Posts Tagged ‘Research News’

Recognizing Sexual Harassment

Tuesday, August 19th, 2014

When it comes to recognizing instances of sexual harassment in the workplace, age is a fundamental factor in shaping individuals’ perceptions of interactions, according to a University of Maine sociologist.

Amy Blackstone, an associate professor of sociology and chairwoman of UMaine’s Sociology Department, found age is important because how perceptions shift over time links to several age-related processes such as maturity and historical context.

“When it comes to how we understand harassment and how we respond to it, age, maturity and experience matter,” Blackstone says. “Our study suggests that employers should consider tailoring harassment training and interventions to the specific needs and experiences of workers at different life course stages.”

Blackstone worked with Jason Houle, a UMaine alumnus who is now an assistant professor of sociology at Dartmouth College, and Christopher Uggen, a Distinguished McKnight Professor of Sociology at the University of Minnesota, to examine how perceptions of sexual harassment at work are linked to an individual’s age, experience and historical backdrop.

The findings were documented in the article, “‘I didn’t recognize it as a bad experience until I was much older’: Age, experience, and workers’ perceptions of sexual harassment,” which was published in June in the Mid-South Sociological Association’s journal “Sociological Spectrum.”

As many as 70 percent of women and 1 in 7 men experience sexual harassment at work, according to previous findings cited in the article. To study changes in perceptions of related experiences, the researchers analyzed data from 33 women and men who were surveyed over the course of 14 years and interviewed in 2002 about their workplace experiences from adolescence into their late 20s.

Three themes emerged among participants: As adolescents, respondents perceived some of the sexualized interactions they experienced at work as fun; while participants did not define some of their early experiences as sexual harassment at the time, they do now; and participants suggested prior work experiences changed their ideas about workplace interactions and themselves as workers.

The researchers used data from interviews with 33 participants in the Youth Development Study (YDS), a longitudinal survey of 1,010 adolescents in Minnesota that began in 1988, when respondents were 14–15 years old and in ninth grade, the article states. In the 2000 administration of the survey, when respondents were 26–27 years old, they were asked if they experienced sexual harassment in jobs held during and since high school. In 2002, when respondents were 28–29 years old, the researchers interviewed 14 men and 19 women of varying races.

Looking back at jobs held during adolescence, the majority of interviewees recast some of their early workplace experiences as sexual harassment, but said flirting and other sexually charged behaviors were considered normal interactions because they were at a point in life when sociability was believed to be an important aspect of the work experience. The participants also viewed some interactions as acceptable for adolescents but inappropriate for adults, the researchers found.

While some respondents attributed their shift in perceptions to role or status changes — growing older, marriage or parenthood — others cited the importance of historical context and landmark sexual harassment cases that altered workplace policies and garnered national attention, according to the article.

Public consciousness about sexual harassment may have heightened during the time participants were in high school, the researchers suggest, as a result of high-profile events such as the 1991 televised hearings of Supreme Court nominee Clarence Thomas and the Civil Rights Act of 1991 that included amendments to Title VII that allowed for compensatory damages in cases of sex discrimination.

Interviewees reported that at least some of the sexualized interactions they experienced at work were not perceived as problematic because the interactions occurred among peers. Several participants said they enjoyed some of the workplace flirting and joking.

One participant said she and her co-workers at an an ice cream shop talked about sex because most of the workers were ‘‘at the age where people are starting to become sexually active so that’s a big deal.’’

Upon reflection, some respondents said they have redefined some experiences during adolescence as sexual harassment, and some participants — both men and women — felt they may have offended co-workers in the past, according to the researchers.

Based on the findings, the researchers suggest sexual harassment training and policies would be most effective if they were better tailored to workers at particular life stages, and further research should be considered.

Contact: Elyse Kahl, 207.581.3747

Past, Present Hemlock Declines Focus of UMaine Research Project

Monday, August 18th, 2014

The impact that hemlock tree die-offs have had — and continue to have — on freshwater forest ecosystems is the focus of a research project at the University of Maine.

