, it seems to rely on analogies and

reasoning based on previous studies in mechanics.

Kyle

Like David, Kyle participated in the S97 diagnostic test interviews two months

after having completed tutorial instruction in waves.  The details of the instruction will

be given in chapter 7 when the diagnostic test is described in more detail.  During the

interview, Kyle inappropriately used many of the primitives described above.  Only on

the wave-math problem did he not use one of the previously described primitives, but

he was unable to write an accurate equation for the wavepulse at a later time.  Instead,

he gave the same equation as the original one, when the pulse’s peak is located at the

origin.  Though a profound difficulty, I had no further evidence to indicate the source

of Kyle’s answer.  The lack of a temporal element to his equation possibly implies that

Kyle was using the given equation to describe the entire wavepulse shape rather than

the mapping of coordinates into each other (this would imply use of the point primitive

to interpret the mathematics), but I am unable to support or refute this speculation from

statements made in the interview.

When describing changes to wave propagation speed on the FR question, Kyle

gave a variety of answers, not including the correct one.  Kyle stated that one could

make a slower pulse by “moving your hand slower,” or “[moving] your hand higher,

increasing the amplitude.”  In this description, a larger wavepulse would move more

slowly through the medium, as if there were more resistance to its motion.  This answer

is indicative of the Ohm’s primitive.  Also, his response shows evidence of the smaller

is faster response (since larger must be slower).

Later, when answering the same question a second time (in its MCMR format,

rather than its FR format), Kyle seemed to reverse his reasoning.  He gave the correct

responses in addition to the responses he had given earlier.  Both Kyle and David used

inconsistent reasoning depending on the question asked of them.  In this case, Kyle

gave a correct response and stated that a lower tension would cause a slower wave.

But, Kyle used faulty reasoning to arrive at his answer.  He stated that a lower tension

would create a smaller wavepulse, “the wave will be smaller, because you have less

tension for it, [and that will make it slower].”  Note that his response contradicts his

earlier explanation that a larger pulse would be slower.  This provides an excellent
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example for the student variation in student responses on material they have not

mastered.

When describing wave superposition, Kyle spoke of colliding waves, and he

showed no indication of wave superposition unless the peaks of the wavepulses

overlapped.  Much like Ford, Kyle spoke of collisions but never indicated that the

pulses would cancel permanently.  Describing the moment before the wave peaks

coincided and the wavepulses partially overlapped, he said that the waves “were about

to add,” suggesting that he thought of the wave as only the peak of the pulse and not

the entire displaced region.  This shows evidence of the point primitive.

Kyle also had difficulties with the physics of waves reflecting from a fixed

boundary (in the case of a wavepulse on a string firmly attached to a pole reaching the

pole).  He spoke of the pulse being absorbed into the pole to which the string was

firmly attached, though he later changed his answer to state correctly that the pulse

would be reflected and no energy would be lost in an ideal situation.  As with Ford’s

description of wave propagation and David’s description of wave superposition, Kyle

switched from one explanation to another.  He gave no clear reason for the switch.  My

asking him to explain how he arrived at his answer may have led to an evaluation of his

answer which he did not verbalize.  Also, my questions may have led to a change in the

type of reasoning that he used, from a “gut instinct” to a “classroom style” answer.

Kyle later described reflection from a free end in terms of energy absorption

(the pole would absorb the energy that was in the wavepulse).  He said that the ability

of the end of the string to move along the pulse meant that nothing would be reflected

back, stating that “the movement of the string takes away the movement of the pulse.”

Though he did not explicitly use reasoning based on the overcoming primitive, we can

describe his answers in those terms.  With this primitive, one could say the pole is

unable to be moved and must therefore exert a large force on the incoming wavepulse.

That large force then manages to cancel out the incoming pulse.

On the sound questions, Kyle described sound waves pushing dust particles in a

sinusoidal path away from a loudspeaker.  As he stated, (his words are indicated by a

“K” while the interviewer’s words are indicated by an “I”)

K:  The dust particle will move up and down and the dust particle will be

pushed away from the speaker.

I:  So the dust particle is going to move in a path away from the speaker

(indicates a sinusoidal path with a hand motion in front of Kyle)

K:  Yeah.

I:  Why is that?  If you could explain…

K:  Since the speaker is (mumble, incomprehensible) it will push the dust

particle sideways.  Since the dust particle is affected by the frequency, as

long as the frequency is constant, it will move in a constant path.

Later, when asked the effect of a change in the frequency, Kyle explained that
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K: [The dust particle] will move faster because the frequency is higher

which means that – since frequency is the one that affects the dust particle,

if the frequency increases, the speed of the particle should increase, also.

Though on the surface this indicates a correct response (a higher frequency will

cause a faster average speed, since the particle is oscillating more rapidly), Kyle seemed

to refer to the motion of the particle away from the speaker.  Kyle often used the

phrase “the frequency affects the dust particle,” and when asked what he meant by the

phrase, he stated

K:  Frequency produces a sound wave, and the sound wave, somehow it

will… (He did not finish the statement, even with prodding from the

interviewer).

In this description, Kyle is not using the term frequency to describe a property

of the sound wave, rather, he states that the frequency causes the sound wave.  This

seems to be consistent with a description where the effect of a higher frequency is to

make the particle move faster.  Thus, Kyle’s explanation seems consistent with the

explanation given by Alex which was described in chapter 3.

In Kyle’s explanation, the sound wave seems to guide the particle along the

sinusoidal path.  Kyle showed evidence of the guiding primitive (where the dust particle

must move along the path determined by the sinusoidal sound waves) and the Ohm’s

primitive in his explanations of sound waves (where higher frequency has a

proportional effect on wave speed).

Consistently, we see Kyle having difficulties with wave physics in nearly all

areas that were investigated.  He made consistent use of the point primitive, either

directly as in wave superposition or implicitly as in wave propagation or sound waves

(where the point primitive is a necessary step for the actuating agency primitive).  He

also made use of force primitives and collision primitives.  Based on Kyle’s responses,

it is possible to interpret the guiding primitive as related to the force primitives, since it

describes the relationship between force and motion.

Ted

Unlike David and Kyle, Ted did not have any tutorial instruction during the S97

semester.  His class had traditional, TA-led recitations.  In the diagnostic test interview,

Ted answered questions from an early version of the diagnostic test which did not

include any questions on wave-math.  Ted showed profound difficulties with all other

areas investigated in the diagnostic.

On the wave propagation question, Ted first stated on the FR question that only

a larger amplitude would slow the pulse down.  The larger pulse would move with

more difficulty, he implied, because the pulse would “have to move more distance in

the same amount of time.”
7
  The movement of the wavepulse along the curved string

(i.e. with a larger curve, the length of the path to be traveled increases) implies the

existence of the guiding primitive in his reasoning.  It may also imply the existence of

the smaller is faster (since larger is slower) primitive.  When Ted came to the MCMR

question on the diagnostic, he used far more explanations in his reasoning.  He kept the
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larger amplitude response, but added that a slower hand motion would create a slower

pulse.  The slower hand motion would put less force into the wave (an example of

working harder or Ohm’s primitives, as explained above with respect to Kyle).  In

addition, Ted stated that changes in the medium, both tension and mass density, would

affect the speed of the wavepulse.

Ted’s description of superposition did not include the addition of displacement

between peaks when the peaks did not overlap.  For a situation where the waves (but

not their peaks) overlapped, he stated that “the pulses haven’t quite overlapped, so

there’s no reason [the amplitude] should jump up until they meet.”  He seemed to use

the point primitive to consider only the peak of the pulse.

In his description of a wave reflecting from a boundary, Ted stated that the

pulse would not be reflected from a free end.  He spoke of the energy being absorbed

into the pole, so that “nothing is left.”  This idea of absorption is consistent with the

overcoming primitive, as described with Kyle above.  The energy of the wavepulse is

not sufficient to affect the pole, so the pole absorbs energy and does not transmit any

back to the string.  Thus, the wave does not return.

Ted’s description of sound waves was also similar to Kyle’s.  He spoke of the

dust particle moving away from the loudspeaker along a sinusoidal path, suggesting the

use of the guiding primitive in this context (recall his previous use of it in the context

of wave propagation).  Furthermore, when the frequency of the wave changed, the

speed of the dust particle being pushed away from the speaker changed.  Thus, Ted

seemed to use the Ohm’s primitive in which proportional changes in frequency and

speed occurred.  Frequency was associated with the force of the wave on the dust

particle, as Alex described in the interview excerpts given in chapter 3.  Ted differed

from Alex in that he explained that the volume of the sound wave affected its amplitude

and not the force that it exerted on the dust particle.  He maintained consistency with

his description of transverse motion while moving away from the loudspeaker by

stating that the speed of the particle away from the speaker would be the same as with

a lower volume, but that the amplitude of its motion would change.

Ted had profound difficulties with all the topics of wave physics investigated in

the version of the diagnostic which he took.  He used both the point and guiding

primitives in more than one context.  Additionally, he used many of the force and

collision primitives that we also found evidence for in the other students.

Summary of Common Student Used Primitives in Wave Physics

These four students consistently used a small set of primitives when incorrectly

describing parts of wave physics.  The four students all use the point primitive to

simplify the shape of a wavepulse to a single point.  In addition, they all make use of at

least one of the force primitives.  The collision primitives are also common to all

students.

The primitives that these students applied to wave physics seem to be more

strongly connected to Newtonian particle mechanics than they are to wave physics.

The force primitives all seem related to difficulties students have in understanding the

relationship between force and motion in classical mechanics (see, for example, the
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discussion in chapter 2 and references cited there).  Since the collision primitives all

seem related to collisions between hard objects (such as billiard balls), the students’

difficulties appear to come from the incorrect application of ideas that may be

appropriate in other areas of physics.  In addition, some of the students used other

primitives which suggest that they are not thinking of waves when they answer

questions, or that when they think of waves, they have a model unlike the one that we

would like them to have.

The Particle Pulses Pattern of Association

When students have consistent difficulties in one area of physics, it gives us the

opportunity to organize their difficulties in a way that is productive and relevant for the

development of instruction and investigations in other areas of physics.  The four

students described above all used a common set of primitives to describe wave physics.

The primitives are often closely related to each other, such as the bouncing and

overcoming primitives in descriptions of superposition or reflection from a boundary or

the force primitives when describing sound waves and the physics of wave propagation.

Because students use these primitives in conjunction with each other, we conclude that

students are associating certain primitives in the context of wave physics.  We find a

consistent inappropriate pattern of association in the students’ responses.  We also find

that students are not coherent in their use of this pattern of association and they are not

consistent in its application.  Thus, we cannot necessarily say that they are using a

mental model in their reasoning.  The topic of wave physics can serve as a context in

which we show the value of using primitives, patterns of association, and mental

models to describe many different student difficulties with physics.

In chapter 4, I discussed the idea of patterns of association and mental models.

Both can be thought of as sets of primitives that are consistently applied to a situation

and may serve as guiding principles for reasoning.  One can describe student reasoning

as if suggested rules or analogies to guide spontaneous reasoning.
8
  Thus, patterns of

association and mental models serve as a type of reasoning guideline for students, but

are not necessarily the only guideline.  Patterns of association describe looser

constructions of student reasoning that are not as coherent, rigorous, or robust as the

term “model” implies.

I should note that physical models often have the same limitations as the pattern

of associations and mental models I am describing here.  We refer to an accepted

physical model, determined through theoretical and experimental work and the

agreement of the research community to be valid in certain physical realms with certain

limitations as a Community Consensus Model (or CM).  An example of a CM would be

the model of wave physics that students learn in the introductory physics sequence (as

described in chapter 2).  Within the limitations of the small angle, non-dispersive media

approximation, we can use the wave equation and certain simple rules to analyze most

physics problems.  In more complex situations, this model no longer holds.

Furthermore, when trying to apply the model, it may lead to results inconsistent with

the model.  For example, two small amplitude waves that superpose may add in such a

way that the small angle approximation no longer holds.  Thus, the introductory physics
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waves CM has the limitation of being, incomplete, and inconsistent with experimental

data in certain situations.  The difference between a typical weakly organized naïve

student pattern of association and a CM is that a physicist is (usually) aware of the

limitations of the CM and knows the shortcomings of the model while students often

are unaware of the consequences of the contradictions in their reasoning.

When trying to organize student difficulties described in the previous section,

we find it convenient to propose the existence of a Particle Pulses Pattern of

Association (loosely referred to as the Particle Model, or PM) of waves.  Table 5-3

summarizes the different aspects of the two mental models.  Typical reasoning patterns

involve the incorrect use of force or energy arguments and an inability to look at local

characteristics of the wave.  The PM can be described as the set of common primitives

discussed in the previous section.  These primitives include the point primitive, some or

all of the force primitives applied incorrectly, and the use of the collision primitives.

Student use of these primitives has been described in the previous section.  In the

remainder of this section, I will summarize common student responses when using the

PM to guide their reasoning in terms of analogies with Newtonian particle mechanics

rather than with separate incorrectly applied primitives.

The analogy to the ball toss seems to guide student reasoning in many topics of

wave physics.  Exerting more force when throwing a ball makes the ball travel faster

upon release.  Many students can be described as if they make an analogy to the

Table 5-3

Particle Model
Particle Pulses Pattern

of Association

Community Consensus

Model

A harder throw implies a

faster particle.

A harder flick of the wrist

implies a faster wavepulse.

Wave speed depends only

on medium response to

disturbance.

Smaller objects are more

easily thrown faster.

Smaller pulses can be

created that move faster.

Size of pulse and manner of

wave creation do not affect

wave speed.

An object’s center of

mass is considered when

describing its motion

(e.g. trajectory).

Only the peak of the wave-

pulse is considered when

describing superposition.

It is necessary to consider the

entire shape of a wave to

describe its properties (e.g. in

superposition).

Objects collide with each

other and their motion

changes

Wavepulses collide with

each other and they cancel

or bounce off each other.

Waves pass through each other

with no permanent effect.

Large objects traveling

on a trajectory are

described as points.

Propagating wavepulses are

mathematically described

only by the displacement of

the highest point.

The mathematics of waves

describes the displacement of

every point of the medium.

Newtonian particle physics analogies of the Particle Pulses Pattern of Association and

correct wave physics of the Community Consensus Model.  Many students use both

when answering questions containing wave physics.
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amount of force required to create a pulse on a taut string; greater force in the hand

motion creates a greater speed.  In our investigations of the physics of sound waves,

we have found evidence that many of students think that waves exert a force on the

medium through which they travel and push the medium in front of them like a surfer

on a wave.  In chapter  3, Alex gives a description of the “surfer” description when

explaining the interaction of sound waves and air.  He also explains that sinusoidal

waves are like a succession of pulses, each exerting a force (or “kick”) in only one

direction on the medium through which they travel.

Other students seem to make the ball-toss analogy when using energy

arguments to describe how to change wave speed.  A ball with a larger kinetic energy

whose mass remains constant moves faster.  Similarly, a pulse with more energy whose

size stays constant must move faster.  The explanation that a smaller mass will move

faster is consistent with this explanation, too, because a smaller mass, with energy held

constant, has a larger velocity.  Though students do not explicitly state the analogy

between their descriptions of wave speed and a thrown ball, their descriptions in

interviews are often consistent with the idea that students’ patterns of associations

make use of this analogy.

Students often give point-particle descriptions of wavepulses.  The ball-toss

analogy gives an example of this reasoning in wave propagation.  Similarly, in

superposition, many students give the response that the wavepulses do not add until the

points of maximum displacement overlap.  They treat each wavepulse as a single point

and ignore all other points.  Other students describe the entire wavepulse as a single

point, not ignoring the non-peak displaced points, but lumping all displaced points

together into one.

Many students use a collision-like description of wave superposition to describe

the interaction of wavepulses.  Superposing wavepulses collide with each other and

either bounce off each other or cancel out, depending on the situation.  The remnant

wavepulse possibly moves slower, having lost energy during the collision.  Here we see

a clear example of the way the pattern of association we use to organize student

reasoning leads to descriptions different from a physical model of the physics.  We have

not found that students will explicitly state that the waves act like colliding carts, but

we find that they often give descriptions consistent with the physics of cart collisions.

Because of the similar explanations for the two situations, we believe students have an

associative pattern which guides their understanding of wave interactions.

The lack of explicit evidence for incorrect student patterns of association should

not keep us from looking for evidence of their existence.  Two reasons exist for using

the PM when trying to understand student difficulties with mechanical waves.  First, by

trying to organize student responses in terms of a model based on analogies, we

account for the manner in which students approach our classes.  By building a

description that accounts for a majority of student responses, we may be able to make

better sense of the classroom environment in which we teach.  This may provide us

with the opportunity to better diagnose what individual students are doing in our

classroom, and help them overcome their difficulties.  Second, by gaining insight into

student use of patterns of association, we may learn an approach that could aid us in

our attempts to understand student difficulties in other fields of physics.
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Although we might expect student reasoning in the classroom to include many

weakly organized components, we have found that student responses can be

categorized with only two which are reasonably coherent.  We can describe students as

if they used elements of either the correct community consensus model of waves or a

pattern of associations based on an over-application of ideas from Newtonian particle

physics. Because we see only two reasonably coherent student descriptions of the

physics, we have the unique opportunity to examine and evaluate the dynamic

evolution of the mix.  In chapter 7, I will discuss the evolution of student reasoning in

the context of the modified curriculum developed by the Physics Education Research

Group.  This curriculum will be described in the following chapter.

                                               
1
 See diSessa’s comments in reference 5 in chapter 4 and Hammer’s comments in

references 2 and 7 in chapter 4 for a more detailed discussion.

2
 For example, in my graduate mechanics course, we spent a week or two discussing

moments of inertia and rotations, but did not emphasize the subject greatly.  In my

advanced undergraduate mechanics course, only highly symmetric objects were

considered and then only briefly.

3
 For more details on the use of pretests and the implementation of tutorials, see

Chapter 7.

4
 I will refer to each student by the code name given and used during the interview.

Code names were chosen by the student and correctly reflect the student’s gender.

5
 The data supporting this statement can be found in chapter 6, when I discuss changes

in instruction that had an effect on student performance on questions such as the one

David answered.

6
 See reference 5 in chapter 4.

7
 Due to an error in videotaping, Ted’s original interview videotape is unavailable.

Ted’s comments in this section are taken from extensive notes made during the

interview.  Though this allows us to gain insight into his reasoning, it prevents me from

presenting lengthy excerpts of Ted’s own words from the interview.

8
 Redish, E. F. “Implications of Cognitive Studies for Teaching Physics” Am. J. Phys.

62, 796-803 (1994).
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Chapter 6: Development, Implementation, and

Evaluation of Tutorials

Introduction

Once student difficulties have been found and described in detail, PER can

serve as a guide for developing effective curriculum.  These materials can aid students

develop the difficult concepts that they will need to understand in their future studies

in physics and other fields.

Many different types of research-based instructional curricula have been

developed and evaluated for their effectiveness in teaching students relevant physics.
1

At the University of Maryland (UMd), the Physics Education Research Group (PERG)

has introduced tutorials, a teaching method created and designed at the University of

Washington, Seattle, by Lillian McDermott, Peter Shaffer, and the Physics Education

Group.
2,3

In this chapter, I will use the area of wave physics to illustrate how research-

based curriculum development can create a productive learning environment for our

students.  The tutorials described in this chapter have been developed through an

iterative process of research, curriculum development, implementation, and evaluation

for a period of one to three years.  Working in collaboration with other members of the

Physics Education Research Group (PERG), I have developed a set of tutorials in

wave physics which are designed to help students learn certain fundamental ideas in

physics. The three tutorials discuss the physics of

• wave propagation and superposition

• the mathematical description of waves, and

• sound waves (propagation and mathematical description)

(Copies of the final versions of the tutorials can be found in Appendix A, B,

and C.  Unless otherwise noted, I describe the most recent version of each tutorial.)

