Archive for the ‘News Releases Home Page’ Category

NASA, UMaine Endeavor to Better Understand Phytoplankton, Carbon Cycling

Thursday, July 17th, 2014

University of Maine oceanographer Ivona Cetinic is participating in a NASA project to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain.

Phytoplankton — tiny ocean plants that absorb carbon dioxide and deliver oxygen to Earth’s atmosphere — are key to the planet’s health. And NASA wants a clear, global view of them.

NASA’s Ship-Aircraft Bio-Optical Research (SABOR) mission will bring together marine and atmospheric scientists to tackle optical issues associated with satellite observations of phytoplankton.

The goal is to better understand marine ecology and phytoplankton’s major role in the global cycling of atmospheric carbon between the ocean and the atmosphere.

“Teams involved in this project are working together to develop next-generation tools that will change forever how we study oceans,” says Cetinic, a research associate at UMaine’s Darling Marine Center (DMC) in Walpole, Maine.

“Methods that will be developed during this experiment are something like 3-D glasses. They will allow us to see more details on the surface of the ocean and to see deeper into the ocean, helping us learn more about carbon in the ocean — carbon that is fueling oceanic ecosystems, as well as the fisheries and aquaculture.”

Cetinic will be a chief scientist aboard RV Endeavor that departs July 18 from Narragansett, Rhode Island. She received $1,043,662 from NASA’s Ocean Biology and Biogeochemistry program for her part in the three-year project.

Cetinic’s crew, which includes Wayne Slade of Sequoia Scientific, Inc., Nicole Poulton of Bigelow Laboratory for Ocean Sciences and UMaine Ph.D. student Alison Chase, will analyze water samples for carbon, as well as pump seawater continuously through on-board instruments to measure how ocean particles, including phytoplankton, interact with light.

Chase, who recently earned her master’s in oceanography at UMaine, will blog about the experience at earthobservatory.nasa.gov/blogs/fromthefield.

Interim DMC director Mary Jane Perry, who is participating in another research cruise this summer (umaine.edu/news/blog/2014/07/08/under-the-ice), will be involved in future data analysis.

Mike Behrenfeld of Oregon State University also will be aboard Endeavor and he and his team will use a new technique to directly measure phytoplankton biomass and photosynthesis.

“The goal is to develop mathematical relationships that allow scientists to calculate the biomass of the phytoplankton from optical signals measured from space, and thus to be able to monitor how ocean phytoplankton change from year to year and figure out what causes these changes,” he says.

Another research team also will be aboard Endeavor, which for three weeks will cruise through a range of ecosystems between the East Coast and Bahamas.

Alex Gilerson of City College of New York will lead a crew that will operate an array of instruments, including an underwater video camera equipped with polarization vision. It will continuously measure key characteristics of the sky and the water.

The measurements taken from aboard the ship will provide an up-close perspective and validate measurements taken simultaneously by scientists in aircraft.

NASA’s UC-12 airborne laboratory, based at NASA’s Langley Research Center in Hampton, Virginia, will make coordinated science flights beginning July 20.

One obstacle in observing marine ecosystems from space is that atmospheric particles interfere with measurements. Brian Cairns of NASA’s Goddard Institute for Space Studies in New York will lead an aircraft team with a polarimeter instrument to address the issue.

From an altitude of about 30,000 feet, the instrument will measure properties of reflected light, including brightness and magnitude of polarization. These measurements will define the concentration, size, shape and composition of particles in the atmosphere.

Polarimeter measurements of reflected light should provide valuable context for data from another instrument on the UC-12 designed to reveal how plankton and optical properties vary with water depth.

Chris Hostetler of Langley is leading that group. He and others will test a prototype lidar (light detection and ranging) system — the High Spectral Resolution Lidar-1 (HSRL-1). A laser that will probe the ocean to a depth of about 160 feet should reveal how phytoplankton concentrations change with depth, along with the amount of light available for photosynthesis.

Phytoplankton largely drive the functioning of ocean ecosystems and knowledge of their vertical distribution is needed to understand their productivity. This knowledge will allow NASA scientists to improve satellite-based estimates of how much atmospheric carbon dioxide is absorbed by the ocean.

NASA satellites contributing to SABOR are the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), which view clouds and tiny particles in Earth’s atmosphere, as well as the Terra and Aqua satellites, which measure atmospheric, land and marine processes.

Analysis of data collected from the ship, aircraft and satellites is expected to guide preparation for a new, advanced ocean satellite mission — Pre-Aerosol, Clouds, and ocean Ecosystem (PACE), according to NASA.

PACE will extend observations of ocean ecology, biogeochemical cycling and ocean productivity begun by NASA in the late 1970s with the Coastal Zone Color Scanner and continued with the Sea-viewing Wide Field-of-view-Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua.

SABOR is funded by the Earth Science Division in the Science Mission Directorate at NASA Headquarters.