Hamish Greig, a UMaine assistant professor of stream ecology, and Jacquelyn Gill, an assistant professor of terrestrial paleoecology at the Climate Change Institute (CCI) and the School of Biology and Ecology, are leading a research team that is studying past and present declines of the conifers known for their dense shade. The resulting biomass the dying trees introduce into the watershed, as well as the other tree species that take their place on the forest floor, affect freshwater systems, including streams and lakes.

Understanding those implications is particularly important in Maine, where hemlocks are now being threatened by the same exotic pest that, in recent years, has decimated the tree species in the southeastern United States.

“People in Maine have a huge affinity to their rivers and lakes. It’s huge economically; it’s huge socially, and through recreational activities,” says Greig, who is joined on the research team by research assistant professor Krista Caps, postdoctoral scientist Robert Northington, as well as several graduate, undergraduate and high school students.

About 5,500 years ago, the hemlocks of eastern North America sustained a massive die-off that lasted about 1,000 years, brought on by severe drought and the hemlock looper, a native pest, Gill says. Today, the tree species has been nearly decimated in the southeastern United States by the hemlock woolly adelgid, an exotic insect from Asia.

Maine’s cold winters typically protect against exotic pests. However, warmer temperatures have allowed exotic pests to thrive and move north. Since 2004, the hemlock woolly adelgid has been in southwestern Maine. This year, it has made it as far north as Owls Head, according to the researchers.

“As the climate warms, there won’t be anything preventing the woolly adelgid from hitting our hemlocks in Maine as hard as they’ve been hit elsewhere,” Gill says.

As part of their study, the research team has set up 36 livestock water tanks as experimental freshwater mesocosms, or isolated experimental environments. Hemlock needles, along with rhododendron and maple leaves, have been added to the ecosystems to observe what happens when a hemlock dies.

The mesocosms allow the scientists to study these isolated environments as they develop over time — in this case, into the fall.

“You can’t really control something in a natural lake,” Greig says. “And if you do experiments in the lab, you’re really simplifying things down to two or three species of invertebrates. By having this happy medium, we can have natural complexity with the controlled replication of a true experiment.”

Next, Gill and Northington will study radiocarbon-dated records from the bottom of lakes and bogs in southeastern, coastal and central Maine regions to help understand how aquatic systems were affected by hemlock die-off in the past. By linking the paleo record with a modern experiment, the team hopes to will new light on hemlock’s role in changing ecosystems.

Hanes, Grad Student to Study Influential Factors of Diversifying Pollination Sources

Tuesday, July 29th, 2014

Samuel Hanes, an assistant professor of anthropology, received a $28,444 grant from the National Science Foundation for the proposal, “Social capital and policy networks: Exploring the factors that influence adoption of pollinator conservation.”

The project aims to better understand obstacles and influential factors growers face when attempting to diversify pollination sources.

According to the proposal, insect pollination produces about $19 billion worth of crops in the U.S. annually. Farmers rent commercial honeybees to supply most of their crop pollination but the number of hives in the U.S. has dropped by more than 30 percent since 1980, leading to interest in alternate pollination sources.

The project will look at factors affecting lowbush blueberry growers’ use of wild, native bees to supplement honeybees.

UMaine graduate student Kourtney Collum will conduct the doctoral dissertation research project under Hanes’ supervision, and as part of UMaine’s anthropology and environmental policy doctoral program.

Collum will examine the factors that influence farmers’ adoption of pollinator conservation practices through a comparative study of blueberry growers in Maine — where there is an adequate honeybee supply — and Prince Edward Island, Canada — where there is a severe honeybee shortage.

The researchers will look closely at growers’ interaction with and perceptions of agricultural agencies and programs, as well as effects of agricultural policies and overall farm management, according to the proposal.

Blomberg Studying Population Dynamics of Ruffed Grouse

Friday, July 18th, 2014

Erik Blomberg, an assistant professor of wildlife ecology in the Department of Wildlife, Fisheries and Conservation Biology at the University of Maine, received a $181,518 grant from the Maine Department of Inland Fisheries and Wildlife for his proposal, “Understanding population dynamics of ruffed grouse.”