Throughout the tutorials, students discuss and develop the ideas of equilibrium,

disturbances from equilibrium, propagation of a disturbance through a medium, effects

of two disturbances meeting each other, and the mathematical description of a physical

system through the choice of an appropriate model.  These are skills which, to a

certain extent, are illustrated best in wave physics but whose ideas are important in

other areas of physics and in the students’ subsequent studies.

In the sections describing each tutorial, I will discuss the research basis of each

tutorial.  In addition, I will discuss research results that suggest that tutorials are more

effective than traditional instruction in teaching students the fundamental topics of

wave physics.  Many results come from a diagnostic test that is discussed in more

detail in chapter 7.

One general point should be made when discussing the effectiveness of the

tutorials with respect to student understanding of the material.  Though the

descriptions below imply that students receive an hour of instruction on the material

being discussed, note that they are not receiving traditional recitation instruction.  The

time spent on the physics is roughly equivalent in the two settings, but the manner in

which students interact and learn in the classroom is different.  In the discussion below
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I will emphasize what students do in the classroom and evaluate their performance

based on the tutorial activities.

Creating Video Materials For Classroom Use

A central piece of each of the tutorials involves students viewing digitized

videos of waves propagating on a long, taut spring.  These videos were created in the

Summer, 1995 workshop on Teaching Introductory Physics Using Interactive Methods

and Computers, held at Dickinson College.  As part of the workshop, John Lello and I

carried out a project in which we created the videos and developed preliminary

versions of some of the curriculum materials presented below.  In this section, I will

discuss how the videos were created.

We stretched two long snake springs between two tables.  A snake spring is a

tightly coiled spring of roughly 1.5 cm diameter.  The unstretched length of the

springs was nearly 2 m.  We stretched them to a tension of 10 N to 15 N and lengths of

4 m to 6 m, depending on the situation.  On each end of the snake spring were loops

(i.e., the last few coils of the spring, bent 90°).  Each loop was fastened to the leg of a

table by screws which are usually used to adjust the height of the tables.  By keeping

the table motionless (their weight held the springs firmly in place), we were able to

keep the springs at a constant length and tension.  Note that the spring was attached to

the far leg of the table.  The snake spring was free to move on only one side of the

second table leg.  See Figure 6-1 for a sketch of the set-up.

The waves used in the videos were created by pulling the spring through the

gap between the table legs and releasing it.  For example, by pulling the spring at

exactly the midpoint of the gap between the two legs, we could create a triangular

shaped pulse (see Figure 6-2).

The propagating waves were videotaped from a ceiling mounted camera whose

signal was fed directly into a computer.  The computer digitized the video signal

immediately.  This digitized video was then edited to include only the frames during

which the wave was visible on the screen.  Due to the design of the system, the speed

of a propagating wave was approximately 8 m/s.  Since the view field of the camera

was roughly 2.5 m, the wave was visible on screen for roughly one quarter of a

second.  Since videotape is filmed at 30 frames per second, the wavepulses are visible

in the videos for roughly 8 frames.

To videotape the wave propagating along the spring, a variety of problems had

to be addressed.  For example, the floor on which the spring rested was made up of

Figure 6-1

table leg

spring

Sketch of set-up for creating wavepulses on a stretched snake spring.  The spring is

attached at one table leg and is pulled back by a hand (not shown).  The spring is free

to move along the second table leg.
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tiles, creating a low friction surface that prevented excessive energy loss to the system.

Unfortunately, the tile floor also reflected the light from the room very strongly,

making the silver snake spring difficult to see on the video.  After much experimenting

with different colors and materials, we found that a dark blue felt cloth created the best

backdrop on which to see a moving silver colored spring.  The higher friction from the

new material did not seem to affect wave propagation or wave shape in any

appreciable way.  We were unable to compare the decrease in amplitude (equivalent to

the loss in energy) between the two designs because we were unable to see the spring

clearly when filmed on a plain tile floor.  Using analysis techniques described below,

we were able to show that the wavepulse on the felt floor lost roughly 10% of its

amplitude over the course of the 8 frames on screen.  This effect was considered

unavoidable and small enough to be acceptable for our needs (mainly because the

effect was very difficult to see on screen).

Another problem we had consisted of finding the right shutter speed for the

video recorder.  The wavepulses we created were roughly 50 cm in width at their base

with an amplitude of roughly 50 cm.  (Note that there are dispersive effects due to the

large amplitude of the waves, but in the time scale we were observing, we could

ignore these effects).  With waves moving at 8 m/s, it would take a point on the spring

1/32 s to move from equilibrium to maximum displacement.  With a frame rate of 30

frames per second, the slowest possible shutter speed was 1/60 s.  (Video cameras use

an interleaving technique such that the slowest shutter speed equals half the frame

rate.)  During this time, a piece of spring could move from equilibrium to maximum

displacement.  The slow shutter speed would create a blurred image on screen.  As a

result, we set the shutter speed of the videotape as high as the camera allowed

(1/1000 s).  We can estimate the speed of the piece of spring to be relatively constant

for most of its motion away from the vertices of the triangular pulse shape, since we

notice that the slope of the wavepulse is relatively constant in Figure 6-2.  Thus, the

piece of spring moves 1/2 m in 1/16 s, making an estimated speed of 8 m/s.  During

0.001 s, the spring moves a distance 0.008 m, or just under 1 cm, which is slightly less

than the diameter of the snake spring.  This creates some smudging in the video, but

only a negligible amount.

Two issues were problematic when making the superposition videos.  In some

of our videos, we show superposition of wavepulses moving toward each other from

Figure 6-2

Screen capture of “triangle.mov.”  The

wavepulse moves from left to right

along a stretched spring.  The video is

commercially available in the

VideoPoint
TM

 software package.
5
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opposite ends of the spring.  To create these videos, we had to make sure that the

wavepulses met as close to the center of the videotaped area as possible.  This meant

that the people holding the spring on either of its ends had to release their hold within

1/30 s of each other.  We came up with a rather elaborate counting scheme and rhythm

to allow for this.  In our first attempt at illustrating destructive interference, we

managed to have the wavepulses meet within 10 cm of the center of the video screen.

The one point on the spring that never moved was nearly perfectly located in the

center of screen. (In destructive interference, there is an instant when the entire spring

is at equilibrium, but only one piece of the spring is never in motion.)  In the case of

constructive interference, we were never able to have the point of maximum

displacement closer than 1 m from the center of the screen.

The second issue in creating the superposition videos involved the gross

deformations to which we subjected the spring.  When the two large amplitude

wavepulses overlapped, the spring was stretched to an even larger amplitude.  In the

process, the dynamics of the system changed.  Instead of the waves simply passing

through each other at a constant speed, the time of the interaction was much longer

than expected.  Also, in the case of constructive superposition the moment of nearly

perfect overlap of the peaks was captured on film.  During this time, the amplitudes

did not add up perfectly.  We explain both of these phenomena by noting that the

deformation to which the spring was subjected was much larger than the spring was

designed for.  In other words, the spring was simply unable to stretch enough.  Later,

when we attempted to stretch the spring to a similar length, we overstretched it and

destroyed the tight coiling.  This did not occur during the filming of the videos

because the time scale of the stretching was so short.

In total, we created a set of ten videos of waves propagating on springs.  The

six that are used in tutorials are:

• triangle.mov – a single triangular-shaped pulse travels across the screen

(see Figure 6-2),

• diffside.mov – two wavepulses on different sides of the spring meet and

pass through each other,

• sameside.mov – two wavepulses on the same side of a spring meet and pass

through each other,

• diffshape.mov – two asymmetric wavepulses with mirrored shapes travel

side by side down two separate springs with identical mass density and

tension (see Figure 6-3, video number 5),

• diffamp.mov – two wavepulses of different amplitudes travel side by side

down two separate springs with identical mass density and tension (see

Figure 6-3, video number 3), and

• difftens.mov – two wavepulses travel down two separate spring with

different mass density and tension (see Figure 6-3, video number 4).

In the videos which showed a comparison of two different properties of the

wave or the system, we had two springs lying side by side.  We were able to create

this situation by using both of the legs of the tables to which we had attached the

springs.  These table legs were separated by roughly one meter.  We created different

waves on each spring and were able to videotape how waves traveled side by side

down the spring.  Again, the timing issue played a role in creating these videos.  We
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wanted the peaks of the waves to be side by side.  This problem was easily solved by

having one person with long arms hold each spring and release them at the same time.

Examples of the video created can be seen in Figure 6-3.

In the video difftens.mov, we had two springs of different tension.  Note that

the spring with the higher tension also had a lower mass density, since the higher

tension was created by pulling the spring tighter.  In this video, the timing issue was

critical.  We had calculated that in the given situation, the faster wavepulse would

move roughly 1.4 times the speed of the slower wavepulse.  The end of the video

recorder’s range was about 3 m from where the wavepulses were created.  Therefore,

the slower wavepulse moving at 8 m/s would reach this point in 3/8 s, the faster in

3/11 s (roughly 1/4 s).  To have the faster wavepulse catch up to and pass the slower

one while on screen, the faster wavepulse had to be released about 1/8 s later than the

slower one.  As with the video of destructive interference, the first attempt was the

most successful.  In this video, the faster wavepulse catches the slower wavepulse in

the last frame of the video, such that their peaks are almost exactly lined up with each

other.

Figure 6-3

Screen captures of the videos diffamps.mov (numbered 003 in the bottom right

corner), diffshape.mov (005), and difftens.mov (004).  The springs in diffamps.mov

and diffshape.mov are identical and pulled to the same length and tension.  The

springs in difftens.mov are identical but stretched to unequal tensions (and therefore of

different mass densities).
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To analyze the speed and the dimensions of the wavepulses on the video

screen, we used two different software tools.  The first was Apple Computer’s

QuickTime
4
 multimedia software.  Using this software, we could view the propagating

waves and count how many frames it took the wavepulses to traverse a known

distance (since we had determined the video’s viewing range previously).  This gave

us a good estimate of the speed of the waves.

To gain more detailed measurements of the wave speed, amplitude, loss of

amplitude, width, and other variables, we used software developed at Dickinson

College. VideoPoint
5
  software was in beta testing at the time of our summer

workshop, but has been released since then.  The videos described in this section form

part of the commercially available software package and are available for use by

anyone who purchases VideoPoint.  To analyze the video, we begin by measuring a

known length scale.  In our case, we had placed a clearly marked and large meter stick

in each of the videos.  This meter stick is visible at the bottom left corner of each

video screen capture shown in Figure 6-2 and Figure 6-3.  By clicking on the each side

of the meter stick, the person using the software can define a length scale for the

images in the video.  VideoPoint scales all distances on the screen according to the

given length, and allows the person manipulating the software to use the cursor on

screen to describe distances from an origin.

Measurements are made by placing the cursor at a location on the video

window and reading its position off the screen (see Figure 6-4).  Also, one can click

on a given point, leaving behind a marker at that location.  The position of this marker

is then given in a data table.  More than one marker can be placed, and the data table

shows the coordinates of each marker at the correct time (where the time scale is

Figure 6-4

Screen capture from VideoPoint.  The data point “Peak of Pulse” is shown for this

frame, along with the time at which the frame is shown and the x and y position of the

data point.
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chosen in 1/30 s increments from the beginning of the video).  As an example of how

this allows measurements to be made, consider placing markers at the location of the

peak of a propagating pulse.  By measuring the location of the peak of the pulse in

1/30 s increments, we can show that the speed of the wave is constant as it crosses the

screen.  But, we can also show that the amplitude of the wave decreases by 10% from

its original value.  Students use VideoPoint mainly in the tutorial on sound waves,

described below.

The video for the sound wave tutorial was filmed by Mel Sabella, also a

member of PERG at UMd, during his stay at the 1996 Dickinson Workshop.  In this

video, a burning candle is placed roughly 5 cm from a large (25 cm diameter)

loudspeaker.  In this region, the waves from the speaker can be considered planar.  By

creating a low frequency but high volume wave, one can cause the candle flame to

oscillate with an amplitude of roughly 4 mm.  The physics of the situation have been

discussed previously in chapter 3.  In the video, we see the flame oscillating back and

forth.  The video was created by using a strong telephoto (zoom) to show both the

loudspeaker and the flame.  An image from the video is shown in appendix C in the

tutorial on sound waves.  The tutorial, discussed below, asks students to interpret the

wave physics based on the oscillation of an element of the system through which the

wave is propagating.  To do so, they must make use of data gathered from VideoPoint.

The videos on mechanical waves and sound produced by the members of UMd

PERG have been published and are commercially available on the VideoPoint CD,
5

where they can be found under the category “UMD movies.”

Wave Propagation and Wave Superposition

Description of Tutorial

The Propagation/Superposition tutorial has been designed to address two

profound difficulties that students show in pre-instruction investigations of their

understanding.  The tutorial is found in Appendix A of the dissertation.  Through the

use of video analysis, students have an opportunity to address their use of the Particle

Pulses Pattern of Association (loosely referred to as the Particle Model, or PM, of

waves).  Our hope is that the tutorial will provide students with the opportunity to

overcome their difficulties with wave propagation (i.e. the incorrect description that

wave speed depends on the motion of the hand) and superposition (i.e. the incorrect

description that waves add only at or with their highest points and nowhere else).

The tutorial we have developed is based partially on work originally done at

the University of Washington, Seattle.  Although much of our tutorial has been written

to include video analysis of propagation and superposition, some parts still contain

material from the UW tutorials.  Interested readers can compare the UMd tutorial in

Appendix A with the UW tutorial.
6

Students begin with a pretest that investigates their understanding of wave

propagation and wave superposition (see Appendix A).  In taking the pretest, students

are forced to think through the problem on their own, commit to an answer, and

articulate that answer in writing.  Because of the student difficulties we have found
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with the questions in the pretest, we believe the problems are both challenging and

relevant.

In the tutorial itself, students begin by participating in a class-wide discussion

based on demonstrations carried out by a facilitator.  (This part of the tutorial is

adapted from the one developed at UW.)  In response to facilitator questions, students

describe their observations of wave motion on a stretched snake spring (like the one

used in the video).  The facilitators use quick hand motions (a flick of the wrist back

and forth) to give students an example of how to create a spring using a hand motion

like the one presented in the tutorial.  Students are asked to distinguish between

transverse and longitudinal waves by comparing the motion of a piece of tape on the

spring to the motion of the wavepulse.  They are also asked to describe how different

hand motions by the facilitator affect the shape of the wavepulse.  Discussions led by

the facilitator emphasize observations of how the shape and the motion of the

wavepulse might be related.  The facilitator also changes the tension of the spring and

asks students to compare their observations with previous demonstrations of wave

propagation.  Class discussions use student terminology rather than imposing language

from the facilitator.  By constantly asking if the whole class agrees with a student’s

comments, the facilitator allows the students to regulate each other.  Students build

their understanding through observation and discussion.  We find that the

demonstrations alone are inadequate to help students observe certain aspects of wave

propagation because students often see what they believe occurs rather than observing

what actually happens.

Due to the high speeds of wavepulses in the demonstrations and student

confusions about their observations during the class-wide discussion, the remaining

activities in the tutorial attempt to address lingering difficulties.  Students split into

groups of three or four to work on the rest of the tutorial.  They watch videos of

wavepulses to view wave phenomena in slow motion.  In these videos, individual

wavepulses on two identical springs travel across the computer screen.  Students use

QuickTime
4
 to advance the video frames individually or watch the whole video.  In

each video, wavepulses on the springs have some fundamental difference.  Either their

amplitude is noticeably different (diffamps.mov), their shapes are noticeably different

(asymmetric triangular shaped pulses with mirrored asymmetry, diffshape.mov), or the

tension in the springs is different.  (Students are told this, since tension is not a directly

observable difference, difftens.mov.)  Figure 6-3 shows a typical screen shot of each of

the videos.

For each video, students are asked to describe the hand motion that could have

caused wavepulses with the shapes on the screen.  For example, in diffamps.mov, the

different amplitude wavepulses are of the same width at the base.  Since the waves

move at the same speed, equal width implies that the waves were created in the same

amount of time.  The distance of motion in the same amount of time differs, so the

hand speed needed to create the different wavepulses hand differs.  Those students

who have stated on the pretest that different speed hand motions lead to different

speed pulses must reconcile their expectations with observations of same-speed waves

in the video.  The movie diffshape.mov takes this idea further, showing that waves

created through two different motions (mixed fast and then slow) would produce

waves that travel at one speed.  In the difftens.mov video, students are told that the
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tension in the springs is different.  They observe different wave speeds, indicating that

the tension on the spring affects the speed of wave propagation.

To further address student difficulties with the differences between transverse

motion of the medium and longitudinal propagation of the wave, we next ask students

to sketch velocity vectors for parts of a wavepulse propagating on a taut spring.

Students use the wave motion to describe changes in position of the medium, and then

use simple ideas of kinematics to describe the average velocity of the medium at

different points.  They describe that medium motion and wave motion differ in

fundamental ways.  These activities extend the previous discussion of differences

between the motion of the medium and the motion of a disturbance to the medium by

bringing in a more quantitative description of each motion.

After students have observed that the speed of the wave is constant at all times

and that the motion of the medium is transverse to the direction of propagation, they

predict the behavior of superposing waves.  They are asked to sketch the shape of a

string with two asymmetric wavepulses on it, much like on the pretest.  The shapes

given in the tutorial are chosen to match those on a video, “sameside.mov,” that

students watch on their computers after making their predictions.  Students are asked

to account for the shape of the string at different times, and guided to an understanding

that displacement of the string depends on the displacement due to each individual

pulse.  The rest of the tutorial develops this idea as students predict the effects of

destructive interference and view “diffside.mov.”

Student Understanding of Wave Propagation

Student performance on both FR and MCMR wave propagation questions

before and after tutorial instruction has been described in chapter 4.  The tables

showing student performance on the FR and MCMR question before and after

instruction (as discussed in chapter 4) are shown in Table 6-1 and Table 6-2.

To use the language developed in chapter 5 to describe student performance

after instruction, we found that students still answered many questions using the PM

(speed depends on hand motion), though a greater number used the CM exclusively in

their responses (speed depends on tension and mass density).  Also, many students

seemed to be triggered by the additional offered responses in the MCMR question into

giving the CM response when they had previously given only a PM response.  If we

look at only the MCMR responses, we can still discern that many more students give

an exclusively CM response and the number of students who give mixed CM/PM

responses has gone down greatly.

The MCMR question is an interesting tool to evaluate lingering student

difficulties with wave propagation after instruction because students already perform

quite well on it before having any instruction on waves (in terms of recognizing the

correct answer).  The interesting measures in the MCMR question are how many

students give completely incorrect (PM) responses or mixed (PM and CM) responses.

In addition to the tutorial classes described above, we have given the MCMR

wave propagation question (after instruction) to 116 students who did not have a

tutorial that specifically addressed their difficulties with wave propagation.  In the S96

semester, students worked through a tutorial that did not include the use of videos in
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the same fashion as in F97.  The class did not answer the FR question along with the

MCMR question (as has been previously described in the dissertation) due to logistical

reasons that prevented us from asking it that semester.  We also do not have pre-

instruction results from this class, but we suggest that the pre-instruction results from

F97can be taken as suggestive of student performance in S96.