Contact: Beth Staples, 207.581.3777

Research Shows 15-year History of Wetland Management

Monday, July 14th, 2014

A new article in the Proceedings of the National Academy of Sciences (PNAS) documents nearly 15 years of vernal pools research and management by the University of Maine’s Aram Calhoun who is leading an interdisciplinary team at the Sustainability Solutions Initiative (SSI), a program of the Sen. George J. Mitchell Center.

In the article, published this week online at pnas.org, Calhoun and three co-authors analyze a timeline of action and scholarship that spans from 1999 to the present. In that time, the professor of wetland ecology and director of UMaine’s Ecology and Environmental Sciences program has collaborated closely with academic colleagues, government at all levels, nongovernmental organizations, landowners, developers and concerned citizens in an effort to create an environment in which these small, but significant, wetlands can flourish.

The article’s co-authors and SSI collaborators are Jessica Jansujwicz, a SSI postdoctoral fellow, Kathleen Bell, associate professor of economics, and Malcolm Hunter Jr., Libra professor of conservation biology and professor of wildlife ecology. The authors acknowledge and thank the many additional faculty and students who contributed to the research and outreach reported in the article.

“It is our hope that the work presented in this paper will inspire other researchers, practitioners and citizens dedicated to planned development and conservation of natural resources to forge new working relationships,” Calhoun said. “Our work shows that time, patience, open-mindedness and the willingness to assume a bit of risk are key to successful collaborations on difficult conservation issues. We have found that the time invested is well worth the effort. The exchange and synthesis of diverse ideas lead to outcomes that are more widely embraced and enduring.”

The effort to protect vernal pools has required a high level of perseverance and creativity, Calhoun says. Tensions among private landowners, ecologists and government entities over resource location, function and management strategies have stymied progress for years. Thus, vernal pools require a different kind of attention than many other types of natural resources, Calhoun and colleagues say. The pools, located mainly on private land, are a key-breeding habitat for several amphibians and serve as an important wetland resource for wildlife. They can be hard to detect. The tiny pools fill with water each spring and often dry up by summer’s end. Researchers stress that multidisciplinary, stakeholder-engaged efforts open the door to innovative strategies that can conserve pools while encouraging development. The diverse perspectives provide a basis for compromise, they say. It is the very nature of these pools, their size and locations that introduce this opportunity for practice of a new sustainable science model, researchers say.

In her 15-year involvement with vernal pools in Maine, Calhoun has played a major role in shepherding in a new era. In 1999, Calhoun and others in a diverse working group pushed for a new state law that better protects vernal pools. It passed. They coupled important scientific discoveries with successful public education programs. More recently, Calhoun, SSI researchers and key stakeholders collaborated to develop a streamlined, locally-tailored approach to regulation, one that could make compliance less encumbering for towns and land developers while better protecting vulnerable amphibian populations. Bell says the successful collaboration laid out in the article is a model of sustainability with real world impact.

“This paper is exciting because it advances interdisciplinary, engaged research as a viable tool to address complex conservation challenges,” Bell said. “It is a story about sustainability science — a journey to link knowledge with action along the road to conservation solutions.”

Hunter added that the team’s work has major implications for conservation far beyond Maine and the region. “One of the most important aspects of this work is that it nicely illustrates a larger principle: that focusing conservation on small bits of the landscape can have disproportionately large effects on ecological integrity at a much larger scale,” he said. Vernal pool conservation was the focus of Jansujwicz’s dissertation. She emphasizes SSI’s mission to include stakeholders as partners in research and solutions: ”Our research demonstrates the value of engaging stakeholders throughout the research process. With their participation, we can design and conduct research that is more flexible, creative, and responsive to diverse concerns.”

Next up for Calhoun and SSI vernal pool researchers: continued study funded by a $1.49 million grant from the National Science Foundation’s (NSF) Dynamics of Coupled Natural and Human Systems Competition (CNH) Program. The four-year project, Of Pools and People, began in 2013 and supports research focused on more effective strategies when it comes to vernal pools and small, natural landscape features that contribute disproportionately to larger ecosystem functions.

Supported by National Science Foundation award EPS-0904155 to Maine EPSCoR at the University of Maine.

Contact: Tamara Field,  207.420.7755

Arctic Research Expected to Provide Unprecedented Views of Phytoplankton

Tuesday, July 8th, 2014

University of Maine research this summer in the Arctic’s Marginal Ice Zone (MIZ) is expected to provide one of the first comprehensive views of the spatial distribution and abundance of phytoplankton under the ice.

UMaine oceanographer Mary Jane Perry, interim director of the Darling Marine Center, was awarded $196,000 from the U.S. Department of Defense Office of Naval Research to sample the biogeochemistry of the Marginal Ice Zone from a Korean icebreaker, the R/V Araon, and with underwater gliders. UMaine scientist Cameron Thompson will participate in additional cruises from Alaska’s Prudhoe Bay; Ivona Cetinic, also at the Darling Center, will be involved in data analysis.