The three-year project aims to better understand how forest management practices and sport hunting influence Maine’s ruffed grouse populations. According to the proposal, the native bird benefits from many forms of forest harvest and is widely used as a game species by Maine residents and visitors.

Blomberg and his team will implement a large-scale field study to evaluate how components of ruffed grouse biology, such as seasonal and annual survival and nest success, respond to different types of forest composition and management. Researchers also will estimate harvest rates throughout the annual hunting season from October to December.

Collected information will close a large gap in the current understanding of ruffed grouse ecology in the region and will contribute to future management of Maine’s popular game bird, as well as contribute to the general understanding of wildlife ecology in forest ecosystems, according to the researchers.

The researchers say they will work closely with the Maine Department of Inland Fisheries and Wildlife to ensure results provide the greatest benefit to Maine wildlife management.

NASA, UMaine Endeavor to Better Understand Phytoplankton, Carbon Cycling

Thursday, July 17th, 2014

University of Maine oceanographer Ivona Cetinic is participating in a NASA project to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain.

Phytoplankton — tiny ocean plants that absorb carbon dioxide and deliver oxygen to Earth’s atmosphere — are key to the planet’s health. And NASA wants a clear, global view of them.

NASA’s Ship-Aircraft Bio-Optical Research (SABOR) mission will bring together marine and atmospheric scientists to tackle optical issues associated with satellite observations of phytoplankton.

The goal is to better understand marine ecology and phytoplankton’s major role in the global cycling of atmospheric carbon between the ocean and the atmosphere.

“Teams involved in this project are working together to develop next-generation tools that will change forever how we study oceans,” says Cetinic, a research associate at UMaine’s Darling Marine Center (DMC) in Walpole, Maine.

“Methods that will be developed during this experiment are something like 3-D glasses. They will allow us to see more details on the surface of the ocean and to see deeper into the ocean, helping us learn more about carbon in the ocean — carbon that is fueling oceanic ecosystems, as well as the fisheries and aquaculture.”

Cetinic will be a chief scientist aboard RV Endeavor that departs July 18 from Narragansett, Rhode Island. She received $1,043,662 from NASA’s Ocean Biology and Biogeochemistry program for her part in the three-year project.

Cetinic’s crew, which includes Wayne Slade of Sequoia Scientific, Inc., Nicole Poulton of Bigelow Laboratory for Ocean Sciences and UMaine Ph.D. student Alison Chase, will analyze water samples for carbon, as well as pump seawater continuously through on-board instruments to measure how ocean particles, including phytoplankton, interact with light.

Chase, who recently earned her master’s in oceanography at UMaine, will blog about the experience at earthobservatory.nasa.gov/blogs/fromthefield.

Interim DMC director Mary Jane Perry, who is participating in another research cruise this summer (umaine.edu/news/blog/2014/07/08/under-the-ice), will be involved in future data analysis.

Mike Behrenfeld of Oregon State University also will be aboard Endeavor and he and his team will use a new technique to directly measure phytoplankton biomass and photosynthesis.

“The goal is to develop mathematical relationships that allow scientists to calculate the biomass of the phytoplankton from optical signals measured from space, and thus to be able to monitor how ocean phytoplankton change from year to year and figure out what causes these changes,” he says.

Another research team also will be aboard Endeavor, which for three weeks will cruise through a range of ecosystems between the East Coast and Bahamas.

Alex Gilerson of City College of New York will lead a crew that will operate an array of instruments, including an underwater video camera equipped with polarization vision. It will continuously measure key characteristics of the sky and the water.

The measurements taken from aboard the ship will provide an up-close perspective and validate measurements taken simultaneously by scientists in aircraft.

NASA’s UC-12 airborne laboratory, based at NASA’s Langley Research Center in Hampton, Virginia, will make coordinated science flights beginning July 20.