Figure 6-5 shows student performance on the MCMR question at three

different stages of instruction.  Note that some of the columns are matched (F97 data)

while the middle column (from S96) is not.  Also, we compared the performance of

the F97 class as a whole to the performance of the matched students whose data is

presented in the figure and found no great difference.  The results show that students

begin the semester (in F97) already using the correct response very often (more than

80%), but predominantly giving responses which we categorize with the PM (90%).

After both traditional and tutorial instruction, nearly all students in both S96 and F97

semesters give the correct response (98%).  But, in S96, after instruction that did not

specifically address student use of the PM in wave propagation; nearly 70% give

responses indicative of the PM.  After instruction that addressed student use of the PM

(in F97), roughly 50% of the students give answers consistent with the PM.  These

results illustrate the contrast of student answers among pre-instruction, post traditional

instruction, and post modified instruction.  (In this case, modified instruction that did

Table 6-1:

(a) Student responses on free response question

 Speed changes due

to change in:

Only tension

and density

both the medium

and hand motion

the motion

of the hand other

Student

responses

only tension and

density
7% 1% 2% 1%

On MCMR

question

both the medium

and hand motion
1% 2% 60% 10%

the motion of the

hand
1% 1% 11% 3%

Comparison of student pre-instruction responses on FR and MCMR wave propagation

questions, Fall-1997 (matched data, N=92).  Students answered questions before all

instruction.

Table 6-2:

Student responses on free response question

 Student Response: Only tension

and density

both the medium

and hand motion

the motion

of the hand Other

Student

responses

Only tension and

density
40% 2% 2% 2%

on MCMR

question

Both the medium

and hand motion
8% 17% 20% 2%

the motion of the

hand
2% 1% 2% 0%

Comparison of student post-instruction (lecture and tutorial) responses on FR and

MCMR wave propagation questions, Fall-1997 (matched data, N=92).  Students

answered questions after all instruction on waves.
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not specifically address the relevant issue is considered traditional instruction, since

students did not receive any instruction on the material outside of the typical lecture

setting).  The effect of the modified tutorial instruction is evident when considering

the differences in mixed CM/PM responses in S96 and F97.  The results from F97

indicate that specially designed curriculum can play a role in affecting what is

otherwise a very robust incorrect response.

Student Understanding of Wave Superposition

On the topic of wave superposition, we also see improvement in student

performance after students participate in modified instruction.  Student performance

on wave superposition questions before any instruction, after traditional instruction,

and after all instruction (including tutorial instruction) shows a definite shift in student

performance and understanding of the physics of wave superposition.  Table 6-3

shows student responses to the superposition questions asked during the course of the

semester.  The question shown in Figure 3-13 (described in chapter 3) was asked

before and after all instruction.  The question shown in Figure 3-9 was asked on a

pretest which followed lecture instruction on superposition but preceded tutorial

instruction.  Only those students (N=131) who answered all three questions are

included in the data.

At the beginning of the semester, only a quarter of the students correctly show

superposition at all locations, while half the class gives answers which we have

characterized as evidence of the PM.  For example, they do not add displacement

between the peaks of the wavepulses, they add the maximum displacement of each

pulse even when the points of maximum displacement do not overlap, or they show

Figure 6-5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F97

Pre

S96

Trad

F97

Post

change medium
  properties

change medium
  and hand motion

change hand motion

F97 Pre: pre modified
tutorial instruction,
matched data, N=92.

S96 Trad: no specifically
modified instruction,
unmatched, data N=116.

F97 Post: post modified
tutorial instruction,
matched data, N=92.

Comparison of student responses on the MCMR wave propagation question, F97

(matched pre/post tutorial instruction, N=92) and S96 (unmatched, post traditional

instruction, N=116).  Students answered the question on diagnostic tests given before

and after all instruction on waves.
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the waves canceling in the area where they overlap.  We classify these responses as

indicative of at least one aspect of the PM, as described in chapter 5.

After traditional instruction, students did not change their descriptions greatly.

Even on a question that differed only slightly from the one asked at the beginning of

the semester, one fourth answer the question correctly, and one half show evidence of

the PM.

After tutorials, we see that the numbers have shifted dramatically.  Nearly 60%

of the students answer the question correctly, while slightly more than one fourth still

show evidence of the PM.  Based on these results, we claim that the tutorial has a

strong effect on student understanding of wave superposition.

We must qualify this statement by showing evidence that problems persist.

Before and after traditional instruction, 25% and 24% of the students (respectively) do

not show addition of displacement between the wavepulse peaks (see Figure 3-13b).

This accounts for 40% of the students who gave a PM-like response before any

instruction and 50% of the students who gave a PM-like response after traditional

instruction.  (Other PM-like responses include showing waves as colliding, bouncing,

canceling permanently, or adding amplitudes even when the peaks do not overlap.)

After tutorial instruction, 17% of the students give the answer that there is no addition

of displacement between the wavepulse peaks.  This represents 63% of those showing

evidence of the PM after instruction.  A majority (68%) of the students who state

before instruction that there is no addition between the peaks of the wavepulses  do not

change their responses after instruction.  The students who move away from a PM-like

response are those that gave other PM-like answers.  This suggests that some aspects

of PM reasoning when applied to superposition are very hard to overcome and that the

present materials are not completely successful in suppressing student use of it.

Mathematical Description of Waves

Description of Tutorial

The tutorial that addresses the student difficulties with the wave-math problem

described in chapters 3 and 5 is based directly on the wave-math problem itself (see

Figure 3-7).  In tutorial, groups of three or four students work through guided

worksheets.  The worksheet for this tutorial is included in Appendix B.  Students

Table 6-3
Time during

semester:

MM used:

Before all

instruction

(%)

Post

lecture

(%)

Post lecture,

post tutorial

(%)

CM (point-by-

point addition)
27 26 59

PM (only one point

plays a role)
65 52 27

other 6 13 7

Blank 2.3 9.2 6.9

Student performance on

wave superposition

questions at different

times during F97

(N=131 students, data

are matched).
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begin by considering the mathematical form of a pulse at t = 0.  In order to minimize

the confusion related to the exponential, we begin this tutorial with the equation:

 
( )

y x
cm

x
b

( ) =

+

50

1
2

(6-1)

where b = 20 cm.
7
  In order to help students develop a functional understanding of a

function, they explicitly graph the shape of the string based on the equation

representing its shape.  Students are also given a screen capture of a propagating pulse

(as shown in Figure 6-2) and asked to estimate the values of the amplitude and b in the

equation above.  (Though noticeably a very inexact Lorentzian pulseshape, the general

shape is sufficient for this exercise and provides an excellent opportunity for

discussion of modeling with the more advanced students.)  When students are asked to

sketch the shape of the spring on which the wavepulse is moving after the pulse has

moved a distance of 3b, we find that many sketch the shape with a lower amplitude.

This is consistent with the analysis of the wave-math problem, where the variables x

and y are misinterpreted as the location of the peak and peak amplitude of the pulse,

respectively.  Students are asked to watch a movie of the propagating pulse and those

who made incorrect predictions based on the mathematics are confronted with their

incorrect predictions and forced to describe the relationship between the mathematics

and the physics.  Thus, through their observations and their own reasoning, students

see the need for modification to the mathematical function so that the wave shape

stays the same while the shape propagates through the medium.

Students then sketch the shape the string would have after the pulse traveled

some distance without dissipation, and are guided into constructing the mathematical

form.  In this way, students not only construct the shape of the string from an equation,

they construct an equation from the shape of a string.  After considering the functional

form of the pulse at two different times, the students are given the opportunity to

construct a single equation that describes the pulse as a function of both position and

time.  The key here is that it is the students that are constructing this equation based on

their own work and on consideration of a specific physical system.

In the second part of the tutorial, students consider a pulse of a slightly

different shape propagating on a string.  In particular, they consider a pulse

represented at t = 0 by the same equation considered in the pretest:

( )
y x Ae

x
b( ) =

!
2

(6-2)

Students again are asked to construct an equation that describes the displacement of

the string as a function of position and time.  This time, students are not guided to this

answer.  Instead, they are forced to generalize their results from earlier in the tutorial

and, when appropriate, resolve the conflict with their answers on the pretest.

In the final part of the tutorial, students apply and interpret the ideas that they

developed by considering the motion of a tagged part of the string.  Here they extract

useful information about the motion of the tag by interpreting the mathematics of the

problem.  Because of student difficulties relating a physical situation to the

corresponding equation, students use video software to mathematically model the

shape of an actual pulse.  As part of this, they explore the physical significance of the
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parameters A and b in equation 2 in more detail than they did with equation 6-1 in the

first part of the tutorial.

The homework which accompanies this tutorial is given in Appendix B.

Students apply the ideas covered in the tutorial while considering pulses of different

shapes moving in different directions.  They consider the shape of the pulses at

different times physically and mathematically.  They also consider the motion of the

tagged part of the string in different situations.

Student Understanding of the Mathematics to Describe Waves

We have not investigated student understanding of the mathematical

description of waves in as great a detail as other student difficulties for several

reasons.  To ask students to commit to answers about the mathematical description of

waves (including two-variable functions) before instruction would be difficult with

students who have no experience with such equations in physics.  In addition, because

of a shortage of time, we did not investigate this issue on the F97 diagnostic test.

Finally, though certain examination questions were asked after student instruction on

the mathematics of waves, no clear analysis of student understanding was possible

because the questions asked avoided most of the issues which would have elicited

student difficulties.

In S97, interviews were carried out with twenty students, fifteen of whom had

tutorial instruction and five of whom hadn’t.  In these interviews, not all students

answered the mathematics question because the question was not included in early

versions of the diagnostic interview protocol.  Of the 10 tutorial students who

answered the question described in Figure 3-7 on the pretest before instruction, five

sketched the shape of the spring with a smaller amplitude after it had propagated a

certain distance, and none were able write a correct equation.  Most who sketched a

smaller wavepulse indicated that the exponential was the reason.  Eight students

plugged in x0 or left x as the variable to describe the equation of the string.  We

consider that the PM can be used to describe both these responses.  Students seem to

be using the point primitive in their attempts to make sense of the mathematics, as has

been discussed in chapter 5.

After tutorial instruction, student performance improved.  Eight sketched the

shape of the wavepulse correctly, and the two who did not indicated that they thought

of the exponential term to guide their reasoning.  Six of the students wrote the correct

equation, though four of the students either plugged in x0 or x to describe the shape of

the string.  The tutorial seems to have addressed some of the students’ difficulties.

More research needs to be done to investigate student understanding more deeply.
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Sound Waves

Description of Tutorial

The sound tutorial, like the previous two, builds on our observations of student

difficulties with fundamental ideas of physics.  These difficulties have been illustrated

in detail by quotes from interviews with Alex presented in chapter 3 and Kyle

presented in chapter 5.  In the discussion of student difficulties with sound waves,

student difficulties have been described in terms of the description of the motion of a

dust particle.  The tutorial discusses the motion of the medium through which sound

waves move in the context of an oscillating candle flame.  Data from a pretest from

F97 (see Table 6-4) show that students have generally the same difficulties with

describing the motion of a candle flame that they have with describing the motion of a

dust particle.  Only matched data are presented in the table.  Note that the high number

of blank responses on the candle flame response are due to the candle flame question

coming in the later half of the pretest.  Since the pretest was asked in one class (of the

two that took it) on the same day as a mid-term examination, many students simply

did not attempt the majority of the pretest.  Also, their time was much shorter than the

students in the other class.  Still, the data are very similar, suggesting that the context

of the tutorial is relevant to student understanding of sound waves.  Detailed results

will be shown below.

In the tutorial, students begin by predicting and then viewing a video of the

motion of a single candle due to a sound wave coming from a large loudspeaker.

Students must describe the motion of the candle due to the sound wave, and must

resolve any conflicts between their predictions and observations.  In addition, we ask

that they explicitly apply their predictions to the context of the dust particle that was

part of the pretest.

In the next section of the tutorial, students are given data that shows the

position of the left edge of the candle flame at different times.  The data points have

been taken beforehand using the program VideoPoint
5
 (see above for a description of

Table 6-4
Object Whose Motion

is Being Described

MM used:

Dust

Particle

(%)

Candle

Flame

(%)

CM (longitudinal

oscillation)
22 39

Other oscillation 26 3

PM (pushed away

linearly or sinusoidally)
38 21

Other 11 17

Blank 3 20

Performance on student pretest, comparing descriptions of dust particle and candle

flame motion.  Students answered the two questions at the same time (F97, data are

matched, N=215).  The high number of blank responses on the candle flame question

is due to lack of time during the pretest, which was followed by an mid-term

examination.
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VideoPoint) and are presented to the students in a data table in the tutorial.  Due to

time limitations during the tutorial, students are not asked to take the data themselves.

In the tutorial, students must observe the connection between the data points and the

cross-mark on the screen.  Students are asked to graph the data points on a provided

graph.  From the graph, they then find the period of the sound wave.  In the activity,

students go from a description of a single candle (which represents the motion of the

medium) to describing the frequency of the sound wave.  Thus, they are given the

opportunity to connect observations, mathematical descriptions, and physical

properties that they have discussed in class and used in their homework.

Students are then presented with a photograph of two candles sitting in front of

a loudspeaker.  They are asked to describe the motion of both candles and to sketch

separate displacement vs. time graphs for each candle.  To answer the question,

students must generalize from their previous description of a single candle’s motion to

think about any possible changes between the motion of the first and the second

candle.  Students must use the idea of a propagating wave with a finite speed to

develop the idea of a phase difference between the motion of the two candles.  This

idea is developed through a Gedankenexperiment where students are asked to think of

more and more candles placed at different locations along a path away from the

speaker.  They are asked to sketch the displacement from equilibrium of each candle at

a specific instant in time.  From this activity, they able to find the wavelength of the

sound wave.  Again, students are given the opportunity to connect their mathematical

knowledge from class with reasoning based on simple ideas that build on the model of

wave propagation from the previous two tutorials.

The ideas of wave propagation and wave-math form an integral part of

students’ opportunities to build an understanding of the phase difference between parts

of the medium which are different distances from the wave source.  Thus, at the end of

the tutorial, students have had to revisit material and concepts from their first two

tutorials.  They have built a model of waves as propagating disturbances, and they

have described the propagation of these disturbances on a taut spring.  In the sound

wave tutorial, students use this model of wave propagation to describe a different area

of physics.  They are able to develop the idea that the concepts discussed in the

tutorials are general and applicable to different topics that are more general than the

specific areas in which they were first developed.

Student Understanding of Sound Waves

The sound waves tutorial was developed after preliminary results showed that

students' difficulties were not changing as a result of traditional lecture instruction.  At

the end of F95 (after all instruction) and the beginning of S96 (after all instruction),

students answered identical questions.  They were asked to describe the motion of a

dust particle after a loudspeaker has been turned on.  Student difficulties with this

topic have been discussed in detail in chapter 4.
8
  Table 6-5 shows student

performance in these two semesters.  The data are not matched, since different student

populations were involved in the testing.  We see that lecture instruction makes no

sizable difference in student performance.  The comparison between student responses

from F95 and F97 is illustrative of the effect of the research-based tutorial instruction.
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In the beginning of F97, students answered a question (shown in Figure 3-3a)

in which they had to describe the motion of a dust particle due to a sound wave.  This

same question was asked in a pretest in which a question about the motion of a candle

flame due to a sound wave was also presented.  (Note that Table 6-4 compares student

performance on the dust particle question and the candle flame question which is

similar to the actual content of the tutorial.)  Finally, the dust particle question was

asked against the end of the semester.  The data comparing student responses to the

dust particle question  at these three times are shown in Table 6-6.

We see that students show little difference in their performance before and

after traditional instruction on sound.  They have profound difficulties connecting the

physics that is taught in the classroom to any simple physical situations that might

help them imagine and understand the situation in detail.  After the tutorial, a much

larger number of them are able to describe the correct motion of the dust particle.  The

large increase in the CM response and the large decrease in the PM response indicate

that the tutorial is having a strong effect on student understanding.

Though the improvement in student performance is encouraging, we still see

lingering difficulties.  The total number of students giving CM responses is still less

than 2/3 of the class.  Also, a large number are still unsure of longitudinal or

transverse oscillation of the dust particle, showing that the mathematical and graphical

representations we use in class may adversely affect student reasoning about the

physics.

Table 6-5
Time during

semester:

MM used:

Before all

instructio

n S96 (%)

Post

lecture

F95 (%)

CM (longitudinal

oscillation)
14 24

Other oscillation 17 22

PM (pushed away

linearly or sinusoidally)
45 40

Other and blank 24 14

Table 6-6
Time during

semester:

MM used:

Before all

instruction

(%)

Post

lecture

(%)

Post lecture,

post tutorial

(%)

CM (longitudinal

oscillation)
9 26 45

Other oscillation 23 22 18

PM (pushed away

linearly or sinusoidally)
50 39 11

Other 7 12 6

Blank 11 2 21

Student performance on sound wave questions before, after traditional lecture, and

after additional modified tutorial instruction.  Data are matched (N=137 students).

The large number of blank responses in the post-all instruction category is due to the

number of students who did not complete the pretest on which the question was asked.

Comparison of student responses

describing the motion of a dust

particle due to a loudspeaker.

Data are from F95 post-

instruction and S96 pre-

instruction and are not matched

(S96, N = 104; F95, N = 96)
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Conclusion

Tutorials have been designed to replace the smallest possible amount of the

common lecture format by replacing the one hour, traditional, TA-led recitation with a

set of group activities that provide students with the opportunity to develop their own

understanding of the physics while interacting closely with their peers and facilitators.

In this chapter, I have shown that research into student difficulties can lead to more

effective instruction.

The tutorials described in this chapter serve as an example of the curriculum

development that can grow out of research into student difficulties.  By knowing

student difficulties with wave propagation, we were able to design video-based

activities that helped students visualize the manner in which waves propagate.  We

were also able to provide students with a set of videos that allowed them to see the

process of superposition.  The relationship between the mathematics and physics of

propagation (i.e. the relationship between functions of two variables and the physical

situation) was investigated through simple activities that helped students develop the

idea of a coordinate transformation without explicitly stating that this is what they

were doing.  In the sound wave tutorial, the ideas of the previous two tutorials were

used to help students move from a description of a piece of the medium to the

description of the sound wave making the medium oscillate.  Each of these activities is

related to an area in which we have found that students have difficulty.

The tutorials have met with measurable success.  In some cases, such as sound

waves and superposition, students show great improvement in their ability to describe

the correct physics.  In other cases, such as propagation, we find that the room for

improvement is not as large, since many students enter our classes already aware of

the correct answer.  But after tutorial instruction, a larger fraction of students give only

the correct answer when answering FR and MCMR questions, showing that the

strength of their understanding has changed.  Finally, in the case of wave-math, we

have not been able to carry out sufficient investigations to show whether or not the

tutorial shows great improvement over traditional instruction.  Preliminary results are

encouraging, but more work needs to be done.

                                               
1
 For a discussion of different research-based curricula and their effectiveness at the

introductory level, see chapter 1, reference 1 (the UMd dissertation in physics by Jeff

Saul).

2
  A discussion of the tutorials and the role of research in their development can be

found in McDermott, L. C., “Bridging the gap between teaching and learning: The role

of research,” AIP Conf. Proc. 399, 139-165 (1997).  In addition, a sample class on the

tutorials was presented at this conference.  See McDermott, L.C., Vokos, S., and

Shaffer, P. S., “Sample Class on Tutorials in Introductory Physics,” in the same

Proceedings.  For other examples of tutorials and of the research that underlies their

development, see the discussion in chapter 2.