On July 30, Perry will join an international group of over 40 scientists to study the retreat of sea ice in the Arctic. The Arctic has experienced a dramatic decline in sea ice thickness, aerial extent and age distribution. Changing patterns in sea ice have significant implications for the planktonic food web, and flow of carbon and nutrients in the Arctic, including timing, magnitude and location of plankton blooms.

The Marginal Ice Zone Program, led by the University of Washington, is an Office of Naval Research initiative that will use a combination of autonomous robotic technologies, ships, aircraft and satellites to study the breakup of ice in the Beaufort Sea and its northward retreat in summer. It is expected to contribute to our understanding of ice dynamics, including feedbacks in the ice-ocean-atmosphere system that affect rates of sea ice decline. More about the MIZ Program is online, as is a story about the research tracking the breakup of Arctic summer sea ice (washington.edu/news/2014/07/16/tracking-the-breakup-of-arctic-summer-sea-ice).

Perry will use small underwater gliders to repeatedly sample open water, the MIZ and water under full ice cover. The optical data collected from the gliders over a two-month period will offer the first comprehensive view of the spatial distribution and abundance of phytoplankton under ice in the Arctic. Relatively few observations of under-ice blooms exist, due to the logistical constraints of sampling under thin and melting ice.

Thinner ice and greater abundance of melt ponds facilitate greater penetration of visible light through the ice, allowing planktonic photosynthetic organisms to grow. Perry will use measurements from the icebreaker to calibrate the glider sensors. She hopes to assess how changing ice patterns affect plankton productivity in the Arctic, and better understand the role of phytoplankton on the heat budget under the ice.

Phytoplankton are microscopic photosynthetic organisms at the base of the marine food web; their production of carbon fuels the ecosystem. For more than a quarter-century, Perry has studied marine phytoplankton in an effort to understand its biomass variability and production dynamics. Her research has taken her to the subpolar North Atlantic and North Pacific on several major expeditions, the last in 2008, as well as other regions in the world’s ocean.

Contact: Margaret Nagle, 207.581.3745

UMaine Researchers Focus on Improving Urchin Roe Production

Tuesday, July 8th, 2014

Enhancing green sea urchin egg production to aid Maine’s depressed urchin market is the research focus of a University of Maine marine bioresources graduate student.

Ung Wei Kenn, a second-year master’s student from Kuala Lumpur, Malaysia, hopes to increase the egg or roe yield of farm-raised green sea urchins through high-quality feed, a process known as bulking. His research is part of a two-year, more than $215,000 research project funded by the National Sea Grant National Strategic Initiative and led by director Nick Brown and biologist Steve Eddy of UMaine’s Center for Cooperative Aquaculture Research (CCAR) in Franklin, Maine.

“I was always interested in the vertical integration of aquaculture and seafood processing,” says Ung, who completed his undergraduate work at the University of Tasmania, Australia. “I am also passionate about seafood that is popular in Asia. This topic is a blend of all that.”

Ung came to UMaine because he was attracted to the project, but he praises CCAR, where he conducts his research, as a key part in his decision to work at UMaine.

“I always felt that aquaculture is not just a science; it is a business as well,” says Ung. “CCAR is special in that it is specifically set up to assist aquaculture businesses by providing scientific and technical know-how. I would not have this luxury at most other places.”

Ung’s research potentially could have significant economic benefit for the state. Maine exports roe to Japan, where it is considered a delicacy. Since the late 1990s, Maine has suffered a dramatic sea urchin industry decline, dropping to a 2.6 million-pound yearly harvest after 1993’s 42-million-pound high, according to information on the Maine Sea Grant website.

“(Using bulking), we can produce out-of-season urchins, enabling the industry to get the best prices, such as when there is a festival in Japan,” Ung says.

Ung places wild green sea urchins, which are harvested from Hancock County’s Frenchman Bay, in a recirculating aquaculture system, where they are fed fresh and dried kelp and a commercial diet that fosters higher-quality eggs. Harvested sea urchins are usually 57 mm in diameter.

Ung hopes his research will lead to increased roe yield and improved roe quality. After four months of urchin dieting, Ung analyzes roe yield, texture and color data at the Food Science and Human Nutrition Department’s physical properties lab. Taste testing is completed at the UMaine Consumer Testing Center. Roe pre- and post-experimentation aspects are compared to determine if quality has been enhanced.

High-quality roe is sweet, smooth and yellow, gold or orange in color, while poor-quality roe has a watery appearance or bitter taste.

“There is a commercial component where we want to demonstrate that the urchins can be enhanced at a commercial scale,” Ung says. “A higher-quality roe yield would mean better selling prices.”

Contact: Margaret Nagle, 207.581.3745

UMaine Research Project to Test Wireless Leak Detection System for International Space Station

Tuesday, July 8th, 2014

University of Maine researchers will design and test a wireless leak detection system for the International Space Station (ISS) that could lead to increased safety on the ISS and for other space activities, as well as on Earth in the event of gas and oil leaks at industrial plants.

The project was one of five in the nation to receive funding from NASA’s Experimental Program to Stimulate Competitive Research (EPSCoR) for research and technology development onboard ISS.