One obstacle in observing marine ecosystems from space is that atmospheric particles interfere with measurements. Brian Cairns of NASA’s Goddard Institute for Space Studies in New York will lead an aircraft team with a polarimeter instrument to address the issue.

From an altitude of about 30,000 feet, the instrument will measure properties of reflected light, including brightness and magnitude of polarization. These measurements will define the concentration, size, shape and composition of particles in the atmosphere.

Polarimeter measurements of reflected light should provide valuable context for data from another instrument on the UC-12 designed to reveal how plankton and optical properties vary with water depth.

Chris Hostetler of Langley is leading that group. He and others will test a prototype lidar (light detection and ranging) system — the High Spectral Resolution Lidar-1 (HSRL-1). A laser that will probe the ocean to a depth of about 160 feet should reveal how phytoplankton concentrations change with depth, along with the amount of light available for photosynthesis.

Phytoplankton largely drive the functioning of ocean ecosystems and knowledge of their vertical distribution is needed to understand their productivity. This knowledge will allow NASA scientists to improve satellite-based estimates of how much atmospheric carbon dioxide is absorbed by the ocean.

NASA satellites contributing to SABOR are the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), which view clouds and tiny particles in Earth’s atmosphere, as well as the Terra and Aqua satellites, which measure atmospheric, land and marine processes.

Analysis of data collected from the ship, aircraft and satellites is expected to guide preparation for a new, advanced ocean satellite mission — Pre-Aerosol, Clouds, and ocean Ecosystem (PACE), according to NASA.

PACE will extend observations of ocean ecology, biogeochemical cycling and ocean productivity begun by NASA in the late 1970s with the Coastal Zone Color Scanner and continued with the Sea-viewing Wide Field-of-view-Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua.

SABOR is funded by the Earth Science Division in the Science Mission Directorate at NASA Headquarters.

Contact: Beth Staples, 207.581.3777

Research Shows 15-year History of Wetland Management

Monday, July 14th, 2014

A new article in the Proceedings of the National Academy of Sciences (PNAS) documents nearly 15 years of vernal pools research and management by the University of Maine’s Aram Calhoun who is leading an interdisciplinary team at the Sustainability Solutions Initiative (SSI), a program of the Sen. George J. Mitchell Center.

In the article, published this week online at pnas.org, Calhoun and three co-authors analyze a timeline of action and scholarship that spans from 1999 to the present. In that time, the professor of wetland ecology and director of UMaine’s Ecology and Environmental Sciences program has collaborated closely with academic colleagues, government at all levels, nongovernmental organizations, landowners, developers and concerned citizens in an effort to create an environment in which these small, but significant, wetlands can flourish.

The article’s co-authors and SSI collaborators are Jessica Jansujwicz, a SSI postdoctoral fellow, Kathleen Bell, associate professor of economics, and Malcolm Hunter Jr., Libra professor of conservation biology and professor of wildlife ecology. The authors acknowledge and thank the many additional faculty and students who contributed to the research and outreach reported in the article.

“It is our hope that the work presented in this paper will inspire other researchers, practitioners and citizens dedicated to planned development and conservation of natural resources to forge new working relationships,” Calhoun said. “Our work shows that time, patience, open-mindedness and the willingness to assume a bit of risk are key to successful collaborations on difficult conservation issues. We have found that the time invested is well worth the effort. The exchange and synthesis of diverse ideas lead to outcomes that are more widely embraced and enduring.”

The effort to protect vernal pools has required a high level of perseverance and creativity, Calhoun says. Tensions among private landowners, ecologists and government entities over resource location, function and management strategies have stymied progress for years. Thus, vernal pools require a different kind of attention than many other types of natural resources, Calhoun and colleagues say. The pools, located mainly on private land, are a key-breeding habitat for several amphibians and serve as an important wetland resource for wildlife. They can be hard to detect. The tiny pools fill with water each spring and often dry up by summer’s end. Researchers stress that multidisciplinary, stakeholder-engaged efforts open the door to innovative strategies that can conserve pools while encouraging development. The diverse perspectives provide a basis for compromise, they say. It is the very nature of these pools, their size and locations that introduce this opportunity for practice of a new sustainable science model, researchers say.