3
 For a description of the development and investigation into the effectiveness of

tutorials at UMd, see Redish E. F., J. M. Saul, and R. N. Steinberg, “On the

effectiveness of active-engagement microcomputer-based  laboratories,” Am. J. Phys.



123

                                                                                                                                      

65 45-54 (1997) and Steinberg, R. N., M. C. Wittmann, and E. F. Redish,

“Mathematical Tutorials in Introductory Physics,” AIP Conf. Proc. 399 1075 - 1092

(American Institute of Physics, Woodbury, NY 1997).

4
 QuickTime is a cross-platform multi-media software package and is a registered

trademark of Apple Computer (www.apple.com).  More information can be found at

URL www.apple.com/quicktime.

5
 The VideoPoint

TM
 CD-ROM is a video analysis program developed at Dickinson

College by P. Laws and Mark Luetzelschwab.  It is commercially available from

Lenox Softworks, Lenox MA.

6
 McDermott, L. C., P. S. Shaffer, and the Physics Education Group at the University

of Washington, Tutorials in Introductory Physics (Prentice Hall, New York NY,

1998).

7
 We have found through informal observations and one interview that many students

interpret the variable x in this equation similarly to how they interpret it in the

exponential equation discussed in chapter 4.  These students fail to include a time

variable in the equation and interpret x to mean the location of the peak of the pulse.

8
 Because the diagram included with the question indicated walls which created a tube

around the dust particle, we saw a variety of additional answers which went beyond

those discussed in chapter 4.  In many, students seemed to use the walls to guide their

reasoning; the existence of the wall seemed to trigger responses dealing with

harmonics in closed tubes.  A non-trivial set of responses involved the sketching of

standing wave patterns in the tube.  In later semesters, we removed the walls from the

question to provide more clear insight into student difficulties with the fundamentals

of the physics of sound.
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Chapter 7: Investigating the Dynamics of Student Reasoning

Introduction

A goal of our research has been to go beyond simply categorizing student

difficulties.  In addition, we would like to investigate the dynamics of student

responses during instruction.  In chapter 6, data were presented to show that individual

topics of student understanding were affected by a modified curriculum, but the

overall picture of student understanding of wave physics was not discussed.  The data

were discussed in terms of two reasoning methods that students use when answering a

specific set of questions.  We can describe students as using either:

• the correct model of waves (Community Consensus Model, or CM),

elements of which students learn during the semester, or

• the more problematic pattern of associations to Newtonian (mechanical)

particle physics (loosely referred to as the Particle Model, or PM, of

waves), elements of which students bring to the classroom.

To investigate the dynamics of student reasoning in more detail, we have

developed a diagnostic test that can be administered before and after student

instruction.  Though the developed diagnostic test included many questions that did

not specifically address the distinction between student use of the CM and PM, the

discussion in this chapter focuses on questions that elicited student difficulties related

to their use of the two models.  The questions not discussed in this chapter will be part

of future work in investigating student understanding of wave physics.

In this chapter, I discuss the development of the diagnostic test and its

usefulness in coming to an understanding of how individual students and an entire

class develop an understanding of wave physics.  The distinction between the CM and

PM gives one example of many different aspects of reasoning that students use when

thinking about waves.  The questions chosen in the diagnostic represent questions that

possibly elicit both CM and PM responses (and possibly both).  The preliminary and

pre- and post-instruction final diagnostic tests are given Appendix D of the

dissertation.

The analysis of the data is similar to the analysis described in chapters 5 and 6.

Student responses are categorized as representative of either the CM, the PM, both, or

neither.  We find that students begin the semester using primarily the PM but move to

a mixed state where both the CM and the PM play a role in their thinking.  This

mixture of reasoning patterns is not due to understanding one topic of wave physics

with the CM and another with the PM but seems to exist within a single wave physics

topic.

Preliminary Diagnostic Test

A preliminary version of a wave diagnostic test was designed for use in

interviews in the S97 semester.  The interview setting was chosen to give the

opportunity to probe student responses in more detail.  By following up on student

responses, we were able to compare the reasoning in their responses to the reasoning
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we believed was occurring.  Our beginning assumptions were based on previous

research into student difficulties.  The diagnostic test was developed using questions

we had found were effective in uncovering student use of the CM and PM in reasoning

about waves.

The diagnostic was prepared with multiple-choice versions of questions

previously used in free response formats in interviews or written tests.  The multiple-

choice questions were designed with research-based distractors so that students would

have the opportunity to make common errors.  The distractors were based on

responses that students had given during our previous research projects.  An example

of a question with research-based distractors has been discussed extensively in this

dissertation in the context of the free response (FR) and multiple-choice multiple-

response (MCMR) question on wave propagation speed (see chapter 3, 5, and 6).

Many of the multiple-choice questions were in an MCMR format.  In many of

these questions, students were offered a series of questions and a series of possible

responses for that set of questions (for example, questions 1 to 4 might have possible

responses a to f).  Students were told that they could use one response more than once

to answer more than one question.

During the implementation of the interview diagnostic test (see below for more

details), two free response versions of MCMR questions were added.
  
This gave us the

opportunity to ask nearly identical questions using different formats, which we had

found effective in previous research settings.
1
  The FR questions were asked at the

beginning of the diagnostic, so that students would not use offered responses from the

MCMR questions in their FR responses.

The preliminary diagnostic test is presented in Appendix D-1.  The entire

diagnostic test is presented, but only those parts which directly deal with student use

of the CM and PM are discussed in this chapter (as discussed above).  The wave

physics issues included in the diagnostic are:

• wave propagation (both mechanical waves and sound waves),

• superposition of mechanical waves,

• the mathematics used to describe waves (both mechanical and sound),

• the motion of elements of the system through which the wave propagates,

• reflection of mechanical waves from a boundary.

Most of the questions used in the diagnostic had been used in previous research

and common student responses to these questions were well known.  For most of these

questions, we did both interviews and written tests.  In many cases, we explicitly used

interviews to check to see if students answered the written questions consistently with

the way that they actually thought about the situation.  We had found that students

answered the questions in the preliminary diagnostic test consistently.  (These

questions are said to be validated in such a situation.)

As stated above, the design of the preliminary diagnostic test changed during

the course of its implementation.  Some questions were rephrased due to student

comments, some questions were added, and others were dropped.  The questions on

the last version of the preliminary diagnostic test that were most effective in

uncovering student use of the PM are shown in Table 7-1.  For each question from the

diagnostic test in Appendix D-1, the correct (CM) response is given along with the

possible PM responses offered as distractors to the students.
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The interview diagnostic test was administered to 20 students.  Five of these

students had completed traditional instruction in which their recitation sections were

led by a department professor.  Fifteen students had completed tutorial instruction.

Due to time limitations, not all students answered all questions.  Also, for reasons

stated above, the test itself was changed during the course of the interviews.  Although

all the interviewed students had completed instruction on waves, many still used

problematic reasoning and showed difficulties with the material.

Each student’s response was categorized according to the type of reasoning

used.  The criteria involved have been discussed in chapters 3, 5, and 6.  Student

responses were first categorized according to the difficulties that they had with the

problem.  These difficulties were tabulated using a spreadsheet program.  Then, the

various classes of difficulties were organized.  Finally, each student and each question

were analyzed according to:

• the number of correct responses (those categorized best by the CM)

• the number of responses best categorized by the PM,

• the number of responses not categorized by either CM or PM, and

• the number of unanswered questions.

Table 7-1

S97 Wave Diagnostic

Question

Possible PM

Response(s)

Possible CM

Response(s)

Wave Propagation

FR1 and 5 a, b, c, d, i, j e, f, g, h

Wave-Math

FR2a) and 9 a, f g

FR2b) and 10 a, b, c, d, e f

Sound Waves

1 b (if without c) c

3 and 4 depends on response

to question 1…

depends on response

to question 1…

Superposition

12 a or b (if a bouncing

explanation given), g

c

17 f, g e

Reflection

20 h e

22 a (bouncing), i (pulse

absorbed into wall)

d

23 a, i (see above) b

Table of S97 wave diagnostic questions that were used to determine if students were

answering using the PM or CM.  The diagnostic test can be found in Appendix D-1.

Not all questions had clear PM and CM responses and are therefore not included in

this analysis.
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The organization of student responses into these 4 categories was used for all

the wave diagnostic tests that will be discussed in this chapter.

The summary of how students responded to the 15 questions most likely to

show evidence of the PM is shown in a two-dimensional histogram plot in Figure 7-1.

The data in the table represent student performance according to how many questions

they answered using a specific number of responses that are best classified as either

PM or CM responses.  For example, we classified the 13 responses of one tutorial

student as indicative of the CM and none as indicative of the PM.  We consider this a

generally favorable result (i.e. we would like all our students to show such

performance).  We consider a student using primarily PM-like responses as showing

unfavorable performance.  Note that the sum of student PM and CM responses does

not add to 15 in many instances, for reasons stated above and the additional reason

that not  all responses were classifiable with the CM or PM.

Consistent with our previous findings, we observe that many students

consistently misapply otherwise reasonable primitives in their reasoning about wave

physics.  They are not consistent in their use of the PM, though.  If we consider the

responses given by Kyle (previously discussed in chapter 5), we see an example of this

mixture in student reasoning.  Kyle answered six of fifteen questions in a manner best

classified by the PM and four in a way best described by the CM.  In one question, he

used reasoning that was indicative of both the CM and the PM.  Thus, he answered a

Figure 7-1
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PM vs CM Use on the Preliminary

Interview Diagnostic Test, Post-Instruction

Comparison of post-instruction PM and CM use by 15 tutorial and 5 traditional

students on 15 questions from the preliminary wave diagnostic test.  PM = Particle

Pulses Pattern of Association.  CM = Community Consensus (correct) Model.

Mixed responses were counted as both PM and CM responses.  “Favorable”

describes a student who gives only answers best classified by the CM.
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total of seven questions using the PM and five using the CM.  In addition, four of his

responses were not indicative of either the PM or CM.  Thus, a student who clearly

showed that inappropriately applied primitives guide part of his reasoning in wave

physics also showed that he used multiple reasoning methods when thinking about the

physics.

If we compare tutorial and traditional instruction students’ performances, we

note that most tutorial students performed better than the non-tutorial students on the

material.  This result is consistent with the results presented in chapter 6, which show

that the tutorials effectively address student use of the PM.  But, with the small

number of students participating in the interviews, these data are merely suggestive

and not conclusive.
2

The preliminary diagnostic test was designed as a precursor to a written

diagnostic test that would be applied in future semesters.  To determine the

effectiveness of the questions in uncovering student difficulties with the use of the PM

in their reasoning, we counted how many students used the CM, PM, or other

explanations when answering each question.  The results are shown in Table 7-2.

Note that the results show student performance after (both traditional and tutorial)

instruction.

Students seemed to have the greatest difficulty with the wave propagation

questions.  The common “mixed” responses on the MCMR questions stand in contrast

to the very polarized responses on the FR question, consistent with results from other

investigations.  Both wave propagation questions were effective in uncovering student

Table 7-2
# of responses

Question CM

Mixed

CM/PM PM Other Total

Propagation

FR1 8 2 8 0 18

5 9 9 1 1 20

Sound Waves

1 13 0 7 0 20

3 12 0 6 2 20

4 11 0 2 7 20

Wave-Math

FR2 a 8 0 2 0 10

FR2 b 5 0 2 3 10

9 7 1 2 0 10

10 6 0 2 2 10

Superposition

12 17 0 1 0 18

17 7 0 11 0 18

Reflection

20 9 0 2 6 17

21 7 0 4 6 17

22 14 0 1 2 17

23 10 0 7 0 17

S97 wave diagnostic test responses split by topic.  For each question, the number of

CM, PM, mixed, and other responses is given, followed by the total number of

students who answered that specific question.
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use of the PM in their reasoning after instruction.

The sound wave question in which students describe the motion of a dust

particle in front of a loudspeaker also elicited many PM responses.  Of the five

traditional instruction students, four answered this question using the PM (the fifth

gave a CM response).  Many students had difficulty with the question about the effects

of a change in frequency on the dust particle, but did fewer used the PM when

describing the effects of a change in volume.

The superposition questions were partially successful in uncovering student

use of the PM.  Consistent with previous results, very few students state after

instruction that waves permanently cancel each other.  Thus, they answered one

question very well.  But, many students showed a lack of functional understanding of

the point-by-point superposition of displacement from equilibrium when the

wavepulses coincided but their peaks did not overlap.

Finally, many students had difficulty with the wave reflection question in

which they described the shape of the wavepulse reflected from a free end.  Many

stated that the wavepulse was absorbed into the.  Few had specific problems with the

other wave reflection questions, though many “other” responses were given.  These

questions were only partially successful in uncovering student use of the PM.

The difficulties students had with the questions on the preliminary diagnostic

test were consistent with previous results.  Therefore, the diagnostic test was not

modified very much when it was next used.

Final Diagnostic Test

Based on the results from the S97 preliminary diagnostic test interviews, we

developed a final version diagnostic test for F97.  We asked a pre-instruction and post-

instruction written diagnostic test of two Physics 262 classes at the University of

Maryland.  In the following sections, I discuss the design and implementation of the

pre-instruction and post-instruction diagnostics.  The design changes that led to the

post-instruction test were partially based on a data analysis of the pre-instruction test,

which will be described below.  I end the chapter with a comparison of student

performance on the two diagnostic tests and draw conclusions about student reasoning

and classroom performance based on the data.

Pre-Instruction Diagnostic Test, Final Version

The pre-instruction written diagnostic test is presented in Appendix D-2.  The

pre-instruction diagnostic consisted of the 15 questions shown in the preliminary

interview diagnostic to often elicit responses that could be classified as PM responses.

Two new questions were written for this test.  The purpose of these questions

was to raise issues from the dust particle sound wave question (discussed in chapters 3

and 6) in a different setting.  One question asked students to compare the speed of

sound of two people’s voices, given that one person’s voice was deeper and louder

than the other’s.  A correct response would state that the speed of sound for the two is

the same, regardless of volume or frequency of the sound.  Students also answered

variations on this question (e.g. how does your answer change if the volumes are
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equal).  A second question asked students to consider the motion of a dust particle

close to a wall when a sound wave reached the wall and reflected from it.  A correct

answer would state that the air near the wall is incapable of moving from its

equilibrium position due to the wall, and therefore the dust particle will not move.

This question also asked students the effect of a louder volume on the speed of sound.

For both questions, we expected students to make similar errors to the ones they made

when describing the motion of a dust particle in front of a loudspeaker.  We expected

students to show an incomplete understanding of the relationship between frequency,

volume, and speed of sound.  We also expected students to have difficulty describing

the motion of the medium through which the sound traveled, especially in a setting

involving reflection from what is effectively a “fixed end.”

One important difference between the preliminary (interview) diagnostic test

and the final (written) diagnostic test was that the final version consisted of primarily

free response (FR) questions.  The predominantly multiple-choice multiple-response

(MCMR) format of the preliminary test had been feasible in an interview setting, but

students had many difficulties with certain questions.  As a result, it was decided to

make the F97 test a free response test.  One exception was the wave propagation

question already discussed in chapters 3 and 6.  This question was asked in both FR

and MCMR formats

The pre-instruction diagnostic was administered during the first week of the

semester during the tutorial period.  Tutorials had not originally been scheduled for

that week because the first day of the semester was a Tuesday.  Those students who

had tutorial period on a Monday were asked to come to another section during the

course of the week.  During the tutorial period, students were asked to answer all the

FR questions, turn them in, and were then handed the wave propagation MCMR

question separately.  In this way, we were assured that they could not change their

responses on the FR question due to the offered responses on the MCMR version.

Most of the analysis of the final diagnostic test involves a comparison of pre-

and post-instruction data that will be discussed below.  The analysis that led to the

post-instruction diagnostic must be discussed before introducing the post-instruction

diagnostic.

Many of the questions had similar content, though their surface features were

different.  For example, students answered questions about the speed of sound in the

context of two people yelling (at different volumes and frequencies), sound waves

created by a loudspeaker, and sound waves created by a clap.  Students took much

longer to answer the pre-instruction written diagnostic test than had been expected.

As a result, we were aware that we had to shorten the test for its use after instruction.

Thus, we planned to drop questions in which students gave consistent responses.  For

example, if students consistently used the same reasoning to describe the effect of a

change in frequency on the speed of sound, then we would use only one question

addressing that issue.

To see the correlation between student responses on the written diagnostic test,

we first classified all student responses according to their use of the PM, CM or other

explanation.  We then compared how the students answered sets of questions.  (In the

discussion below, I will refer to the parts of questions as a, b, and c, even when that

distinction did not exist in the actual numbering of the questions.)  For the three parts
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of question 1 (on the speed of sound waves), we found that students used the same

explanation to answer parts b and c as they used to answer part a (80% and 90%,

respectively).  Similarly, on question 3 (on the motion of the medium due to sound

waves), we found that students answered parts b and c consistent with part a 80% and

90% of the time, respectively.  But, they did not necessarily respond to parts a of

questions 1 and 3 consistently (only 50% of the time).  Thus, their responses showed

that they were consistent when answering a single problem, but not when thinking

about a single physics topic.

Students were also not consistent across physics topics.  Students might answer

use the PM consistently when describing how to change the speed of a sound wave but

use the CM to describe how to change the speed of a mechanical wavepulse.  The

correlation in student responses between the part a of question 1 (on the speed of

sound) and the part a of question 4 (on the speed of mechanical waves) was only 45%.

This could be interpreted as saying that the questions are inconsistent and do not give

us insight into student understanding of the material.  Such an interpretation would

assume that students use only one form of reasoning when thinking about wave

physics.  Results discussed in previous chapters indicate that students are inconsistent

in their reasoning.  Therefore, we believe that the questions are accurately uncovering

areas in which students think inconsistently about the physics.

Post-Instruction Diagnostic, Final Version

The post-instruction diagnostic was shortened from the pre-instruction

diagnostic due to time limitations.  Based on the analysis of questions described

above, we only used questions that gave unique information about student reasoning.

For example, we asked students only part a of question 1 from the pre-instruction

diagnostic.  The wave reflection questions were completely dropped, though their

inclusion would have been interesting because it would have given us insight into how

student performance changed when there was no tutorial instruction on a given topic.

The diagnostic is given in Appendix D-3.

The post-instruction wave diagnostic test was given in two parts.  In the week

before Thanksgiving (roughly 6 weeks after students had taken a mid-term

examination on waves), students answered the FR wave propagation and dust particle

(sound wave) questions as part of that week’s tutorial pretest.  (The material usually

covered in that week’s pretest was shortened and the extra space used for the wave

diagnostic test.)  During Thanksgiving week, students took the remainder of the wave

diagnostic test during the commonly scheduled pretest time.  There was no pretest

because tutorials are not held during a holiday week.  On this part of the wave

diagnostic test, students answered the MCMR wave propagation question, the two

“real world” sound wave questions, the superposition question with asymmetric

waves, and an MCMR version of the dust particle question.  This MCMR question had

not been asked on the pre-instruction diagnostic.
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Comparison of Student Pre- and Post-Instruction Performance

Two different types of analysis were done on the data.  First, one specific topic

of the wave diagnostic test was investigated according to the modes of reasoning (CM

or PM) students used to answer four very similar questions.  The evidence suggests

that students use multiple reasoning methods within individual topics of wave physics

rather than separate consistent reasoning methods for different topics.  Our result is

consistent with the analysis of FR and MCMR questions described in chapter 3 and it

is more robust than the results from preliminary diagnostic test, described above.