Ali Abedi, a UMaine associate professor of electrical and computer engineering, was awarded a three-year, $100,000 NASA grant through the Maine Space Grant Consortium in Augusta, which consists of higher education institutions and nonprofit research organizations that are actively involved in aerospace-related research and education.

“We are very excited to be selected among the only five groups in the nation to conduct a flight test on ISS,” Abedi says. “This will be a great training experience for our students to learn how to take a prototype out of the lab, and not only to the field but also to space.”

Leaks causing air and heat loss are a major safety concern for astronauts, according to Abedi.

“It is important to save the air when it comes to space missions; find the leak and fix it before it is too late,” he says.

Abedi’s project involves the development of a flight-ready wireless sensor system that will be able to quickly detect and localize leaks based on ultrasonic sensor array signals. The proposed system is fast, accurate and capable of detecting multiple leaks and localizing them with a lightweight and low-cost system, Abedi says.

“Our goal is to push the boundaries of hardware and software in order to design a highly accurate, ultra-low-power and lightweight autonomous leak detection and localization system for ISS,” he says.

The lab prototype was developed by UMaine Ph.D. student Joel Castro and postdoctoral fellow Hossein Roufarshbaf as part of a previously funded NASA EPSCoR project and was tested on UMaine’s inflatable lunar habitat, located in the Wireless Sensing Laboratory (WiSe-Net Lab) on campus. The new funding will allow researchers to make the system more rugged and revise it for a microgravity environment through testing at the NASA Johnson Space Center in Houston, Texas, and then onboard the ISS over the next two to three years.

The testing and verification of the system in a microgravity environment will help determine how well the system performs in space, as well as on Earth.

“Leak detection methods developed for extreme space environments will push the limits of current technology for ground-based leak detection at home and in industrial plants,” says Abedi, who directs the WiSe-Net Lab. The lab conducts research on wireless communications ranging from coding and information theory to wireless sensor networks and space applications, as well as houses the NASA’s lunar habitat.

Vince Caccese, a UMaine mechanical engineering professor, and George Nelson, current director of ISS Technology Demonstration Office at the NASA Johnson Space Center, also are involved with the project.

Proposals from the University of Kentucky, Lexington; Montana State University, Bozeman; University of Nebraska, Omaha; and the University of Delaware, Newark also were funded. Other research includes improving spacewalking suits by incorporating self-healing polymers that are tested against micrometeor impacts.

Contact: Elyse Kahl, 207.581.3747

Nutrients of Peppers Promoted with the Development of a Less Pungent Variety

Tuesday, July 8th, 2014

A new pepper variety has been developed with a high capsinoid content to make it less pungent while maintaining all the natural health benefits of the fruit, according to researchers with the U.S. Department of Agriculture and the University of Maine.

The researchers — Robert Jarret from the USDA/Agricultural Research Service in Griffin, Georgia, and Jason Bolton and L. Brian Perkins from the University of Maine School of Food and Agriculture — developed the new small-fruited Capsicum annuum L. pepper through traditional breeding methods in an effort to make the health benefits of hot peppers available to more consumers.

In hot peppers, capsaicinoids are the compounds associated both with their signature heat and health benefits, which include being a source of antioxidants. But that pungency can limit their use in foods and pharmaceuticals.

Capsinoids, closely related compounds of capsaicinoids, provide the same benefits without the pungency.

Starting in 2006 with a USDA seed grant, Perkins, a UMaine assistant research professor and director of the Food Chemical Safety Laboratory, and Bolton, then a food science graduate student, screened about 500 subspecies of Capsicum annuum. They forwarded their data to Jarret, who selected those with the highest concentrations of capsinoids.

Jarret then began to classically breed the selected varieties at the USDA facility in Georgia. Perkins screened the results and they repeated the process, selecting the best capsinoid producers from each generation.

The culmination of their work is germplasm 509-45-1. The peppers are very small, with each plant producing up to 1,000 peppers. According to Perkins, there will likely be additional selection to prepare the plants for marketability, both as a food product and for medical experiments.

Currently, small quantities of seed are available from the USDA for research purposes.

Contact: Margaret Nagle, 207.581.3745

Provost Names Signature and Emerging Areas of Excellence in Research and Education

Monday, June 30th, 2014

Signature and Emerging Areas of excellence in research and education at the University of Maine have been announced by UMaine Executive Vice President for Academic Affairs and Provost Jeffrey Hecker.

The designations, which resulted from months of campus dialogue and faculty forums led by the provost, will inform strategic and focused planning and resource allocation to preserve UMaine’s national stature and impact in Maine. The initiative to define UMaine’s Signature and Emerging Areas is a significant component of Blue Sky Pathway 1 — Serving Our State: Catalyzing Maine’s Revitalization in the five-year strategic plan. It will be followed this fall by campus-wide dialogue about foundational areas of research and education for a 21st-century land grant university.

