

Text Input and Conditionals

Text Input
Many programs allow the user to enter information, like a username and password. Python
makes taking input from the user seamless with a single line of code:

input() will print the string you put in the parentheses and wait for the user to respond.
Often, you will use a question as the input string, followed by a space to separate the user’s
text from the output text. In this example, the program will print “How do you get input in
Python? “ and user can then enter text to respond.

The user responded with “By using input(),” but right now, that response isn’t doing
anything. To catch the response and do something with it, we need to set that to a variable.

Now, the variable x stores the response from the user.

Try it yourself: ask for your name and store it in a variable, then print the variable.

Strings and Numbers

Suppose you ask the user for a number, such as a pin number. input() gives you the
user’s response. However, it doesn’t determine whether or not the user entered a number.
Instead, it just gives you a string. So, you can sometimes get errors if you try to treat the
input as a number immediately. If you run the following program, Python will give you an
error.

1

This is because Python can’t add a string and a number together, and input(“Enter a
number: “) is a string. Use the int() function if you want to treat the input as an integer
or the float() function if you want to treat the input as a number with a decimal point. If
you are in doubt, just use the float() function.

To convert a number to a string, use str().

Try it yourself: ask for your age, then print what your age will be in one year.

Truth Statements

Once you have a response from the user, you’ll want to tell if that response is correct or
not, such as a password that was entered or a button that was pressed. To do so, you’ll
need to check a property of the response. In the above example, you’ll want to check if the
user enters the correct answer by making sure “input()” is somewhere in the response. To
do this, you’ll need to use a truth statement or boolean expression. A truth statement is
a statement that evaluates to a boolean value, either true or false. Here is an example of a
truth statement:

2

x == y is a truth statement. The code == checks whether or not x is equal to y. If it is, it
will have the value of True. If it is not, it will have a value of False. In the example above, x
is equal to y, so the output is:

There are several other types of truth statements, like:

● x > y - is true if x is greater than y
● x >= y - is true if x is greater than or equal to y
● x < y - is true if x is less than y
● x <= y - is true if x is less than or equal to y
● x != y - is true if x is not equal to y
● x in y - is true if x is somewhere in y

These work for more than just numbers. Often, they’ll work for any data type they make
sense for. In fact, they can even be used on other truth statements because they’re just
boolean values. Just use your intuition: == can check if two strings are the same, < can
check if one string comes before another alphabetically, > can check if one string comes
after another alphabetically, and so on. When in doubt, experiment using the shell.

You can also combine boolean values, which can be truth statements, using the following
keywords:

● x or y - is true if x is True, y is True, or both x and y is True
● x and y - is true if both x and y is True
● not x - is true if x is not true

For example:

3

Using a truth statement, we can check if the user’s response is correct:

Beware! Keep track of your syntax. A common mistake for programmers is to use = instead
of ==. x = y assigns the value of y to x, but x == y checks if x and y have the same
value. Using the wrong one can break your program. If you use x == y when you mean x
= y, the variable will not be assigned properly.

If you use x = y when you mean x == y, the code may break or flags will be assigned
improperly.

Be sure you’re using the right equals sign!

Try it yourself: write a program that asks for your age, and prints True if you are at
least 16 years old.

Conditionals

We can now determine whether the user’s answer is correct, we still want to do something
that depends on it. For example, you only want the user to log in if the password is correct.
You can do this using a conditional. A conditional is a command that takes a True or
False value, which can come from a truth statement, and does something depending on
that. This is also known as an if-else statement.

4

“input()” in x is True only if “input()” is somewhere in x. The line if “input()”
in x checks the truth statement. If it is True, then it executes all the code below it that is
indented.

You will also want to tell the user if his answer was incorrect. You can do this by placing an
else directly after the indented code of the if. The code indented beneath else will run if
the condition of the if it is placed after is False.

We now have a working program that asks the user a question and determines whether
they got the right answer! But before you get too carried away, make sure you remember
that indentation is important. If you don’t indent correctly, the whole program may crash or
run improperly. For example:

This code won’t run because Python needs an indented statement after an if or an else.
If the code did run, “Wrong!” would be printed regardless of the boolean value of the truth
statement. Consider another example:

5

This code won’t run because the code run by the if statement must only be indented one
more than it. In this case, the else is indented 0 times and the print(“Wrong!”) is
indented 2 times, so Python will give an error. Consider one more example:

You may want “Try Again!” to print only if the user entered the wrong answer. However, it
will always print because it isn’t indented.

So, always be careful with indentation!

Try it yourself: write a program that asks for a color and tells you if that color is the
same as the your favorite color.

Multiple Conditionals

You may want to check the input against different conditions. With a security program,
there may be several correct passwords, all of which are different from each other and take
you to different places. You can check this using multiple conditionals. Here is an example:

Each password prints a different statement, so we want to check for each one of them. We
do so using an elif. elif is a hyphenated way of writing “else if” and runs a conditional
statement if the previous if was false. elif must be placed after an if or an elif and
can be stacked infinitely. Just like an if, an elif does not need to have an else after it.

6

Try it yourself: ask for a name and tell the user if that’s one of the programmer’s first,
middle, or last names.

Nested Conditionals

You can put conditionals inside each other to allow for more branching behaviour. Many
programs will layer security by requesting a password, then a pin, then a security question.
This is known as nesting. To nest a conditional, simply place an if statement one more
indentation under another if statement, as usual.

This program determines whether or not the difference between two numbers is greater
than five. To do so, you need to determine which number is larger before performing the
subtraction to avoid negative numbers. So, we first check whether or not x is less than y.
Then, we perform our subtraction based on which number is larger.

7

Again, be careful with indentation. Code run by a statement must be indented one more
than the statement is, regardless of where it is. So, the code inside an if statement needs
to be indented once, and the code inside an if statement nested in another if statement
must be indented twice.

Try it yourself: write a program that asks the user for a password, then a pin
number. If the user gets either wrong, tell the user and quit the program.

Flags in Conditionals

It can be annoying to have to write out a long truth statement every time you want to check
something. You wouldn’t want the user to enter their password each and every time they
try to access a website. You can simplify the process by using a flag. A flag is a variable that
holds a boolean value, either true or false, based on something in the code. With a flag, we
can simplify our program one further step:

This will perform the same task as before, except now, we don’t need to type “input()”
in x every time we want to check if the answer is correct. Instead, we can simply check the
value of correct.

Try it yourself: change any of the programs you’ve written to use flags.

Exercises

1. Create a program that asks the user for their birthday and tells them their zodiac
sign.

8

2. Create a program that makes a user go through some security checks before telling
him your name.

3. Create a small game of twenty questions (it doesn’t actually need to be twenty
questions).

4. Create a small text adventure, where the program presents the user with situations,
asks the user what he or she wants to do, and changes the story accordingly. You
may either provide them with a list of choices to choose from, or you may allow
them to type their choices.

9