Second, a statistical analysis of the data was developed.  Using a mathematical

description allowed us to parameterize the results and compare parameter variables

from before and after tutorial instruction.

Because a subset of pre-instruction questions was used on the post-instruction

diagnostic, only those questions used in both pre- and post-instruction diagnostics are

compared.  In addition, only those students who answered a majority of these eight

questions before and after instruction are compared.
3
  This lets us restrict the

discussion of the data to only those students who answered identical questions before

and after instruction.

Inconsistent reasoning to describe a single wave physics topic

By focusing on student responses on a single topic (such as sound waves), we

can see how students use multiple reasoning methods to describe a single physics

topic.  We find that most students begin the semester using the PM in their reasoning,

but students at the end of the semester are more mixed in their responses.

On the pre-instruction diagnostic, questions 1a, 3a, and 6a have the same

physics (how a change in the creation of a wave affects fast the wave propagates).  Of

the 182 students who answered each question, 99, 94, and 108 students (respectively)

gave a PM response.  Of the other students, 68, 16, and 14 (respectively) gave CM

responses.  The second most common category (after PM reasoning) for the last two

questions was “other.”  This implies that students are reasoning in different ways

about the same physics situation.  Students seem to be reasoning about a single

physical topic in many different ways (though most consistently use the PM).

Further evidence comes from looking at a plot which shows how many

students gave a specific number of PM and CM responses for all four sound wave

questions asked before and after instruction.  We find that students are neither

consistent nor coherent in their understanding of individual topics of wave physics.

Figure 7-2 shows data from pre- and post-instruction wave diagnostic test questions

that deal with sound waves.  Only matched data are included (i.e. 136 students

answered a majority of the questions both before and after instruction).  The histogram

is like the one discussed in relation to the preliminary diagnostic test.  Each histogram

bar shows how many students gave a specific number of PM and a specific number of

CM responses.

Note that most students begin the semester answering predominately with PM

reasoning, but many use mixed reasoning.  After instruction, we find that students still

answer the four sound wave questions using both reasoning methods.  They have
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moved toward CM reasoning in their responses but have not stopped using PM

reasoning.

Figure 7-2
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student who gives only answers best classified by the CM.
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Students use inconsistent reasoning when thinking about a single wave physics

topic such as sound waves both before and after tutorial instruction.  It seems that the

effect of tutorial instruction was to move students to a hybrid form of reasoning that

includes both the CM reasoning that we would like them to have and the PM

reasoning with which many enter our courses.

Multiple reasoning methods to describe wave physics

Students also use inconsistent reasoning when describing the investigated wave

physics topics both before and after tutorial instruction.  Figure 7-3 shows separate

histograms of student pre- and post-instruction responses.  Again, each column

represents the number of students who gave a certain number of CM and PM

responses.  For example, before instruction, two students answered the eight analyzed

questions using one PM response and seven CM responses.  We consider this

favorable student performance.

At the beginning of the semester, most students use primarily PM reasoning.

They use CM reasoning for only one or two questions.  Based on these results, we

conclude that students are inexperienced with wave physics and are using the

previously learned mechanics to help guide their reasoning for most topics.  As stated

in a previous chapter, student attempts to use their previous knowledge to guide their

reasoning on unfamiliar topics is a quality that we would like them to develop in the

classroom.  The difficulty in this setting occurs from the incorrect application of

otherwise useful primitives to waves.

At the beginning of the semester, some students are located in the middle

region of the graph, answering between 3 and 5 questions using both the PM and the

CM.  This indicates that the students are in a mixed state of knowledge about the

physics when they enter our course.  As was suggested in chapter 3 in the context of

the FR and MCMR wave propagation questions, students have difficulty being

consistent in their descriptions of physics topics.  In the discussion of FR and MCMR

responses, we found that students often recognized the correct responses but were

unable to call them up on their own.  It may be that pre-instruction student

performance shows evidence that students are aware of a few correct ideas in wave

physics, but predominantly use the PM to guide most of their thinking.

At the end of the semester, students have begun to use more CM reasoning, but

still use PM reasoning heavily.  Where they began the semester predominantly in the

high-PM, low-CM region of the plots, they end the semester spread out in the middle-

to high-CM region of the plots.  The data as presented do not show that the number of

responses categorized as “other” has stayed roughly the same as at the beginning of

the semester.  Most of the movement in student responses during the semester seems

to occur between PM and CM reasoning.

Our results suggest that students have difficulties when learning to describe

new phenomena in physics.  Students bring to the discussion an ability to make

analogies to the knowledge they do have.  These analogies are guided by their

experience (limited, in the case of waves, since most wave phenomena that we deal

with on a daily basis are not visible), and often the analogies are incorrectly applied
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Figure 7-3
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without a functional understanding of the physics.  As students go through our

courses, they learn aspects of the correct model of physics, but do not let go of their

previous knowledge in all cases.

Describing class use of different reasoning methods

The previous two analyses have focused on an overview of changes in student

performance on the wave diagnostic test, but an analysis and description of an entire

class’s performance is also possible.  We have carried out this analysis by considering

the use of the PM and CM separately, rather than in a two-dimensional histogram.  We

can look at the average use of the PM or CM within a class and use these criteria to

categorize classroom performance in more detail.  By providing a statistical language,

this method summarizes the data and allows a discussion of classroom use of multiple

reasoning methods that goes beyond a description of student movement from

favorable to unfavorable responses.

Each data set consists of a count of how many students answered a specific

number of questions using a specific reasoning method (either CM or PM).  This is

essentially the sum of each row of data in Figure 7-3.  These data were plotted on a

graph where the number of student responses was compared to the number of

responses using the given reasoning method.  By fitting equations to the data sets, we

are able to parameterize the results in a way that lets us quantify any changes in

student reasoning that occur due to instruction.  This analysis is data-driven, in the

sense that the data fits are chosen based on reasonable descriptions of the population

and of the situation.  Figure 7-4 shows the data fits for the number of questions to

which students responded with the PM before and after instruction.  In Figure 7-5, the

data for the number of CM responses on the wave diagnostic tests from both before

and after instruction are presented. A variety of methods was used to determine the

best fits of the data.  For example, the pre-instruction PM data were plotted on a lin-

log plot to help determine the best data fit.  The plot is shown in Figure 7-6.  The best

fit for the data was parabolic with negative curvature, indicating that the best fit for the

actual data would be a Gaussian or normal distribution.  For the lin-log plot, a

parabolic fit gives an equation with the form

0

2

0 )()ln( yxxNy +!!= (7-1)

where the parabola has a width determined by N and has its maximum (or minimum)

is located at x0,y0.  The negative sign determines the downward shape of the parabola.

Solving for y gives the normal distribution,

( )( )
2

0
2

1
!xx

Aey
!!

= (7-2)

where 0y
eA =  and ! = (2N)

-1/2
.  In this situation, !

2
 gives the standard deviation of

the data around the mean, x0.  Three of the four data plots (pre-instruction and post-

instruction PM use, post-instruction CM use) were best described with normal

distributions, as determined by the method described above.
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Figure 7-4
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Pre- and post-instruction PM use on the wave diagnostic test by N=136 students, F97.

Fits for both sets of data are given by a Gaussian distribution,
( )( )

2
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!xx

Aey
!!

= .  For

the pre-instruction data, A = 28.0, x0 = 5.03, " = 2.02.  For the post-instruction data,

A = 27.4, x0 = 1.68, " = 2.43.

Figure 7-5
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Pre- and post-instruction CM use on the wave diagnostic test by N=136 students, F97.

The fit of the pre-instruction data is the integrand of a Gamma function distribution,

y=Ax
b-1
e
"x/c

, where A = 154, b = 2, c = .926 (mean: bc = 1.84, variance: bc
2
 = 1.71).

The fit of the post-instruction data is given by a Gaussian distribution,

( )( )
2

0
2

1
!xx

Aey
!!

= , where A = 25.9, x0 = 3.73, " = 2.23.

For the fourth data plot, a different function had to be found.  The pre-

instruction data indicating CM use is heavily skewed to the left.  Most of the students

did not use any CM responses at the beginning of the semester (which is not

necessarily surprising, since the investigation preceded any study of waves in the

classroom).  But, very few students used no CM responses (recall that on the MCMR

wave propagation questions, 85% of the students entering the course included the CM

in their responses).  Thus, a function had to be found that went to zero at the origin but

also decayed very quickly to zero as the number of questions answered using the CM

increased.  A function of the type
nxAxey != (7-3)

PM Use, pre-instruction PM Use, post-instruction

CM Use, pre-instruction CM Use, post-instruction
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would provide this structure.  Equation 7-3 is closely related to the integrand of the

Gamma function distribution,
cxb eAxy !!= 1 (7-4)

with values of b = 2 and c = 1/n.  For such a function, the mean value is given by

x0 = bc and the variance (the equivalent of "
2
 for a Gaussian distribution) by bc

2
.  As

opposed to the normal distribution, the mean of the Gamma function distribution is not

located at its maximum value (which is xmax = bc!c, as determined by setting the first

derivative of equation 4 equal to zero).

Once the functions had been chosen for the fits, the various parameters had to

be fit correctly.  Using a spreadsheet program, the sum of the squares of the

differences between the actual data value and the fitted value was computed.  Using

macros in the program, the lowest value of the sum of the squares was computed by

varying the mean, standard deviation, and normalization values.  Since the

normalization values were primarily determined by the size of the class (N=136

students), the normalization is not a measure of student performance on the wave

diagnostic tests while the mean and standard deviations are.

Table 7-3 shows a comparison of mean and standard deviation values for PM

and CM use before and after instruction.  These data describe the class performance

rather than an overview of individual students’ performances.  Students start the

semester using the PM to answer most of the questions (5.03 ± 2.02 questions), and

only answer a few questions using the CM (1.84 ± 1.71 questions).  The sum of PM

Figure 7-6
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and CM means before instruction is nearly 7 out of 8 questions (though many students

answered one with mixed MM use, which was then counted for both PM and CM use),

showing that for the class average, most students are using these two models.  Also,

the standard deviations of the pre-instruction data overlap only slightly.  This shows

that the data are separated far enough to show that there is little overlap in student

model use.

At the end of the semester, the mean value of PM use is nearly as low as the

pre-instruction mean of CM use, but the standard deviation is larger (1.68 ± 2.43

questions).  Thus, the spread in PM use for the class is larger, showing that students

have moved away from their pre-instruction reasoning but not in a consistent fashion.

The class is still using the PM more after instruction than they used the CM before

instruction.

The post-instruction CM data has also not moved as far from the pre-

instruction as we would like as instructors (3.73 ± 2.23 questions).  The mean value of

the data shows that the class as a whole uses the CM for slightly less than half of the

questions.  Again, the spread of the data is large, implying that students are spread out

over a many different levels of CM use in their responses.  Class use of the CM after

instruction is less than class use of the PM before instruction, implying that the model

of waves which they learn in our classes is used less than the inappropriately applied

reasoning with which students enter our classes.

Finally, when looking at the sum of the means of post-instruction mental

model use, we see that 5.4 questions are answered using one of the two mental

models.  Recall that on the post-instruction wave diagnostic test there were 9 questions

and that mixed reasoning was common to the MCMR wave propagation question.

Thus, many students are using other explanations after instruction, and many are

leaving questions blank.  The latter occurred often on the FR sound wave question, for

example, since it was at the end of a lengthy pretest and many students did not

complete it.  Still, 5.4 out of 8 questions is still very low.  In general, we see that

students have a strongly mixed understanding of wave physics, with the PM and CM

being their predominant models but other explanations also playing a role.  In F97,

they did not leave our classes with a coherent understanding of wave physics.

Summary

In this chapter, I have described how the development of a diagnostic test to

investigate the dynamics of student reasoning about wave physics.  The diagnostic was

developed to elicit the most common difficulties we saw students having in our

previous investigations.  These difficulties have been organized in terms of the Particle

Pulses Pattern of Association (PM).  We have also characterized the model we would

like students to learn in our introductory physics classes as the Community Consensus

Model (CM).

A preliminary version of a diagnostic test showed that students used both the

PM and the CM to describe wave physics after instruction.  Based on these results, we

developed a written wave diagnostic test that could be administered both before and

after instruction.  This would let us evaluate the effectiveness of instruction with

respect to the broad picture of student understanding of waves.
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Results on the F97 wave diagnostic test were interpreted in terms of both

student and class performance.  Student performance was described by considering

two-dimensional histograms which showed both PM and CM performance.  The

histograms indicated that most students were moving from predominantly PM to

mixed PM and CM reasoning.  Students seem to leave the classroom with a less

coherent (though more correct) model of waves than the model with which they

entered our course.

Class performance was described by analyzing use of a single reasoning

method (PM or CM) and fitting functions to the data.  Again, we saw that the class as

a whole began the semester using predominantly the PM with only weak use of the

CM.  Out of eight questions, an average of 5.03 (±2.02) were answered using the PM

and less than 1.68 (±2.43) were answered using the CM before instruction (numbers in

parentheses are the standard deviations of the distribution functions used to fit the

data).  After instruction, the PM is still used to answer some questions (1.84 ± 1.71),

and the CM is used more often (3.73 ± 2.23).  Still, the CM is not used as often as one

would hope, and class performance indicates that most students are finishing

instruction on waves with a mixed understanding of wave physics.

Both analyses indicate that students go through a transition in their

understanding of wave physics.  Students bring previous understanding to the

classroom.  We can say that they apply their previous understanding to new settings in

an attempt to make sense of the material.  We have found that students enter our

classes using mechanics-based reasoning inappropriately applied to wave physics.

They leave our classes using the correct model of physics but still holding on to their

original analogies and reasoning patterns.

                                               
1
 See chapters 3 and 6 for a discussion of the use of FR and MCMR questions to gain

insight into student understanding wave propagation.

2
 We have not yet had the opportunity to investigate the difference in student

performance in the two instructional settings in more detail.

3
 Some students were not present during one of the weeks the post-instruction

diagnostic was asked.  Others did not complete large parts of the diagnostic.



141

Chapter 8: Summary

Introduction

Our investigations of student understanding of wave physics show that

students do not bring so much a body of pre-existing knowledge but a way of applying

their pre-existing knowledge to a new and unfamiliar situation.  Much of their

knowledge is appropriate in some settings but inappropriately applied in others.

During our courses, they learn the correct material that we want them to learn, but they

still hold on to their previous way of thinking about the physics.  In this chapter, I

briefly review the results discussed in previous chapters and summarize our findings.

As part of ongoing research by the Physics Education Research Group (PERG)

at the University of Maryland (UMd), I have investigated student understanding of

some of the introductory physics concepts of waves taught in the engineering physics

sequence at UMd.  Investigations used the common research methods of physics

education research.  In-depth understanding of student reasoning was gained through

the use of individual demonstration interviews.  In this setting, students are probed as

thoroughly as possible about an individual topic because the researcher has the ability

to follow up on student comments.  Interviews form a sort of “state space” of possible

responses that can be used to analyze other probes that gives less insight into student

reasoning.  For example, written tests allow for more students to answer a single

question, but the researcher is usually unable to follow up on student responses.  In

both written tests and interviews, it is possible to ask questions in a variety of formats.

In this dissertation, I describe free response and multiple-choice, multiple-response

questions in some detail.

The model of waves which students learn in this course consists of small

amplitude waves traveling through ideal media such that there was no loss and no

dispersion in the system.  This model was investigated in the context of mechanical

waves (on a taut string or spring) and sound waves (in air).  Topics include wave

propagation, superposition, and reflection of mechanical waves (on a string) and the

propagation of sound waves.  For both mechanical and sound waves, I have also

investigated the mathematical descriptions students use to describe the medium

through which the waves travel.  Students have fundamental difficulties with each of

these topics, and their reasoning shows that they often are unable to apply fundamental

ideas of physics appropriately.

In our physics classrooms, we expect our students to understand and apply

well-defined, coherent models of physical systems.  The results presented in this

dissertation indicate that many students have a fragmented picture of physics.  They

seem to access their knowledge depending on criteria triggered by the question and

situation at hand.  Thus, they may simultaneously have both correct and incorrect

ideas about specific physical situations.  Both as instructors and as physics education

researchers, we benefit from an understanding of the elements of students’ reasoning

and the criteria by which students organize their understanding.
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Specific Examples of Student Reasoning About Waves

The brief examples given below of specific student difficulties with wave

physics are described in more detail in chapter 3.

We asked students to describe how they could change the speed of a wavepulse

created by a quick flick of a hand holding a long, taut string.  Before any instruction,

13% of the students who answered a free response version of this question gave the

correct answer that only changes to the medium (its mass density or tension) would

have the desired effect.  Of the other students,  77% stated that the demonstrator

creating the wave would have to move her hand more quickly (or slowly) to create a

faster (or slower) wave.  Thus, students are unable to separate the propagation of a

wave from the initial condition that describes its creation.  Instead, students describe

the motion of the wave as if it were directly influenced by the manner of the wave’s

creation.

Student description of the motion of a dust particle floating in air due to a

sound wave propagating through the air showed that students are unable to separate

the sound wave from the medium through which it travels.  Both before and after

traditional instruction, more than 40% of the students state that a dust particle in such

a situation will be pushed away from the loudspeaker in the direction of wave

propagation.  (96 students answered the question before instruction and 104 answered

after instruction.  Data are not matched, in the sense that these are not the same

students, but other research results are consistent with these data.)  Student

explanations indicate that they are thinking of sound as moving air exerting a force (in

only the direction of propagation) on the medium through which it travels.  After

instruction, less than half the students (46% of 104 students) describe the dust particle

oscillating due to the sound wave, and only 24% correctly indicate that the motion is

longitudinal.  Many students are unable to distinguish between a propagating

disturbance to a medium and the medium itself.   Instead, many students describe the

wave as the motion of the medium itself.

When discussing superposition, many students do not always think of a

mechanical wave as an extended region that is displaced, but instead describe the

wave by a few specific and significant points.  For example, when two wavepulses

(finite length waves, as opposed to infinitely long, e.g. sinusoidal, wavetrains)

coincide but their peaks do not overlap, many students do not show superposition in

the appropriate regions.  Instead, they state that the wave only superposes when the

amplitudes overlap.  By “the amplitude,” these students mean only the peak amplitude.

Before instruction, 65% of 131 students give answers similar to this one, while only

27% show point-by-point addition of displacement at all appropriate locations.  Even

after traditional instruction, 53% of the students describe superposition in terms of

only the amplitude point, and 26% give the correct response.  Students giving the

amplitude response are not recognizing a wave as a disturbance to the system that

covers an extended region.  Instead, they use a single point to describe the entire wave

and neglect all the other displaced points in their descriptions.

In a fourth area of wave physics, we have investigated student interpretations

of the mathematics used to describe waves.  Students were given the shape of a

Gaussian wavepulse propagating along an ideal, taut string and the equation to
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describe the shape of the string at time t = 0 s, 
( )

y x Ae
x

b( ) =
!

2

.  They were then asked

to sketch the shape of the spring and write an equation to describe the shape they had

sketched after the peak of the wavepulse had moved a distance x0 from the origin.  Of

the 57 students, 35% sketched a shape with a smaller amplitude.  Though a physically

appropriate description (if students were taking into account the loss in the system,

which they were told was ideal), the explanations students give indicate that they are

instead being guided in their reasoning through a misinterpretation of the mathematics.