“In this time of rapid change in higher education, it is more important than ever that institutions think strategically about their programs,” Hecker says. “In the Signature Areas UMaine has achieved national and international distinction, and these areas will be key in our planning for the future, including our fundraising and development efforts. The Emerging Areas are those with the great potential to reach that next level of excellence. Together, they make a compelling statement about the distinctiveness of UMaine among America’s research universities.”

The Signature Areas, identified by their strengths in research and education: Forestry and the Environment, Marine Sciences, College of Engineering, Advanced Materials for Infrastructure and Energy, Climate Change, STEM Education, and Honors College. These interdisciplinary Signature Areas are world-class and will feature prominently in UMaine planning for the future.

Emerging Areas represent those programs that may have not yet achieved critical mass or reputation, but have begun to capitalize on interdisciplinary collaboration; have a track record of success with external support from a variety of sources; and involve integration of the research, teaching and service missions. They are: the Graduate School of Biomedical Science and Engineering; Northeastern Americas: Humanities Research and Education; Data Science and Engineering; Sustainability Solutions and Technologies; Aging Research; and Finance Education.

Provost Hecker convened the first of three Academic Affairs Faculty Forums on Dec. 3, 2013 to discuss and gather feedback on the Signature and Emerging Areas initiative. In early January, the Advisory Committee for Signature and Emerging Areas drafted the selection criteria, which included: demonstration of a strong “fit to place” meeting Maine’s cultural, workforce and economic needs; international and national reputation; high level of productivity; proven record of sustainability; ability to leverage existing resources; interdisciplinary and/or multidisciplinary; integration of research, teaching and service missions.

A call for concept papers was issued to the campus community, resulting in 58 submissions. These concept papers were reviewed by a team comprised of UMaine faculty and administrators, a member of UMaine’s Board of Visitors, and external reviewers from the American Academy of Arts and Sciences and the American Association of the Advancement of Science. Twenty submissions were selected for participation in the full proposal phase of the review.

Public forums were held May 21 and May 22 that included brief presentations on the proposed Signature Areas. Ongoing community feedback was essential in helping the Provost’s team determine the final list of Signature Areas.

Brief descriptions of the Signature Areas:

Forestry and the Environment, focusing on sustainable forests and the forest-based economy, and education in forests, wildlife and the environment. UMaine is nationally and internationally recognized in its advanced wood composites, wood processing, biofuels, wood chemistry and forest resources research. A signature strength for teaching is UMaine’s location, providing unique opportunities for hands-on educational experiences in Maine’s forest and aquatic resources, and in communities statewide. Lead faculty: Hemant Pendse, Forest Bioproducts Research Institute; Robert Wagner, Center for Research on Sustainable Forests; Stephen Shaler, Forest Resources; Doug Bousfield, Paper Surface Science Program; Mike Bilodeau, Process Development Center; Amy Luce, Technology Research Center; Dan Harrison, Wildlife Ecology, Aram Calhoun, Ecology and Environmental Sciences

Marine Sciences, including a multidisciplinary Marine Research Solutions initiative to improve understanding of the physical, biological and socioeconomic processes that shape the ocean; to be a reliable, deeply engaged partner with policy makers, fisheries stakeholders, marine industries and coastal communities, helping to develop solutions for the broad array of issues associated with Maine’s marine resources; and to provide high-quality, interdisciplinary undergraduate and graduate education, outreach and research for the Gulf of Maine. Lead faculty: Fei Chai, Pete Jumars, Mary Jane Perry, Rebecca Van Beneden, William Ellis, Sara Lindsay, Rhian Waller, Marine Sciences; Paul Anderson, Aquaculture Research Institute; Mario Teisl, Economics; Krish Thiagarajan, Mechanical Engineering

STEM Education, including research that investigates the complex intersection of individual content knowledge, social learning environments, pedagogical knowledge of our teachers, and development and use of materials for the classroom. Understanding this complex system requires deep knowledge of disciplinary content and of models of teaching and learning. This area supports expanded and improved teaching and learning of STEM from pre-school through graduate school.  Lead faculty: Michael Wittmann and John Thompson, Physics; Jonathan Shemwell, Education; Harlan Onsrud, Computing and Information Science; Susan McKay, RiSE Center; Mohamad Musavi, Engineering

Climate Change, including internationally recognized research, and highly integrated undergraduate and graduate educational opportunities, as well as an emerging academic focus on changing ecosystems and climate — impact on animal and human health. The Climate Change Institute has evolved beyond a singular focus on research to be a leader and a vehicle for broad integration of climate change strengths across campus and statewide. Lead faculty: Paul Mayewski, Jasmine Saros, Ivan Fernandez, Gregory Zaro, Climate Change Institute; Eleanor Groden, School of Biology and Ecology; Mario Teisl, School of Economics; Susan Erich, Anne Lichtenwalner, School of Food and Agriculture

Advanced Materials for Infrastructure and Energy, developing the use of advanced materials in civil infrastructure, energy, aerospace and defense applications. As an interdisciplinary research center, the Advanced Structures and Composites Center focuses on development of novel advanced composite materials and technologies that capitalize on Maine’s manufacturing strengths and natural resources, while creating new industries and job opportunities, and educating students. Lead faculty: Habib Dagher, Stephen Shaler, Larry Parent, Douglas Gardner, William Davids, Eric Landis, Krish Thiagarajan, Advanced Structures and Composites Center