In her 15-year involvement with vernal pools in Maine, Calhoun has played a major role in shepherding in a new era. In 1999, Calhoun and others in a diverse working group pushed for a new state law that better protects vernal pools. It passed. They coupled important scientific discoveries with successful public education programs. More recently, Calhoun, SSI researchers and key stakeholders collaborated to develop a streamlined, locally-tailored approach to regulation, one that could make compliance less encumbering for towns and land developers while better protecting vulnerable amphibian populations. Bell says the successful collaboration laid out in the article is a model of sustainability with real world impact.

“This paper is exciting because it advances interdisciplinary, engaged research as a viable tool to address complex conservation challenges,” Bell said. “It is a story about sustainability science — a journey to link knowledge with action along the road to conservation solutions.”

Hunter added that the team’s work has major implications for conservation far beyond Maine and the region. “One of the most important aspects of this work is that it nicely illustrates a larger principle: that focusing conservation on small bits of the landscape can have disproportionately large effects on ecological integrity at a much larger scale,” he said. Vernal pool conservation was the focus of Jansujwicz’s dissertation. She emphasizes SSI’s mission to include stakeholders as partners in research and solutions: ”Our research demonstrates the value of engaging stakeholders throughout the research process. With their participation, we can design and conduct research that is more flexible, creative, and responsive to diverse concerns.”

Next up for Calhoun and SSI vernal pool researchers: continued study funded by a $1.49 million grant from the National Science Foundation’s (NSF) Dynamics of Coupled Natural and Human Systems Competition (CNH) Program. The four-year project, Of Pools and People, began in 2013 and supports research focused on more effective strategies when it comes to vernal pools and small, natural landscape features that contribute disproportionately to larger ecosystem functions.

Supported by National Science Foundation award EPS-0904155 to Maine EPSCoR at the University of Maine.

Contact: Tamara Field,  207.420.7755

Arctic Research Expected to Provide Unprecedented Views of Phytoplankton

Tuesday, July 8th, 2014

University of Maine research this summer in the Arctic’s Marginal Ice Zone (MIZ) is expected to provide one of the first comprehensive views of the spatial distribution and abundance of phytoplankton under the ice.

UMaine oceanographer Mary Jane Perry, interim director of the Darling Marine Center, was awarded $196,000 from the U.S. Department of Defense Office of Naval Research to sample the biogeochemistry of the Marginal Ice Zone from a Korean icebreaker, the R/V Araon, and with underwater gliders. UMaine scientist Cameron Thompson will participate in additional cruises from Alaska’s Prudhoe Bay; Ivona Cetinic, also at the Darling Center, will be involved in data analysis.

On July 30, Perry will join an international group of over 40 scientists to study the retreat of sea ice in the Arctic. The Arctic has experienced a dramatic decline in sea ice thickness, aerial extent and age distribution. Changing patterns in sea ice have significant implications for the planktonic food web, and flow of carbon and nutrients in the Arctic, including timing, magnitude and location of plankton blooms.

The Marginal Ice Zone Program, led by the University of Washington, is an Office of Naval Research initiative that will use a combination of autonomous robotic technologies, ships, aircraft and satellites to study the breakup of ice in the Beaufort Sea and its northward retreat in summer. It is expected to contribute to our understanding of ice dynamics, including feedbacks in the ice-ocean-atmosphere system that affect rates of sea ice decline. More about the MIZ Program is online, as is a story about the research tracking the breakup of Arctic summer sea ice (washington.edu/news/2014/07/16/tracking-the-breakup-of-arctic-summer-sea-ice).

Perry will use small underwater gliders to repeatedly sample open water, the MIZ and water under full ice cover. The optical data collected from the gliders over a two-month period will offer the first comprehensive view of the spatial distribution and abundance of phytoplankton under ice in the Arctic. Relatively few observations of under-ice blooms exist, due to the logistical constraints of sampling under thin and melting ice.