Many students interpret the variable x to mean the position of the peak of the pulse.

The variable y describes the amplitude of the pulse for these students.  Thus, when the

x value increases (to x0, for example), the amplitude of the wave decreases.  This

description is similar to the one given by many students describing superposition.

Students do not use the mathematics to describe the entire string.  Instead, they focus

on the peak of the wave as the important point described by the mathematics.

Organizing Student Responses

The brief description below of how we organize student reasoning is described

in more detail in chapter 4, and the interpretation of student results in terms of this

approach is described in more detail in chapter 5.

To systematize student reasoning, we have described their reasoning in terms

of primitives applied inappropriately to a given setting.  A primitive describes a

fundamental element of reasoning, in the sense that it is general to many different

areas of experience.  For example, to push a stationary box over a floor and to

motivate an inherently lazy person both require an actuating agency.  Or, when

describing the motion of a box being pushed or the amount of work someone will do,

more effort may be required to attain the same result, depending on the resistance to

motion or work in the system.  This primitive is referred to as the Ohm’s primitive,

based on Ohm’s law, which describes the relationship between (output) current and

(exerted) voltage, depending on the resistance of a circuit.

Many of the primitives that describe student reasoning come from

investigations of student reasoning within Newtonian particle physics.  These

primitives include a set of primitives related to force and motion and a set related to

collisions of objects.  For example, students learning mechanics often use the

actuating agency or Ohm’s primitives to describe the effects of forces on the motion of

an object.  Though appropriate when describing phenomena in a world containing

friction, the use of these primitives often indicates that students are not reasoning in

terms of physical laws such as Newton’s second law or are unable to interpret the

many different elements of these laws in order to reach a complete and accurate

description of the physics.

In addition to the primitives describing force and motion or collisions, students

describing wave physics often make use of a previously undocumented primitive.  I

have documented student use of the object as point (or simply point) primitive in wave

physics, but it is also commonly used in other areas.  In the context of mechanics, it

describes the useful manner in which objects are simplified to a single point when

appropriate.  For example, in free body diagrams or trajectory problems, an object is
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often described by a single point (the center of mass).  Thus, the point primitive is

useful and appropriate in many settings, but not necessarily in wave physics.

In the context of wave physics, students often use the point primitive

inappropriately.  In the context of superposition or the mathematical description of

waves, many students seem to make use of it when they describe a wave by a single

point, its peak amplitude.  In the context of wave propagation, students might make

use of it when describing how larger forces might lead to faster wave speeds.  In this

sense, the point primitive leads to the idea that a larger force can create a faster wave

in the same fashion that a larger throwing force leads to a faster baseball.

Many students seem to inappropriately apply more than one primitive at the

same time when describing wave physics.  We can describe their reasoning in terms of

a pattern of association, where these linked primitives seem connected in their

reasoning.  When asking students a series of wave physics questions on a specially

designed diagnostic test, we see that they consistently make use of many of the

primitives that are more appropriate in a mechanics than a wave physics setting.  We

describe student responses in terms of the Particle Pulses Pattern of Association,

loosely referred to as the Particle Model, or PM.  In contrast, we refer to the

appropriate responses in a given situation as being indicative of the Community

Consensus Model (or Correct Model, CM).

Curriculum Development to Develop Appropriate Student Reasoning

To help students move from a primarily PM based reasoning to a more

appropriate CM based reasoning, we have developed a set of instructional materials

called tutorials.  The general design of tutorials as developed by the University of

Washington, Seattle, is described in chapter 2.  The tutorials designed at UMd as part

of this dissertation and the description of their effectiveness in helping students

develop more appropriate reasoning are given in chapter 6.

In tutorials, students work in groups of three or four on worksheets designed to

change student reasoning about a specific topic.  The three wave tutorials use the

physics contexts of propagation and superposition, the mathematical description of

waves, and sound waves to address many of the issues summarized above.  In each

tutorial, students view computerized videos of propagating waves to give the students

the opportunity to see the otherwise very fast phenomena at a more interpretable

speed.  These videos were filmed by me and other PERG members and are

commercially available as part of a video analysis software package, VideoPoint.

In the videos that students view while answering questions that deal directly

with wave propagation issues, two wavepulses travel on two separate springs.

Students must interpret the differences between the wave shapes and compare these

differences to the possible differences in wave speed.  When viewing the videos

showing wave superposition, students are able to see that superposition occurs at all

points in the medium where wavepulses coincide.  They are then guided through

activities that help them develop this idea more formally.  In the wave-mathematics

tutorial, students model the shape of a single wavepulse using both Lorentzian and

Gaussian waveshapes.  In the sound tutorial, students view a candle flame oscillating

due to a sound wave.  They graph the position of the candle as a function of time and
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use this information to develop ideas of period and frequency of sound.  Further

activities build on the video they have viewed and help students build an

understanding of wavelength and the relationship between wavelength and frequency

of sound.

To investigate the effectiveness of tutorials, we have compared student

responses on a common set of questions before and after instruction.  For each tutorial,

we find that student performance improves more due to the tutorial than due to the

traditional instruction that preceded it.  For example, before instruction, only 9% of

137 students correctly state that a sound wave will make a dust particle oscillate

longitudinally and another 23% state that the particle will oscillate but do not specify

how.  Some of the latter students describe transverse motion, possibly indicating that

they are misrepresenting a displacement graph as a picture of the motion.  The most

common response is given by 50% of the students who state that the sound wave will

push the dust particle away.  Based on interviews we have done with students, we

believe that this response is indicative of student use of the Particle Model, described

above.  These students seem to be applying inappropriate reasoning to their

description of sound waves.  After lecture instruction, 26% of these same students

correctly describe the dust particle’s motion (22% describe oscillation but not the

direction), and 39% still describe the sound wave pushing the dust particle away.

After tutorial instruction, 45% describe the motion correctly (18% more describe

oscillatory motion without being clear about its direction), and only 11% describe the

dust particle being pushed away by the sound wave.

Similar results are found in student responses toward wave propagation and

superposition.  Student performance both before and after lecture instruction indicate

that many students use inappropriate reasoning when describing the physics of waves.

The tutorials provide students with the opportunity to develop a more appropriate way

of describing the physics, as can be seen from data indicating that far fewer students

use the Particle Model after tutorial instruction than before.  As a result, we believe

that the tutorials are successful in helping students overcome the most common

difficulties that they have with the material.

Investigating the Dynamics of Student Reasoning

As part of the investigation of the effectiveness of the tutorial materials, a

diagnostic test was developed.  This diagnostic test probed student understanding of

wave physics in terms of student use of the PM and CM.  In the final version of the

diagnostic test, 137 students were asked eight identical questions dealing with

propagation, superposition, and sound waves both before and after all instruction on

waves.  The diagnostic test contained both free response and multiple-choice,

multiple-response questions.  When a question was asked using both question formats,

the free response question was asked first to prevent students from getting reasoning

hints from the offered multiple-choice responses.  Student responses were categorized

according to whether or not their responses were indicative of either the PM or CM.

Only students who answered a majority of the questions both before and after

instruction were included in the analysis.  Many students left some questions blank

because they did not have time to complete either the pre- or post-instruction
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diagnostic, and many student responses were not classifiable as either PM or CM

responses.

Before instruction, a majority of students use the PM in their reasoning.  The

average number of PM responses per student is 5.03 ± 2.02 (the standard deviation)

while the average number of CM responses is 1.84 ± 1.71.  Thus, we see that most

students use the PM to guide their reasoning, and very few students use the CM

consistently.  After all instruction on waves (including tutorial instruction), students

perform better.  The average number of PM responses is now 1.68 ± 2.43, while the

average number of CM responses is 3.73 ± 2.23.  Students are using the PM much less

often to guide their reasoning, but are also not using the CM as often as we would like.

In another analysis, we found that student use of multiple ways of describing

the physics was not dependent on using appropriate reasoning in some topics of wave

physics and inappropriate reasoning in others.  Four of the questions on the diagnostic

test addressed the physics of sound waves and the motion of the medium through

which they travel.  Student responses on these four questions before and after

instruction are similar to their responses on the diagnostic test as a whole.  Students

begin the semester giving primarily PM descriptions of the physics, and end the

semester using a hybrid of PM and CM reasoning to describe the physics.  Thus, even

in a specific area of wave physics, students give conflicting descriptions and show

inconsistent reasoning.

Summary

In this dissertation, I have shown that it is possible to organize student

reasoning in terms that give us deeper insight into their thinking about wave physics.  I

have defined the appropriate reasoning primitives, including a previously

undocumented primitive called the object as point primitive.  By organizing sets of

commonly but inappropriately used primitives that students apply to the physics of

mechanical and sound waves, we are able to discuss student difficulties with the

material, the consistency of their reasoning, and how students develop their reasoning

over time.

In much the same way that the use of certain primitives may be helpful in some

settings but inappropriate in others, student use of the Particle Pulses pattern of

association before students have received instruction on wave physics is

understandable and not necessarily problematic.  Students are applying the physics

that they have previously learned and are trying to make sense of material with which

they are usually not familiar.  They are not always using correct physics in their

reasoning, but we observe that students are trying to use their previous understanding

to guide them in the new situation.

Student use of the inappropriate pattern of association after instruction is more

problematic.  Though we cannot compare tutorial students’ performance on the

diagnostic test to students who have not participated in tutorials, results from other

investigations (such as student responses after lecture but before tutorial instruction)

indicate that student are better able to reason effectively and accurately after they have

participated in tutorial instruction.  Further investigation would be required to

determine what the differences are in student performance in a non-tutorial class, and
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to see what aspects of tutorial instruction are most effective in helping students

develop more appropriate reasoning in our classes.

But even in a tutorial setting, students leave our classrooms using a mixture of

appropriate, helpful ideas and inappropriate, problematic ideas.  The research

described in this dissertation shows that detailed descriptions of student difficulties

with physics present a rich area of investigation relevant to both instructors and

physics education researchers.  For instructors, a more detailed understanding of

possible student difficulties with the material can lead to more appropriate

examinations and lecture materials that match more closely to students’ actual needs.

For researchers, the use of primitives, patterns of association, and mental models to

describe student reasoning may provide a more appropriate language with which to

describe the richness of student understanding of the physics.
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Appendix A:  Propagation and Superposition of Wavepulses Tutorial

Name

Pretest

1. A demonstrator holds two long, taut

springs attached to a distant wall (see

figure).  The demonstrator starts to move

both hands at the same time and in the

same direction.  The wavepulses created

by the demonstrator both move toward the

wall, but one reaches the wall sooner than

the other.  How can you account for the difference in speed of the two pulses?  List

all possible ways.

2. The solid line shown at right

indicates the position of a

wavepulse traveling to the

right on a spring.  Each dot

on the line indicates the

location of a piece of tape

on the spring.  Rank the

speed of each piece of tape from highest to lowest.  Explain how you arrived at

your answer.

(over)

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.

student's

hands

Spring A

Spring B

F
E

D

C

BA
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3. Consider the following situation.  Two

wavepulses are moving toward each

other on a spring (see figure at right).

The wavepulses are shown at time t =

0 sec.  Each wavepulse moves at a

speed of 1 m/sec (=100 cm/sec).  Each

block represents

1 cm (=0.01 m).

A. Sketch the shape of the string at time

t = 0.05 sec in the space at the right.

Explain how you arrived at your

answer.

B. Sketch the shape of the string at time

t = 0.06 sec in the space at the right.

Explain how you arrived at your

answer.

C. Sketch the shape of the string at time

t = 0.12 sec in the space at the right.

Explain how you arrived at your

answer.

p. 2

at time t = 0 sec

at time t=0.05 sec

at time t=0.06 sec

at time t= 0.12 sec
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Name Tutorial

Propagation and Superposition of Wavepulses

I.  Demonstrations and Videos of Wavepulses on a Spring

A.  A facilitator will create wavepulses on a stretched spring by quickly moving his or

her hand back and forth exactly once.  The facilitator will use different hand motions to

create wavepulses with different amplitudes and shapes.  Observe the motion of the

wavepulse and of the spring in each case.  A piece of tape has been attached to the

spring near its middle.

How did the motion of the tape compare to the motion of the wavepulse for each

type of wavepulse that you observed?

Did the speed of the hand motion affect the speed of the wave?  Explain.

Did the amplitude of the wave affect the speed of the wave?  Explain.

Did the tension in the spring affect the speed of the wave?  Explain.

The demonstrator will create a pulse by pulling a piece of the stretched spring

toward him or herself and releasing it.  Compare the motion of the tape in this

situation to the previous motion of the tape.

You have described the difference between transverse and longitudinal waves.  In

this tutorial, we focus only on transverse waves.

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.  Some of the materials were based on materials in Tutorials

in Introductory Physics, L. C. McDermott, P. S. Shaffer, and the Physics Education Research Group at

the University of Washington, Seattle (Prentice Hall, Upper Saddle River, NJ, 1998).



151

Propagation and Superposition of Waves Tutorial

B.  We have made videos of wavepulses traveling on identical springs.  On your

computer, open Shapes.mov.  Use the controls shown below to play the video on your

computer.  If the video plays too quickly, use the single advance buttons to go frame-

by-frame.  To return to the beginning of a movie, drag the “video location marker” to the

left on its slider or click on the

left edge of the play strip.

Imagine you are holding each of

the springs in the video.

1. Describe what you see in the video.  What hand motion could you use to create

wavepulses having these shapes?

Open and play the movie Amplitud.mov.

2. Describe what you see in the video. What hand motion could you use to create

wavepulses having these shapes?

Consider that one of the springs used in questions 1 and 2 is stretched out to a greater

length.

3. What physical properties of the spring have been changed by doing this?  Explain.

Open and play the movie Stretched.mov.  In this video, one of the springs has been

changed as described in question 3, the other is unchanged.

4. Describe what you see in the video.

5. Based on your observations, how can you affect the speed of a wave traveling

along a spring?  What changes can you make that do not affect the speed of the

wave?  Explain.

p. 2

play button single frame advance/reverse

video location marker (indicates

frame location in movie)
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Propagation and Superposition of Waves Tutorial

6. Are your observations consistent with the equation that describes the speed of a

wave on a string, which you learned in class?  Resolve any discrepancies.

II.  Analysis of a single wavepulse

The solid line shown at right

indicates the position of a

wavepulse traveling along a

spring at a time t0.  Each block

represents 1 cm.  The

wavepulse is moving to the

right with a speed of 100 cm/s.

1. In the graph located above, sketch the position of the wavepulse after 0.01 sec

has elapsed.

2. How can you use your diagram to find the velocity of a piece of the spring at

time t0 (e.g., the part of the spring labeled D)?

Determine the velocity of the piece of spring located at position D at time t0.

Explain.

Determine the velocity of the piece of spring located at position C at time t0.

Explain.

Draw vectors on the diagram to represent the instantaneous velocity of the pieces

of spring labeled A ! F at time t
0
.  Draw your vectors to scale.

3. Compare the direction of motion of the wavepulse and of the spring.

p. 3

F
E

D

C
B

A
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Propagation and Superposition of Waves Tutorial

III.  Superposition of Wavepulses:

A. Open the movie SameSide.mov on your computer.  Play the video.

1. Describe what happens as the two wavepulses meet.  Discuss each pulse and the

spring.

Use the single advance buttons to find the frame showing the moment when the two

wavepulses overlap as completely as possible.

2. How could you determine the maximum displacement of the spring at the instant

of perfect overlap?  Explain.

Explain how you can determine the displacement of the spring at locations other

than the point of maximum displacement at this instant.

Find the frame just before the moment analyzed above.

3. Describe and sketch the shape of the spring.

Account for the shape of the spring between the two peaks.  Is your explanation

consistent with the explanation you gave in question 2?  Resolve any

discrepancies.

p. 4
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Propagation and Superposition of Waves Tutorial

B.  Consider the following

situation.  Two wavepulses are

moving toward each other on a

spring (see upper figure at

right).  The wavepulses are

shown at t = 0 sec.  The left

pulse moves at a speed of 1

m/sec (=100 cm/sec).  Each

block represents

1 cm (= 0.01 m).

1. What is the speed of the

right wavepulse?  Explain.

2. Sketch the shape of the spring at time t = 0.04 sec in the figure above.  Explain

how you arrived at your answer.

How did you determine the displacement of the spring at the location of the gridline

indicated by the arrow?  Explain.

3. Sketch the shape of the

spring at time  t = 0.06 sec

in the space at right.

Draw your sketch to the

same scale as above.

Explain how you arrived

at your answer.

How can you determine the displacement of the spring at any location and any

time when two wavepulses overlap.  Explain you reasoning.

p. 5

t = 0 sec

t = 0.04 sec

t = 0.06 sec
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Propagation and Superposition of Waves Tutorial

C.  Two wavepulses on opposite sides of a spring move toward each other at 100

cm/s.  The diagrams below show the wavepulse locations at three successive

instants, 0.01 s apart.  (In the last diagram, the individual wavepulses are  shown

dashed.)  Each square represents 1 cm.

at time t = 0sec

at time t = 0.01 sec

at time t = 0.02 sec

1. Use the principle of superposition to find the shape of the spring at t = 0.02 sec.

Draw it in the graph above.  Make sure all of your group agrees on how you

arrived at your answer before continuing.

The diagrams above and blanks for three further time steps are reproduced on the last

two pages of this tutorial.  Each person in your group should draw what the spring will

look like for ONE of the times shown from 0.03 sec to 0.05 sec.  Draw the shape of

the spring for each of the instants shown.  After constructing your diagram, discuss

your results with the rest of your group until you all agree what the spring should look

like at each instant.

p. 6
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Propagation and Superposition of Waves Tutorial

2. Are your graphs consistent with your explanation on the bottom of page 4?

Resolve any discrepancies.

3. How can you account for the continued propagation of the wavepulses after the

time

t = 0.4 sec?

4. Sketch a graph of the velocity as a function of position for the spring at time

t = 0.4 sec in the space below.  Explain how you arrived at your answer.

On your computer, open and play the movie Opposite.mov.

5. Is the movie consistent with the sketches you made on the large diagrams?

Resolve any discrepancies.

p. 7



157

Propagation and Superposition of Waves Tutorial

at time t = 0sec

at time t = 0.01 sec

at time t = 0.02 sec

p. 8
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Propagation and Superposition of Waves Tutorial

at time t = 0.03 sec

at time t = 0.04 sec

at time t = 0.05 sec

p. 9
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Name Tutorial Homework

A. A method for generating a wavepulse is to

move one end of a spring quickly up a distance d

and then back down (see figure).  The hand takes

the same amount of time to move up as to move

down.  Consider a second wavepulse generated with the same amplitude, d, on a

different spring (spring 2).  It is observed that the wave speed on spring 2 is half that in

the original spring (spring 1).

1. How can you account for the difference in speed of the wavepulse on the two

springs?  Explain.

2. What could you change about the creation of the second wavepulse or spring 2 so

that the wavepulse on spring 2 traveled at the same speed as the wavepulse on

spring 1?  Explain.

B.  The diagram at right shows two

wavepulses at time t = 0 sec moving

toward each other on the same side of

a spring.  Each pulse is moving at a

speed 100 cm/sec. Each block

represents 1 cm.

1. In the grids provided to the right,

sketch a sequence of diagrams that

show both the positions of the

individual pulses (with dashed

lines) and the shape of the spring

(with a solid line) at 0.02 sec

intervals.

2. Draw velocity vectors to indicate

the velocity of the piece of spring

located at the horizontal midpoint

of each square at time t = 0.04 sec.