College of Engineering, focusing on the role of the state’s only comprehensive engineering program that features a high level of synergy between teaching, research and public service. Engineering leads the campus with respect to the quality of students it attracts, retention and graduation rates, as well as job placement. Lead faculty: Eric Landis, William Davids, Donald Hummels, Hemant Pendse, Scott Dunning, Engineering; David Batuski, Physics

Honors College, increasing the recruitment and retention of students in preprofessional programs, involving faculty campuswide in the honors education enhancing study abroad and off-campus partnerships that expand and strengthen community-engaged research, and involving students in the creation of new knowledge. Lead faculty, Francois Amar, Honors

Brief descriptions of the Emerging Areas:

Graduate School of Biomedical Sciences and Engineering (GSBSE), leveraging Maine’s academic and nonprofit biomedical research institutions, specifically UMaine, University of Southern Maine, University of New England, The Jackson Laboratory, Mount Desert Island Biological Laboratory and Maine Medical Center Research Institute through a unique educational model. GSBSE student research focuses on issues prevalent in the state of Maine, such as cancer- and aging-related illness. Lead faculty: David Neivandt, Chemical Engineering and the Graduate School of Biomedical Sciences and Engineering

Northeastern Americas: Humanities Research and Education, focusing on scholarship of New England, Quebec and Atlantic Canada. The area is distinctive in its international scope, its multicultural depth and its array of campuswide programs, including the Canadian-American Center, Margaret Chase Smith Policy Center, Maine Folklife Center, Franco American Programs, Native American Programs and Humanities Initiative, as well as the departments of History, English, Art and Modern Languages. Interdisciplinary, regional research contributes to understanding Maine’s cross-border economy, and it provides interpretative resources for the state’s “creative economy” and its heritage-based tourist industry. Lead faculty: Richard Judd, History; Pauleena MacDougall, Folklife Center; Darren Ranco, Anthropology and Native American Programs

Data Science and Engineering, leveraging UMaine strengths in data science and engineering, and data-sensitive science areas by applying data-centric methods to issues relevant to Maine’s interests and natural and economic sustainability. DSE brings together computer scientists, mathematicians, statisticians and engineers with domain scientists to address critical challenges of capturing, storing, managing, sharing, and analyzing massive data sets for new scientific discoveries and insights. Lead faculty: Kate Beard-Tisdale, School of Computing and Information Science; Ali Abedi, Yifeng Zhu, Electrical and Computer Engineering

Sustainability Solutions and Technologies, using the field of sustainability science and other interdisciplinary approaches to address the intersecting environmental, sociocultural and economic dimensions of diverse societal challenges, including renewable energy, urbanization, forest resources, water resources, marine fisheries, agriculture and climate change. Faculty conduct sustainability research in collaboration with stakeholder organizations representing government, business and industry, and nongovernmental organizations. Lead faculty: David Hart, Senator George J. Mitchell Center and School of Biology and Ecology; Jonathan Rubin, Margaret Chase Smith Policy Center and School of Economics; Aram Calhoun, Wildlife Ecology and Ecology and Environmental Science; Shaleen Jain, Civil and Environmental Engineering; Hemant Pendse, Chemical and Biological Engineering; Darren Ranco, Anthropology and Native American Programs; Mario Teisl, School of Economics; Robert Wagner, School of Forest Resources

Aging Research, advancing successful aging in Maine and the nation as it addresses: maximizing individual productivity; minimizing institutionalization and the need for costly long-term care; preventing and mitigating the impact of illness and injury; and promoting community integration, social engagement, full accessibility, personal independence, vitality, mobility, elder friendly communities and citizen safety. Utilizing a research incubator model, this area will maintain productive partnerships with the business and nonprofit sectors. Lead faculty: Len Kaye, Center on Aging and Social Work; David Neivandt, Chemical Engineering and the Graduate School of Biomedical Science and Engineering; Laura Lindenfeld, Communication and Journalism

Finance Education, addressing the critical need of the state of Maine to educate business professionals who can carry out economic development and improve job opportunities for the people of Maine. Student learning is enhanced through state of the art technologies and information science, opportunities to invest and manage funds, and engagement with businesses in Maine and nationally. Lead faculty: Ivan Manev, Maine Business School

Contact: Margaret Nagle, 207.581.3745

Studies Lead to Improved Fish Advisory for Pregnant Women

Wednesday, June 25th, 2014

Editor’s note: This version has been updated

Two studies by researchers at the University of Maine’s Sustainability Solutions Initiative (SSI) uncovered compelling data on women’s knowledge of both the dangers and health benefits of eating fish while pregnant. The first study found that Maine Center for Disease Control and Prevention’s (MeCDC) advisory led women to decrease their consumption of fish, while a follow-up study found a newly-designed advisory led to a healthier, more balanced approach to fish consumption.