Thinner ice and greater abundance of melt ponds facilitate greater penetration of visible light through the ice, allowing planktonic photosynthetic organisms to grow. Perry will use measurements from the icebreaker to calibrate the glider sensors. She hopes to assess how changing ice patterns affect plankton productivity in the Arctic, and better understand the role of phytoplankton on the heat budget under the ice.

Phytoplankton are microscopic photosynthetic organisms at the base of the marine food web; their production of carbon fuels the ecosystem. For more than a quarter-century, Perry has studied marine phytoplankton in an effort to understand its biomass variability and production dynamics. Her research has taken her to the subpolar North Atlantic and North Pacific on several major expeditions, the last in 2008, as well as other regions in the world’s ocean.

Contact: Margaret Nagle, 207.581.3745

UMaine Researchers Focus on Improving Urchin Roe Production

Tuesday, July 8th, 2014

Enhancing green sea urchin egg production to aid Maine’s depressed urchin market is the research focus of a University of Maine marine bioresources graduate student.

Ung Wei Kenn, a second-year master’s student from Kuala Lumpur, Malaysia, hopes to increase the egg or roe yield of farm-raised green sea urchins through high-quality feed, a process known as bulking. His research is part of a two-year, more than $215,000 research project funded by the National Sea Grant National Strategic Initiative and led by director Nick Brown and biologist Steve Eddy of UMaine’s Center for Cooperative Aquaculture Research (CCAR) in Franklin, Maine.

“I was always interested in the vertical integration of aquaculture and seafood processing,” says Ung, who completed his undergraduate work at the University of Tasmania, Australia. “I am also passionate about seafood that is popular in Asia. This topic is a blend of all that.”

Ung came to UMaine because he was attracted to the project, but he praises CCAR, where he conducts his research, as a key part in his decision to work at UMaine.

“I always felt that aquaculture is not just a science; it is a business as well,” says Ung. “CCAR is special in that it is specifically set up to assist aquaculture businesses by providing scientific and technical know-how. I would not have this luxury at most other places.”

Ung’s research potentially could have significant economic benefit for the state. Maine exports roe to Japan, where it is considered a delicacy. Since the late 1990s, Maine has suffered a dramatic sea urchin industry decline, dropping to a 2.6 million-pound yearly harvest after 1993’s 42-million-pound high, according to information on the Maine Sea Grant website.

“(Using bulking), we can produce out-of-season urchins, enabling the industry to get the best prices, such as when there is a festival in Japan,” Ung says.

Ung places wild green sea urchins, which are harvested from Hancock County’s Frenchman Bay, in a recirculating aquaculture system, where they are fed fresh and dried kelp and a commercial diet that fosters higher-quality eggs. Harvested sea urchins are usually 57 mm in diameter.

Ung hopes his research will lead to increased roe yield and improved roe quality. After four months of urchin dieting, Ung analyzes roe yield, texture and color data at the Food Science and Human Nutrition Department’s physical properties lab. Taste testing is completed at the UMaine Consumer Testing Center. Roe pre- and post-experimentation aspects are compared to determine if quality has been enhanced.

High-quality roe is sweet, smooth and yellow, gold or orange in color, while poor-quality roe has a watery appearance or bitter taste.

“There is a commercial component where we want to demonstrate that the urchins can be enhanced at a commercial scale,” Ung says. “A higher-quality roe yield would mean better selling prices.”

Contact: Margaret Nagle, 207.581.3745

UMaine Research Project to Test Wireless Leak Detection System for International Space Station

Tuesday, July 8th, 2014

University of Maine researchers will design and test a wireless leak detection system for the International Space Station (ISS) that could lead to increased safety on the ISS and for other space activities, as well as on Earth in the event of gas and oil leaks at industrial plants.

The project was one of five in the nation to receive funding from NASA’s Experimental Program to Stimulate Competitive Research (EPSCoR) for research and technology development onboard ISS.