Explain how you arrived at your

answer.

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.

d

w

t = 0 sec

t = 0.02 sec

t = 0.04 sec

t = 0.06 sec

t = 0.08 sec
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Propagation and Superposition - Tutorial Homework

Bridging Problem

Two infinite (continuing in both directions) waves are traveling along a taut spring of

uniform mass density.  At time t = 0 seconds, the waves have the same shape and are in

the same location.  One is traveling to the right, the other is traveling to the left.  One

of the waves is shown in the space below.  (At time t = 0 sec, the other wave’s peaks

perfectly overlap the first wave’s peaks.)  In the diagram, each block represents 10 cm.

After t0 seconds, the wave traveling to the right has traveled 20 cm.

x

y(x)

a) Compare the speed of the two waves.  Explain how you arrived at your answer.

b) Using two different colors of pen or pencil, sketch each individual wave at time t0
in the graph below.  (Do not sketch the shape of the spring, just each wave.)

Indicate the direction that each wave is traveling on your sketch.

x

y(x)

c) In the graph below, sketch the shape of the spring (with both waves traveling on it)

at time t0.  Explain how you arrived at your answer.

x

y(x)

d) If t0 = 0.2 sec, find the velocity of the piece of spring located at x = 0 at the instant

you have drawn in part c.  Explain how you arrived at your answer.

p. 2
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Appendix B: Mathematical Description of Wavepulses Tutorial

Name

Pretest

1. Consider a pulse propagating along a long, taut spring in the +x-direction.  The

diagram below shows the shape of the pulse at t = 0 sec.  Suppose the displacement

of the spring at this time at various values of x is given by 
( )

y x Ae
x
b( ) =

!
2

.

A. On the diagram above, sketch the shape of the spring after the pulse has traveled

a distance x0, where x0 is shown in the figure.  Explain why you sketched the

shape as you did.

B. For the instant of time that you have sketched, find the displacement of the spring

as a function of x.  Explain how you determined your answer.

(over)

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.
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2. The experiment described in question 1 is repeated, except that at t = 0 sec,

( )
y x Ae

x
c( ) =

!
2

, where c is twice as big as b (c = 2b).

A. Compare the shape of the pulse in this experiment to the shape of the pulse in the

previous experiment.  Explain.

B. Compare the motion of the pulse in this experiment with the motion of the pulse

in question 1.  Explain.

C. Consider a small piece of tape attached to the spring at x0.  Compare the motion

of the piece of tape in this experiment with the motion of the tape in question 1.

Explain your reasoning.

p. 2
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Name Tutorial

Mathematical Description of Wavepulses

I.  Describing the Movement of a Wavepulse

A.  At t = 0 sec, the displacement of the spring from its equilibrium position can be

written as a function of x, 
( )

y x
cm

x
b

( ) =
+

50

1
2

, where b = 20 cm.

1. Sketch the shape of the spring at t = 0 sec in the graph below.  Use a scale where

each block represents 10 cm on a side.

x

y

10 cm

0
2. The digitized photograph below shows a wavepulse propagating to the right.

The wavepulse can be roughly described by an equation of the form

( )
y x

A

x
b

( ) =
+

2
1

.  Using the indicated scale, find approximate values for A and b.

Explain how you arrived at your answer.

3. Predict the maximum amplitude of the wavepulse after its peak has moved a

distance 3b to the right.  Explain how you arrived at your answer.

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.
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Mathematical Description of Wavepulses

4. On your computer, open the movie pulse.mov.  Play the video.  Compare what

you see in the video to your answer to question 3.  Resolve any discrepancies.

5. Describe what the symbol “x” represents in this problem.  Explain.

B.  Consider a wavepulse propagating to the right along an ideal spring.  The shape of

the spring at time t = 0 seconds is given by 
( )

y x
cm

x
b

( ) =
+

50

1
2

, b = 20 cm.

1. In the space below, sketch the shape of the spring after the wavepulse has moved

so that its peak is at x = 70 cm.  Compare this graph to the graph you sketched in

question 1 on the previous page.

x

y

10 cm

0

2. On the graph above, draw a coordinate system with its vertical axis at 70 cm.

Label its horizontal axis with the variable s.

3. Write a formula y(s) that describes the displacement of any piece of the spring

(when the peak of  the wavepulse is located at 70 cm) as a function of s.

Explain.

4. Write an equation for s as a function of x.

5. Write a formula that describes the shape of the wavepulse at the time it is

centered at 70 cm as a function of x.  Explain.

p. 2
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Mathematical Description of Wavepulses

6. Consider that the wavepulse had moved an arbitrary distance x0.  How would

your formula change?  Explain.

7. Suppose the wavepulse moved a distance x0 at a speed v in a time t0.  Write an

equation for x0 in terms of v and t0.

8. How could you use this information to find the displacement of any piece of the

spring at time t0?  Write an equation that would let you do this.  Explain.

9. Write an equation that describes the displacement of any piece of the spring at

any time.  Explain.

10. Describe how you would find the displacement of any piece of the spring at any

time.

11. Would your equation in question 8 be correct if the spring were not ideal, or if

there were friction between the spring and the ground?  Explain.

p. 3
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Mathematical Description of Wavepulses

II.  Measuring the Shape of the Wavepulse

A.  Consider a different wavepulse propagating along a long, taut spring.  The diagram

below shows the shape of the wavepulse at time t = 0 sec.  Suppose the displacement

of the spring at various values of x is given by 
( )

y x Ae
x
b( ) =

!
2

.  The wavepulse moves

with a velocity v to the right.

1. On the diagram above, sketch the shape of the spring after it has traveled a

distance x0, where x0 is shown in the figure.  Explain why you sketched the shape

you did.

2. Write an equation that describes the displacement of the spring as a function of x

and t for the instant of time that you have sketched.  Explain how you determined

your answer.

A piece of tape is attached to the spring at position x = x0.

3. In the space below, qualitatively sketch the velocity of the piece of tape as a

function of time.  Explain how you arrived at your answer.

4. In the space below, qualitatively sketch the acceleration of the piece of tape as a

function of time.  Explain how you arrived at your answer.

p. 4
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Mathematical Description of Wavepulses

B.  On your computer, play pulse.vpt to show a video of a single wavepulse traveling

along a spring.  Suppose the wavepulse in the video can be described by an equation

like the one you wrote in question 2 on the previous page.

1. What effect would changing the parameters “A”, “b”, and “v” in the equation (from

page 4) have on the wavepulse?

2. Find numerical values for each parameter in the equation.  Show all work.

3. Use your equation to find the displacement of the spring at position x = 125 cm

at time t = 0.1 sec.  Show all work.

4. Advance the video 0.1 sec beyond the instant of time where its peak is located at

the origin.  Find the displacement of the spring at position x = 125 cm and time t

= 0.1 sec.

5. Compare your answer to question 4 with your answer to question 3.  Resolve

any discrepancies.

p. 5
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Name Tutorial Homework

Suppose a pulse is propagating along a spring with a velocity 600 cm/sec to the left.

At time t = 0 sec, the displacement  of the spring from its equilibrium position can be

written as a function of x, 
( )

y x
cm

x
b

( ) =
+

50

1
2

, where b = 20 cm.

1. Write an equation that describes the displacement of the spring from its

equilibrium position at any position, x, and at any time, t.  Explain how you

arrived at this answer.

2. Compare your equation to the equation which you derived in section I.B,

question 9 of the tutorial.  What has changed?  Explain the effect of this change.

3. In the space below, graph the displacement of the spring after 0.1 seconds have

passed.

x

y

10 cm

0

4. Compare the shape of the graph you have sketched to the equation you wrote in

question 1.  Find the displacement of a point located 20 cm to the left of the

peak of the pulse after 0.1 seconds have passed.

5. What point had this same displacement at time t = 0 seconds?  Explain how you

arrived at your answer.

© University of Maryland Physics Education Research Group.  These tutorials are developed for Activity

Based Physics, NSF Grant DUE-9455561.
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Mathematical Description of Waves - Tutorial Homework

Bridging Problem

Consider a pulse traveling to the right with a speed of 600 cm/sec.  The equation

describing the displacement of the spring from equilibrium at time t = 0 sec is

( )
y x A e

x

b

1 1
1

2

( ) =
!

, where A1 = 20 cm and b1 = 20 cm.

a) Sketch the shape of the spring at time t = 0 sec in the graph below.  Use the

indicated scale.

x

y

50cm 100cm 150cm 200cm-50cm

10cm

b) Write an equation that describes the displacement of any piece of the spring at

any time for this pulse.  Explain how you arrived at this answer.

c)  Now suppose a second pulse moving to the left is also present on the spring.  At

t = 0.1 sec the equation describing this 2
nd

 pulse is 
( )

y x A e
x cm

b

2 2

200

2

2

( ) =
!

!

 
where A2

= 10 cm and b2 = 10 cm. Sketch the shape of the spring at time t = 0.1 sec in the

graph below, labeling the pulse going to the right “1” and the pulse going to the

left “2”.

x

y

50cm 100cm 150cm 200cm-50cm

10cm

d)  At what time and position do the maxima of the two pulses meet?  Show your

work.

e) Write an equation that describes the shape of the spring when the maxima meet.

Show your work.

p. 2
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Appendix C: Sound Waves Tutorial

Name

Pretest

1.  Consider a small piece of dust placed in front of a

large, silent loudspeaker (see figure).

A. The speaker is turned on and plays a note with a

constant frequency, f.  How, if at all, does this affect

the motion of the dust particle.  Explain.

B.  Consider an identical dust particle placed in front of an identical loudspeaker.  The

speaker is turned on and plays a note with frequency 2f.  How, if at all, does this affect

the motion of the dust particle.  Explain.  Compare your answer to your answer to

question A.

C.  Consider an identical dust particle placed in front of an identical loudspeaker.  The

speaker is turned on and plays a note at the original frequency, f, but with a higher

volume.  How, if at all, does this affect the motion of the dust particle.  Explain.

Compare your answer to your answer to question A.

(over)

© University of Maryland Physics Education Group.  These tutorials are developed for Activity-Based

Physics, NSF Grant DUE-9455561.
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2.  Consider two lit candles placed in front of a silent

loudspeaker (see figure).  The candle flames, flame 1

and flame 2, are perfectly upright and still.

A.  The speaker is turned on and plays a note at a

constant frequency, f.  How, if at all, does this affect

the motion of flame 1?  If it does not move, state so

explicitly.

B.  Compare the motion, if any, of flame 1 and flame 2 after the loudspeaker is turned

on.  Explain how you arrived at your answer.  If neither moves, state so explicitly.

C.  Consider a situation where the speaker plays a note with the frequency 2f.

Compare the motion, if any, of flame 1 and flame 2.  Explain how you arrived at your

answer.  If neither moves, state so explicitly.

p. 2
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Name Tutorial

Sound Waves

I.  Introduction

Last week we investigated propagating waves on springs.  This week, we will consider

sound waves.  Experiments show that sound waves travel at about 340 m/s through air

at room temperature.

Consider a flame placed in front of a speaker

as shown in the figure at right.  No wind is

blowing.

A. The speaker plays a note at a constant

pitch.  Explain how, if at all, the sound

produced by the speaker affects the flame.

If the sound does not affect the flame, state

that explicitly.

B. Open the movie Sound Movie.mov on your desktop.  Play the movie.

1. Describe your observations.  Do your observations agree with your earlier

predictions?

2. How can you account for the flame’s motion?  Explain your reasoning.

Consider a dust particle in front of a silent loudspeaker.  The dust particle is in the

same location as the original location of the flame.

3. The speaker is turned on and plays a note with a constant frequency, f.  How, if

at all, does this affect the motion of the dust particle?  Explain.

© University of Maryland Physics Education Group.  These tutorials are developed for Activity-Based

Physics, NSF Grant DUE-9455561.
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Sound Tutorial

II. Motion of a Single Flame

A.  The program VideoPoint lets you analyze the motion of the flame by giving

information about the positions of points on the screen at different times.  On the

desktop, open the file Sound Data File.vpt.  This lets you analyze the position of

points on the video screen for the movie.  Play the video using the single advance

buttons.

1. What is the red cross on the video screen measuring?  Explain.

2. The “Table” window of Sound Data File.vpt

includes data already obtained.  These data are

also shown to the right. What does this data

represent?

3. In the space below, plot the position of the

flame.

What does each axis on your graph represent?

Explain.

4. Describe the shape of your graph.  (It may help

to sketch a continuous curve on the basis of

your data points.)

p. 2

Time

(s)

x position

(mm)

y position

(mm)

0 0 0

0.03333 2.8 0

0.06667 2.1 0

0.1 0 0

0.1333 -3.5 0

0.1667 -1.4 0

0.2 1.4 0

0.2333 2.8 0

0.2667 2.1 0

0.3 -2.1 0

0.3333 -3.5 0

0.3667 -1.4 0

0.4 2.1 0

0.4333 2.8 0

0.4667 -2.1 0

0.5 -3.5 0

0.5333 -1.4 0

0.5667 2.1 0

0.6 3.5 0

0.6333 2.1 0

0.6667 -2.1 0

0.7 -2.1 0
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Sound Tutorial

B. Find the period with which the flame and speaker oscillate.  Explain how you

obtained your answer.

C. How many oscillations are there in a 1 second time interval. Explain how you

obtained your answer.

III. Motion of Many Flames

A.  Consider two candles sitting 25 cm apart in

front of a loudspeaker oscillating at 680

Hz.  A clock is started at an arbitrary time.

At time t = 0 seconds, the first flame is

perfectly vertical and moving away from

the speaker.  Its maximum displacement

from equilibrium is 5 mm.

1. In the graph below, sketch the displacement of the first flame from equilibrium at

different times.  Label axes clearly.  Explain how you arrived at your answer.

2. Compare the graph above to the graph you plotted on page 2.  Explain.

p. 3
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Sound Tutorial

3. Compare the motion of the second flame to the motion of the first flame.

Explain.

4. In the graph below, sketch the displacement of the second flame for the entire

time considered.  Describe in words how you determined the shape of the sketch.

B.  Consider an arrangement of

candles where each candle is

placed 12.5 cm from its

nearest neighbor, and the first

is located 12.5 cm from the

speaker.  The speaker plays a

note at 680 Hz.  At an

arbitrary time after all the flames are in motion, a clock is started.  At time

t = 0 seconds, the first flame is at its maximum displacement of 5 mm from its

upright position, away from the loudspeaker.

1. How would the graph of displacement vs. time for the second flame compare to

the same graph for the first flame?  Explain your reasoning.

p. 4
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Sound Tutorial

2. The displacement of

flame 1 at time t = 0

seconds is at a maximum

and is shown at right.

(The displacement is

exaggerated for easy

viewing).  Sketch the

displacement of each of

the other flames at time t = 0 seconds in the diagram.  Explain how you arrived at

your answer.

3. In the graph below, sketch the displacement of each flame vs. the distance of the

flame with respect to the speaker at time t = 0 seconds.  Let each block on the

horizontal axis represent 2.5 cm.  Label axes clearly.

4. Consider a very large number of flames placed from 5 cm to 60 cm away from

the speaker.  On the graph on the previous page, plot the displacement of each of

these flames at time t = 0 seconds as a function of distance from the speaker.

Explain how you arrived at your answer.

5. Describe the shape of the graph you have sketched.

6. How can you use the graph you have sketched to find the wavelength of the

sound produced by the loudspeaker?  Explain.

p. 5
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Sound Tutorial

7. Find the wavelength of the sound produced by the speaker in the movie

sound.mov.

VI.  Comparing Graphs

1. How could you use the graph on page 2 (instead of the graph on page 4) to find

the wavelength of the sound wave?

2. How could you use the graph on page 4 (instead of the graph on page 2) to find

the frequency of the sound wave? the period of the sound wave?

3. How could you use the graphs on pages 2 and 4 to find the amplitude of the

sound wave?

p. 6
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Name Tutorial Homework

Consider a single dust particle floating a

distance x0 from a loudspeaker (see figure).

The loudspeaker is turned on and produces a

sound with a constant frequency f.  The

speed of sound is v.  In the indicated

coordinate system, the origin is located at

the center of the speaker.

1.  How long does it take for the sound

wave to reach the dust particle?  Explain.

2.  At time t = 0 sec, the dust particle begins to move away from the loudspeaker.

Write an equation that describes the displacement of the dust particle from equilibrium

for all times after t = 0 sec.  Explain how you arrived at your answer.  Explicitly define

any variables you introduce in your equation.

3.  Consider an identical dust particle a distance x0 from an identical loudspeaker.  The

loudspeaker is turned on and produces a sound with a frequency of 2f.  Does the dust

particle begin to move earlier than in question 1?  Explain.

4. Write an equation that describes the displacement of the dust particle in question 3

from equilibrium for all times after t = 0 sec.  Explain how you arrived at your answer.

© University of Maryland Physics Education Group.  These tutorials are developed for Activity-Based

Physics, NSF Grant DUE-9455561.
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Sound - Tutorial Homework
Speaker

5cm 5cm5cm5cm

xy

50 cm

Bridging Problem

Five dust particles are placed in a row 5 cm apart beginning 50 cm from a loudspeaker

(see figure).  The speaker plays a note with a frequency of 1700 Hz.  The speed of

sound is 340 m/s.  The maximum displacement of the first dust particle is smax = 3 mm.

Assume that the intensity of the sound wave is the same for all dust particles.  In the

indicated coordinate system, the origin is at the center of the loudspeaker.  A clock is

started at an arbitrary time.

a)  At time t = 0 sec, the first dust particle is at equilibrium and moving away from the

loudspeaker.  Find t0, the amount of time that elapses until the second dust particle is at

its equilibrium position.  Explain.

b)  What is the displacement from equilibrium of the first dust particle at time t0?

Explain how you arrived at your answer.

c)  In the graph below, sketch a graph of s vs. x at time t0.  Define each axis clearly.

d)  Find s(x,t) for x = 65 cm and t = 2.941176 x 10
-4

 sec.  Show all work.

p. 2
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Appendix D-1: Wave Diagnostic Test, Preliminary Version

University of Maryland

Department of Physics

Spring 1997 Post Wave Test v.3

Name Class Section

Introduction:  The Physics Education Research Group is studying how student learn physics in

introductory courses.  We are developing new methods and new materials like the

tutorials for teaching physics.

Request:  As you answer these questions, we want to focus on how you respond and how you

approach the questions.  In order for us to evaluate your responses in more detail, we

would like to videotape you answering these questions.  The tapes will be transcribed for

the group to study.

Confidentiality:  These tapes will be edited and transcribed with code names.  Your name will

be kept confidential.

Grades:  Your grade in this course will not be affected in any way by whether you choose to

participate or by what you say on tape.

Value:  The better we understand what is happening in class and know how  you are thinking

about physics, the more effectively we can teach you.  It also helps us to develop better

ways of teaching physics.

If you are willing to allow us to tape you, please write your name, student number, and

signature in the space below.

Name                                                                     

Student Number                                        

Signature                                                               
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UMd Wave Diagnostic Test

1.  A person holds a long, taut string and

quickly moves her hand up and down, creating

a pulse which moves toward the wall to which

the string is attached and reaches it in a time t0
(see figure).

How could the person increase the amount of

time it takes for the pulse to reach the wall?  Explain.