Mario Teisl, professor in the School of Economics, will present and discuss results of the studies, which were published in two peer-reviewed journals, as a featured speaker at the U.S. Environmental Protection Agency’s (EPA) 2014 National Forum on Contaminants in Fish. Both journal papers are among the first to examine how information about methylmercury in fish is conveyed to pregnant women in specific states and how that information is used, which is information the EPA has indicated it needs.

Teisl has been part of two research teams from SSI’s Knowledge to Action Collaborative that have closely examined MeCDC’s methylmercury advisories sent to pregnant women. He will lay out how the successive sets of data tracked an evolution in the way information is conveyed to and interpreted by pregnant women in Maine.

“MeCDC suspected that the original advisory was not working as best as it could for this audience and our initial study confirmed the state could do better,” Teisl said.

In the first study, published in 2011 in the journal Science of the Total Environment, Teisl and colleagues found that the advisory was changing pregnant women’s eating habits, but not always in the intended manner. Instead of limiting high-mercury fish and switching to a careful diet of low-mercury fish, many pregnant women were dramatically decreasing their overall consumption of all fish, thus missing many of the benefits of eating fish. The misinformation seemed to stem from the fact that the advisory was aimed at sports fishermen and mainly focused on the risks of eating sport-caught fish.

“The old pamphlet was targeted more toward anglers. On the cover, there was a photo of a family fishing. The problem is that very few women eat sport-caught fish. Most eat fish from the grocery store. A lot of pregnant women didn’t understand how the information pertained to them,” Teisl said.

In 2006, the MeCDC redesigned its advisory, adding specific information about fresh, frozen and canned fish. Sue Stableford, a health literacy expert at the University of New England, worked closely with the MeCDC on both advisories, providing extensive assistance with research, focus group testing, and use of ‘easy-to-read’ techniques.

The new literature contains recipes, meal plans and colorful charts, informing women of fish to avoid, fish to limit and fish that are low enough in mercury to eat twice a week while pregnant. The pamphlet emphasizes the importance of fish in the diet, including the fetal/maternal health benefits of Omega 3 fatty acids and protein. In the second study, published in 2013 in the journal Environmental Science, Teisl and colleagues found women who read the updated advisory were knowledgeable about healthy fish consumption in pregnancy. People who did not read the advisory generally lacked essential knowledge about healthy fish diets.

“Our evaluation of the Maine CDC’s updated fish consumption advisory suggests that it successfully improved women’s specific knowledge of both the benefits and risks of consuming fish while pregnant. This improved knowledge has the potential to minimize methylmercury health impacts and maintain, if not increase, overall low-mercury fish consumption,” said Haley Engelberth, who received a master’s of science in Ecology and Environmental Science from UMaine in 2012. Engelberth was on both SSI methylmercury research teams and the lead author of the 2013 paper.

Other researchers on the teams included: Kathleen P. Bell, associate professor, UMaine’s School of Economics; Eric Frohmberg, (then) toxicologist, state of Maine; Karyn Butts, research associate, University of Southern Maine; Sue Stableford, director of the Health Literacy Institute at University of New England; Andrew E. Smith, director, Environmental and Occupational Health Programs, Maine CDC; Kevin J. Boyle, (then) professor of ecology and environmental sciences, UMaine.

Teisl will make his presentation at the Sept. 22–24 conference in Alexandria, Virginia.

Funding for this research was provided by National Science Foundation award EPS-0904155 to Maine EPSCoR at the University of Maine and by the Maine Center for Disease Control & Prevention through the U.S. Center for Disease Control and Prevention National Public Health Tracking Grant and U.S. EPA Cooperative Agreement #CR82628301-0.

Contact: Margaret Nagle, 207.581.3745

Local Foods a Priority for Mainers

Wednesday, June 25th, 2014

Mainers prefer to buy local food from in-state farmers, fishermen and businesses, according to a new survey.

The findings are indicative of a sea change happening in the food industry, says Sustainability Solutions Initiative (SSI)/Mitchell Center researcher Timothy Waring, who was part of a multi-institution team that prepared the report.

And Maine is on the leading edge.

In total, 80 percent of those surveyed said they purchase at least some produce, meat and fish from local sources, according to a report by Maine Food Strategy. Two-thirds of respondents said they did so out of a desire to support local food providers.

“Maine is a national leader in supporting the local foods industry,” said Waring, University of Maine assistant professor of social-ecological systems modeling and a member of the SSI.

“People have altruistic motives when it comes to local foods, sometimes at a monetary cost to themselves. They want to support the community. That’s not the reason people normally go to a grocery store.”

Local food is one of Waring’s areas of expertise. He recently received a five-year $500,000 grant from the National Science Foundation (NSF) to explore the role of cooperation in the local food industry.

He stressed the importance of Maine Food Strategy’s mission to create a strong local foods network in the state. Though local foods still make up a small percentage of total food purchased in Maine, Waring said the report indicates the potential for a broader local shift.