Ali Abedi, a UMaine associate professor of electrical and computer engineering, was awarded a three-year, $100,000 NASA grant through the Maine Space Grant Consortium in Augusta, which consists of higher education institutions and nonprofit research organizations that are actively involved in aerospace-related research and education.

“We are very excited to be selected among the only five groups in the nation to conduct a flight test on ISS,” Abedi says. “This will be a great training experience for our students to learn how to take a prototype out of the lab, and not only to the field but also to space.”

Leaks causing air and heat loss are a major safety concern for astronauts, according to Abedi.

“It is important to save the air when it comes to space missions; find the leak and fix it before it is too late,” he says.

Abedi’s project involves the development of a flight-ready wireless sensor system that will be able to quickly detect and localize leaks based on ultrasonic sensor array signals. The proposed system is fast, accurate and capable of detecting multiple leaks and localizing them with a lightweight and low-cost system, Abedi says.

“Our goal is to push the boundaries of hardware and software in order to design a highly accurate, ultra-low-power and lightweight autonomous leak detection and localization system for ISS,” he says.

The lab prototype was developed by UMaine Ph.D. student Joel Castro and postdoctoral fellow Hossein Roufarshbaf as part of a previously funded NASA EPSCoR project and was tested on UMaine’s inflatable lunar habitat, located in the Wireless Sensing Laboratory (WiSe-Net Lab) on campus. The new funding will allow researchers to make the system more rugged and revise it for a microgravity environment through testing at the NASA Johnson Space Center in Houston, Texas, and then onboard the ISS over the next two to three years.

The testing and verification of the system in a microgravity environment will help determine how well the system performs in space, as well as on Earth.

“Leak detection methods developed for extreme space environments will push the limits of current technology for ground-based leak detection at home and in industrial plants,” says Abedi, who directs the WiSe-Net Lab. The lab conducts research on wireless communications ranging from coding and information theory to wireless sensor networks and space applications, as well as houses the NASA’s lunar habitat.

Vince Caccese, a UMaine mechanical engineering professor, and George Nelson, current director of ISS Technology Demonstration Office at the NASA Johnson Space Center, also are involved with the project.

Proposals from the University of Kentucky, Lexington; Montana State University, Bozeman; University of Nebraska, Omaha; and the University of Delaware, Newark also were funded. Other research includes improving spacewalking suits by incorporating self-healing polymers that are tested against micrometeor impacts.

Contact: Elyse Kahl, 207.581.3747

Nutrients of Peppers Promoted with the Development of a Less Pungent Variety

Tuesday, July 8th, 2014

A new pepper variety has been developed with a high capsinoid content to make it less pungent while maintaining all the natural health benefits of the fruit, according to researchers with the U.S. Department of Agriculture and the University of Maine.

The researchers — Robert Jarret from the USDA/Agricultural Research Service in Griffin, Georgia, and Jason Bolton and L. Brian Perkins from the University of Maine School of Food and Agriculture — developed the new small-fruited Capsicum annuum L. pepper through traditional breeding methods in an effort to make the health benefits of hot peppers available to more consumers.

In hot peppers, capsaicinoids are the compounds associated both with their signature heat and health benefits, which include being a source of antioxidants. But that pungency can limit their use in foods and pharmaceuticals.

Capsinoids, closely related compounds of capsaicinoids, provide the same benefits without the pungency.

Starting in 2006 with a USDA seed grant, Perkins, a UMaine assistant research professor and director of the Food Chemical Safety Laboratory, and Bolton, then a food science graduate student, screened about 500 subspecies of Capsicum annuum. They forwarded their data to Jarret, who selected those with the highest concentrations of capsinoids.

Jarret then began to classically breed the selected varieties at the USDA facility in Georgia. Perkins screened the results and they repeated the process, selecting the best capsinoid producers from each generation.

The culmination of their work is germplasm 509-45-1. The peppers are very small, with each plant producing up to 1,000 peppers. According to Perkins, there will likely be additional selection to prepare the plants for marketability, both as a food product and for medical experiments.

Currently, small quantities of seed are available from the USDA for research purposes.

Contact: Margaret Nagle, 207.581.3745