2.  Consider a pulse propagating along a long, taut string in the +x-direction.  The diagram

below shows the shape of the pulse at t = 0 sec.  Suppose the displacement of the string at t = 0

sec for different values of x is given by 
( )

y x Ae
x
b( ) =

!
2

.

xx0

y

a) On the diagram, sketch the shape of the string after the pulse has traveled a distance x0,

where x0 is shown in the figure.  Explain why you sketched the shape as you did.

b) For the instant of time that you have sketched, write an equation for the displacement of

the string as a function of x.  Explain how you determined your answer.

Please note:

For the remaining multiple-choice questions, please answer in the indicated spaces.

On some questions, more than one answer may be correct (i.e. b, c and d from a list of possible

responses a!k).  If so, give them all.

In some sections, you may use the same response more than once to answer different

questions (i.e. use d to answer questions 14, 15, and 18).

For some questions, answers may describe both pictures and graphs.  For example:

A picture of two wavepulses on a string     A graph of displacement as a function of time

t

y

In each case, the same diagram can be used to represent different quantities.
p. 1
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UMd Wave Diagnostic Test

For questions 1 to 4 consider the

following situation.  A dust particle is

located a distance x0 from the front of a

silent loudspeaker (see figure).  The

loudspeaker is turned on and plays a

note at a constant pitch.  At time t = 0,

the particle begins to move.

1. Which of the actions a!f to the right
describes the motion of the dust
particle after time t = 0 sec.  More than
one answer may be correct.  If so, give
them all. _______  Explain your
reasoning.

 

 

 

 

 

 

2. Consider the coordinate system shown in
the figure.  Which equation a-i best
describes the position of the dust particle
for all times t > 0?  _______
Explain how the equation you chose
relates to the motion you described (be
sure to include a description or definition
of all variables, such as A, !, k, or s).
If you chose “i,” explain.

 

 

 

Use possible responses a!e to the right to
answer the following two questions.  You
may use the same response more than once.
More than one answer may be correct.  If so,
give them all.

3. How, if at all, would the answer to
question 1 change if the speaker played a
note at a higher pitch?  ________
Explain.

 

 

4. How, if at all, would your answer to
question 1 change if the speaker played a
note at a greater volume (but the original
pitch)?  ________  Explain.

Possible Responses for question 1:

a) The dust particle will move up and down.

b) The dust particle will be pushed away

from the speaker.

c) The dust particle will move side to side.

d) The dust particle will not move at all.

e) The dust particle will move in a circular

path.

f) None of these answers is correct.

Possible Responses for question 2:

a) x = Asin(!t) b) y = Asin(!t)

c) s = x0 + v/t d) s = Asin(kx)

e) y = Asin(kx " !t) f) x = x0 " v/t

g) x = Asin(kx) h) s = Asin(!t)

i) none of the above

Possible changes to your answer to

question 1:

a) The particle would move exactly as

before.

b) The particle would move slower.

c) The particle would move faster.

d) The particle would move with

a greater amplitude.

e) The particle would still not move at all

p. 2
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For questions 5 to 8, consider the

following situation.  A long, taut string is

attached to a distant wall (see figure).  A

demonstrator moves her hand and

creates a very small amplitude pulse

which reaches the wall in a time t0.  A

small red dot is painted on the string

halfway between the demonstrator’s

hand and the wall.  For each question,

state which of the actions a!k (listed to the

right) taken by itself will produce the

desired result.  For each question, more

than one answer may be correct.  If so,

give them all.

How, if at all, can the demonstrator repeat

the original experiment to produce:

5. A pulse that takes a longer time to reach
the wall.  More than one answer may be
correct.  If so, give them
all.__________  Explain.

6. A pulse that is wider than the original
pulse.  More than one answer may be
correct.  If so, give them
all.__________  Explain.

7. A pulse that makes the red dot stay in
motion for less time than in the original
experiment.  More than one answer may
be correct.  If so, give them
all.__________  Explain.

8. A pulse that makes the red dot travel a
further distance than in the original
experiment.  More than one answer may
be correct.  If so, give them
all.__________  Explain.

Possible Responses for questions 5 to 8:

a) Move her hand more quickly (but still only

up and down once and still by the same

amount).

b) Move her hand more slowly (but still only

c) up and down once and still by the same

amount).

d) Move her hand a larger distance but up

and down in the same amount of time.

e) Move her hand a smaller distance but up

and down in the same amount of time.

f) Use a heavier string of the same length,

under the same tension

g) Use a lighter string of the same length,

under the same tension

h) Use a string of the same density, but

decrease the tension.

i) Use a string of the same density, but

increase the tension.

j) Put more force into the wave.

k) Put less force into the wave.

l) none of the above.

p. 3

red dot
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xx0

y

For questions 9 to 10, consider the

following situation.  A pulse on a string

described at time t = 0 s by the equation

( )
y x Ae

x
b( ) =

!
2

 propagates along a long, taut

string in the +x-direction.  The diagram

above shows the string at t = 0 s.

9) On the diagram, sketch the shape of the
string after the pulse has traveled a
distance x0, where x0 is shown in the
figure.  Which of statements a-h to the
right describes the shape you have
drawn.  More than one response may be
correct.  If so, give them all.
___________  Explain.

10) Which of the equations a-h to the right
gives an equation that gives the
displacement of the string as a function
of x at the instant in time that you have
sketched. ___________.  Explain how
you determined your answer.

Possible Responses for question 9:

a) The pulse will have a smaller amplitude.

b) The pulse will have a larger amplitude

c) The pulse will be narrower.

d) The pulse will be wider.

e) The pulse will have a bigger area.

f) The pulse will have a smaller area.

g) The pulse will have the same shape as

before.

h) None of these answers is correct.

Possible Responses for question 10:

a)
( )

y x Ae
x b

( ) =
! 0

2

b)
( )

y x Ae
x b

( ) =
!

2

c) x b y= ln( ) d) x vt0 =

e) x b y= ! ln f) ( )
y x Ae

x x b
( )=

! ! 0

2

g) none of the above

p. 4
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For questions 11 to 15, consider the

following situation.  Two wavepulses with

different amplitudes on a string are moving

at speed v = 1 m/s toward each other.  At

time t = 0.5 sec, the shape of the string is

shown in the diagram to the right, and the

wavepulses are separated by a distance of 1

m.  Three specific pieces of string are

labeled “p,” “q,” and “r.”  In answering

these questions, you may use the same

answer more than once.  In each diagram,

up is positive.

11. Which diagram represents a picture of
the string at time t = 1.0 s (i.e. 0.5 s
after the time in the given diagram)?
_____  Explain.

12. Which diagram represents a picture of
the string at time t = 1.5 s (i.e. 1.0 s
after the time in the given diagram)?
_____  Explain.

13. Which diagram represents a plot of the
displacement (as a function of time) of
the piece of string indicated by a “p” in
the given diagram? _____  Explain.

14. Which diagram represents a graph of the
displacement (as a function of time) of
the piece of string indicated by a “q” in
the given diagram? _____  Explain.

15. Which diagram represents a graph of the
displacement (as a function of time) of
the piece of string indicated by an “r” in
the given diagram? _____  Explain.

Diagram of string at time t = 0.5 sec

1 m

p

r q

a

b

c

d

e

f

g

h) none of the above are correct.

p. 5
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For questions 16 to 19, consider the

following situation.  Two asymmetric

wavepulses on a string are moving at speed v

= 1 m/s toward each other.  At time t = 0.4

s, the shape of the string is shown in the

diagram to the right, and the peaks of the

pulses are separated by a distance 1.2 m.

One piece of string is labeled “p.”  In

answering these questions, you may use the

same answer more than once.  If you choose

“h,” explain.

16. Which of the diagrams represents a
picture of the string at time 1.0 s (0.6 s
after the time in the given diagram)?
_____  Explain.

17. Which of the diagrams represents a
picture of the string at time a little bit
before time t = 1.0 s (e.g. t = 0.9 s, 0.5 s
after the time in the given diagram)?
_____  Explain.

18. Which of the diagrams represents a
picture of the string at time t = 1.6 s (1.2
s after the time in the given diagram)?
_____  Explain.

19. Which of the diagrams represents a
graph of the displacement (as a function
of time) of the piece of string indicated
by a “p” in the given diagram? _____
Explain.

Diagram of string at time t = 0.4 sec

p 1.2 m

a

b

c

d

e

f

g

h) none of the above are correct.

p. 6
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For questions 20 to 23, consider the

following situation.  An asymmetric

wavepulse moves on a string at speed 1 m/s

toward a pole.  At time t = 0 s, the shape of

the string is shown in diagram “a,” and the

peak of the wavepulse is a distance 1 m from

the pole.  In answering these questions, you

may use the same answer more than once.

20. If the string is firmly attached to the
pole, which diagram represents a picture
of the string at time t = 1 s? _____
Explain.

21. If the string is free to move along the
pole, which diagram represents a picture
of the string at time t = 1 s? _____
Explain.

22. If the string is firmly attached to the
pole, which diagram represents a picture
of the string at time t = 2 s? _____
Explain.

23. If the string is free to move along the
pole, which diagram represents a picture
of the string at time t = 2 s? _____
Explain.

a

b

c

d

e

f

g

h

i

j) none of the above

p. 7
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For questions 24 to 28, consider the

following situation.  A pulse with a shape as

shown in diagram “a” to the right is

traveling to the right along a string on which

a red dot of paint is located (see figure).

Consider only the time until the pulse

reaches the wall.  For each question, identify

which figure below would look most like the

described quantity.  For each graph, consider

positive to be up.  If none of the figures look

like you expect the graph to look, answer

“i.”  In responding to these questions, you

may use the same answer more than once.

24. The graph of the y displacement of the
red dot as a function of time. _________
Explain.

25. The graph of the x displacement of the
red dot as a function of time. _________
Explain.

26. The graph of the y velocity of the red dot
as a function of time. _________
Explain.

27. The graph of the x velocity of the red dot
as a function of time. _________
Explain.

28. The graph of the y component of the
force on the red dot as a function of
time. ________ Explain.

red dotx

y

a

b

c

d

e

f

g

h

i) None of these figures is

correct.

p. 8
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Appendix D-2: Wave Diagnostic Test, Final Version, Pre-Instruction

Name UMd Wave Diagnostic Test

1.  Michael and Laura are standing 100 m apart and yell “Yo!” at each other at exactly the same

instant.  Michael yells louder than Laura, and the pitch (frequency) of his voice is lower.

Will Laura hear Michael first, Michael hear Laura first, or will they hear each other at the same

time?  Explain how you arrived at your answer.

How, if at all, would your answer change if Laura yelled at the same volume as Michael?  Explain

your reasoning.

How, if at all, would your answer to the original question change if Michael and Laura yelled at

the same pitch but Michael yelled louder?  Explain your reasoning.

2.  Consider two wavepulses with different

amplitudes moving on a string at speed of 10 m/s

toward each other.  At time t = 0 sec, the shape of

the string is shown in the diagram to the right, and

the wavepulses are separated by a distance of 1 m.

Sketch the shape of the string at time t = 0.05

sec in the diagram to the right.  Explain how

you arrived at your answer.

Sketch the shape of the string at time t = 0.1

sec in the diagram to the right.  Explain how

you arrived at your answer.

p. 1

© University of Maryland Physics Education Research Group.  These materials are developed for

Activity Based Physics, NSF Grant DUE-9455561.

Diagram of string at time t = 0 sec

1 m
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3.  A dust particle is located in front of a silent loudspeaker (see figure).  The loudspeaker is turned on

and plays a note at a constant pitch.

Describe the motion of the dust particle.  Explain your reasoning.

How, if at all, would your answer change if the speaker played a note

at a higher pitch (frequency)?  Explain your reasoning.

How, if at all, would your answer to the original question change if the speaker played a note at a

greater volume (but the original pitch)?  Explain.

4.  A person holds a long, taut string and

quickly moves her hand up and down, creating

a pulse which moves toward the wall to which

the string is attached.  The pulse reaches the

wall in a time t0 (see figure).

How could the person decrease the amount

of time it takes for the pulse to reach the wall?  Explain.

How, if at all, would the speed of the pulse change if the pulse were wider?  Explain your

reasoning.

p. 2

loudspeaker dust particle
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5.  Consider two pulses on a spring, as shown

in the figure to the right.  They are moving

toward each other at 100 cm/sec.  Each block

in the picture represents 1 cm.

In the figure to the right, sketch the shape

of the spring after 0.05 sec have elapsed.

Explain how you arrived at your answer.

In the figure to the right, sketch the shape

of the spring after 0.06 sec have elapsed.

Explain how you arrived at your answer.

In the figure to the right, sketch the shape

of the spring after 0.1 sec have elapsed.

Explain how you arrived at your answer.

6.  Margaret stands 20 m from a large wall and claps her hands together once.  A short moment later,

she hears an echo.

How, if at all, would the time it takes for her to hear the echo change if she clapped her hands

harder?  Explain.

Consider a dust particle floating in the air very close to the wall (within 0.1 mm).  Describe the

motion, if any, of this dust particle between the moment that Margaret claps and the moment she

hears the echo.  Explain how you arrived at your answer.

p. 3

1 2
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7.  An asymmetric wavepulse moves on a string

toward a pole at speed 10 m/s.  At time t = 0 sec, the

shape of the string is shown in the diagram to the

right and the peak of the wavepulse is a distance 1

m from the pole.

Consider that the string is firmly attached to the

pole.

In the figure to the right, sketch the shape of the

string at time t = 0.1 sec.  Explain how you

arrived at your answer.

In the figure to the right, sketch the shape of the

string at time t = 0.2 sec.  Explain how you

arrived at your answer.

8.  Consider that the experiment above (in question 7) is repeated, but the string shown in the figure is

free to move along the pole to which it is attached.

In the figure to the right, sketch the shape of the

string at time t = 0.1 sec.  Explain how you

arrived at your answer.

In the figure to the right, sketch the shape of the

string at time t = 0.2 sec.  Explain how you

arrived at your answer.

After completing these questions, please turn in this part of the questionnaire.

Then, get the last page of the questionnaire…
p. 4
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Name UMd Wave Diagnostic Test, part 2

9.  A long, taut string is attached to a distant

wall (see figure).  A demonstrator moves her

hand and creates a very small amplitude pulse

which reaches the wall in a time t0.  A small

red dot is painted on the string halfway

between the demonstrator’s hand and the

wall.  For each question, state which of the

actions

a!k (listed to the right) taken by itself will

produce the desired result.  For each question,

more than one answer may be correct.  If so,

give them all.

How, if at all, can the demonstrator repeat the

original experiment to produce:

A pulse that takes a longer time to reach

the wall.  More than one answer may be

correct.  If so, give them all.__________

Explain.

A pulse that is wider than the original

pulse.  More than one answer may be

correct.  If so, give them all.__________

Explain.

A pulse that makes the red dot stay in

motion for less time than in the original

experiment.  More than one answer may be

correct.  If so, give them all.__________

Explain.

A pulse that makes the red dot travel a

further distance than in the original

experiment.  More than one answer may be

correct.  If so, give them all.__________

Explain.

Possible responses for all parts of question 9:

a) Move her hand more quickly (but still only up

and down once and still by the same amount).

b) Move her hand more slowly (but still only up

and down once and still by the same amount).

c) Move her hand a larger distance but up and

down in the same amount of time.

d) Move her hand a smaller distance but up and

down in the same amount of time.

e) Use a heavier string of the same length, under

the same tension

f) Use a lighter string of the same length, under

the same tension

g) Use a string of the same density, but decrease

the tension.

h) Use a string of the same density, but increase

the tension.

i) Put more force into the wave.

j) Put less force into the wave.

k) none of the above.

p. 5
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10.  A dust particle is located in front of a silent loudspeaker (see figure).  The

loudspeaker is turned on and plays a note at a constant (low) pitch.  Which

choice or combination of the choices a!f (listed below) can describe the motion

of the dust particle after the loudspeaker is turned on?  Circle the correct letter

or letters.  Explain.

Possible responses for question 10:

a) The dust particle will move up and down.

b) The dust particle will be pushed away from the speaker.

c) The dust particle will move side to side.

d) The dust particle will not move at all.

e) The dust particle will move in a circular path.

f) None of these answers is correct.

p. 6
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Appendix D-3: Wave Diagnostic Test, Final Version, Post-Instruction

Name UMd Wave Diagnostic Test

1.  A person holds a long, taut string and

quickly moves her hand up and down,

creating a pulse which moves toward the

wall to which the string is attached.  The

pulse reaches the wall in a time t0 (see

figure).

How could the person decrease the amount of time it takes for the pulse to reach
the wall?  Explain.

2.  A dust particle is located in front of a silent loudspeaker
(see figure).  The loudspeaker is turned on and plays a note
at a constant pitch.

Describe the motion of the dust particle.  Explain your
reasoning.

After completing these questions, please turn in this part of the questionnaire.

Then, get the last page of the questionnaire…

p. 1
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3.  A long, taut string is attached to a

distant wall (see figure).  A

demonstrator moves her hand up and

down exactly once and creates a very

small amplitude pulse which reaches

the wall in a

time t0.  For the question below, state

which of the actions a!k (listed to the

right) taken by itself will produce the

desired result.  Note that more than one

answer may be correct.  If so, give

them all.

How, if at all, can the demonstrator

repeat the original experiment to

produce a pulse that takes a longer time

to reach the wall.  More than one

answer may be correct.  If so, give

them all.  Circle the correct letter or

letters.  Explain.

Possible responses for question 1:

a) Move her hand more quickly (but still only up

and down once and still by the same amount).

b) Move her hand more slowly (but still only up

and down once and still by the same amount).

c) Move her hand a larger distance but up and

down in the same amount of time.

d) Move her hand a smaller distance but up and

down in the same amount of time.

e) Use a heavier string of the same length, under

the same tension

f) Use a lighter string of the same length, under

the same tension

g) Use a string of the same density, but decrease

the tension.

h) Use a string of the same density, but increase

the tension.

i) Put more force into the wave.

j) Put less force into the wave.

k) none of the above.

4.  A dust particle is located in front of a silent loudspeaker (see

figure).  The loudspeaker is turned on and plays a note at a

constant (low) pitch.  Which choice or combination of the

choices a!f (listed below) can describe the motion of the dust

particle after the loudspeaker is turned on?  Circle the correct

letter or letters.  Explain.

Possible responses for question 2:
g) The dust particle will move up and down.

h) The dust particle will be pushed

away from the speaker.

i) The dust particle will move side to side.

j) The dust particle will not move at all.

k) The dust particle will move in

a circular path.

l) None of these answers is correct.

p. 2
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5.  Michael and Laura are standing 100 m apart and yell “Yo!” at each other at exactly

the same instant.  Michael yells louder than Laura, and the pitch (frequency) of his

voice is lower.  No wind is blowing.

Will Laura hear Michael first, Michael hear Laura first, or will they hear each other
at the same time?  Explain how you arrived at your answer.

6.  Consider two pulses on a spring, as

shown in the figure to the right.  They

are moving toward each other at 100

cm/sec.  Each block in the picture

represents 1 cm.

In the figure to the right, sketch the
shape of the spring after 0.05 sec
have elapsed.  Explain how you
arrived at your answer.

In the figure to the right, sketch the
shape of the spring after 0.06 sec
have elapsed.  Explain how you
arrived at your answer.

7.  Margaret stands 30 m from a large wall and claps her hands together once.  A short

moment later, she hears an echo.

How, if at all, would the time it takes for her to hear the echo change if she clapped
her hands harder?  Explain.

Consider a dust particle floating in the air very close to the wall (within 0.1 mm).
Describe the motion, if any, of this dust particle between the moment that Margaret
claps and the moment she hears the echo.  Explain how you arrived at your answer.

p. 3
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