“This is about more than a market drive. It’s about socialization and community,” Waring said. “It’s not as depersonalized as the grocery store. People feel more responsible and indebted to those who provide local food. They may know the farmer or the fisherman. They are willing to go out of their way to buy the food.”

Here are some of the report’s findings from the survey of 600 homes all over the state executed by the University of Southern Maine:

  • Most people surveyed (61 percent) considered the “local” in local food to apply to the whole state of Maine.
  • More than a third purchased from 10 to 25 percent of their food from local sources.
  • More than 90 percent of those who responded listed freshness as one of the top reasons they purchased locally, followed closely by flavor and nutrition.
  • The top reasons people did not buy locally included lack of access (24 percent) and lack of convenience (20 percent)
  • A third of those surveyed said they procured their own local food by hunting, fishing and gathering in the wild.

Food Strategy members will meet with industry and community leaders across the state in a series of briefings, to review the survey findings, identify common resources and seek ways to strengthen stakeholder relationships. These meetings will be open to the public. Details are posted on the Maine Food Strategy website.

Contact: Margaret Nagle, 207.581.3745

Susan Hunter Named UMaine’s First Woman President

Tuesday, June 17th, 2014

University of Maine System Chancellor James H. Page announced today that he has selected Susan J. Hunter as the next President of the University of Maine (UMaine) in Orono. The Executive Committee of the University System’s Board of Trustees unanimously supported the selection and will officially vote at a committee meeting on June 25. Hunter will be UMaine’s first woman president and will serve a two-year appointment commencing July 7.

“Dr. Hunter’s depth and breadth of experience at our flagship campus is unsurpassed,” Chancellor Page stated. “She is, moreover, already extremely well-known throughout the state as a tireless advocate for public higher education. She is the clear choice to advance the University of Maine.”

Established in 1865, the University of Maine will mark its sesquicentennial celebration in 2015. The University of Maine was originally established as the Maine College of Agriculture and the Mechanic Arts under the provisions of the Morrill Act, which was approved by President Abraham Lincoln in 1862. In 1897 the original name changed to the University of Maine.

“The Board of Visitors is extremely pleased that Susan has agreed to assume the presidency during this transition period,” said Anne Lucey, Chair of the University of Maine Board of Visitors. “She has excellent relationships with alumni, donors, faculty and University supporters. Given her many years of service, she is able to assume a leadership role and provide the continuity the campus needs at this juncture.”

Since September 1, 2013, Hunter has served on the Chancellor’s cabinet as Vice Chancellor for Academic Affairs for all seven of Maine’s public universities. Other than her time at the System, Hunter spent all of her career at UMaine, most recently as Executive Vice President for Academic Affairs and Provost from 2008 to 2013.

“Susan is an outstanding leader and will bring continuity to the University of Maine’s Blue Sky Plan,” said Samuel Collins, Chair of the University of Maine System Board of Trustees. “She has established extensive and good relationships and developed a wealth of knowledge during her many years of service in a number of leadership roles at the University of Maine.”

Hunter began her career at UMaine as an adjunct professor in 1987, became a full-time faculty member in 1991, and has since served in various academic and administrative capacities including Associate Provost and Dean for Undergraduate Education; Assistant Director in the College of Natural Sciences, Forestry and Agriculture; and chair of the Department of Biological Sciences where she was a faculty member and cell biologist whose research focused on structural and functional aspects of bone cell biology.

“There is no greater honor than being named to lead the institution where I have spent essentially my whole career,” Hunter said. “I am delighted to be returning to campus to work with very talented and dedicated faculty, staff and students. My efforts will focus on further development and implementation of the Blue Sky Plan, fund raising activities in preparation for a comprehensive campaign, and external engagement to further the goals of the University of Maine System and higher education.”

For six years Hunter served as a co-principal investigator of an award winning $3.0 million NSF GK-12 grant that placed graduate teaching fellows in K–12 schools as science demonstrators. She was also the principal investigator on a five-year $3.3 million National Science Foundation ADVANCE grant helping to fund UMaine’s Rising Tide Center, an initiative that aims to transform the university through enhanced opportunities for women faculty members in science, technology, engineering, mathematics, and social-behavioral sciences.

She received a B.S. degree in biology from James Madison University, a Ph.D. in physiology from Pennsylvania State University and did post-doctoral work at Case Western Reserve University and the Pennsylvania State University.

Hunter served on the Board of Directors of the Maine School for Science and Mathematics and currently serves on the Maine Mathematics and Science Alliance Board of Directors, as well as the University of Maine System representative to the Governor’s STEM Council, the Board of Directors of the Bangor Symphony Orchestra, member of the Stillwater Society, a member of the Pi class of Leadership Maine, and most recently, participated in a planning initiative for the Maine Arts Commission Steering Committee in preparation for a Cultural Strategic Plan for the State of Maine.

Hunter lives in Orono with her husband, David Lambert, a plant pathologist who also spent his career at UMaine as a faculty member in the School of Food and Agriculture. They have two adult children.

More information is available online.