Movement and Other Qutput

Setting up a Finch program

Before you begin programming the Finch, there are a couple of things you'll need to do
before you can start. First, your program will always need the following line at the top of
the program:

- finchAPI import *

This statement brings in the resources that you need. This statement looks up the file
“finchAPl.py” and imports all of the code from the file into the current program. Don’t worry
about understanding the specifics of this: all that you need to know is that it allows you to
access many of the resources that you'll need.

When you run a program that has this line at the top, you may get a message that says
“Finch is not plugged in". If you see this, check that the Finch is securely connected to your
computer and restart the program. You may also get a red error message. It probably
means that your program can't find the file “finchAPI.py”. Make sure that your program is in
the same directory as the file “finchAPIl.py". If you have any further questions, refer back to
the Setting Up unit.

If you are on a mac, you must make Python programs as a separate file inside the directory
with finchAPI. That is, you cannot use the shell to program the Finch dynamically. This is
because the macOS security system prevents you from directly modifying application files,
which includes placing files anywhere in the application directory.

Try it yourself: place Tro® finchAPT * into a program and run it. If you
get any error messages, ask your instructor for help. If nothing happens, you are free to
move ahead..

Moving the Finch

The first thing you might want to do with any robot is to make it move. To move the Finch,
use the functions forward (), backward (), turnLeft (), and turnRight (). forward ()
moves the Finch forward, backward () moves the Finch backward, turnLeft () turns the
Finch counterclockwise, and turnRight () turns the Finch clockwise. Each of these will
continuously move the Finch once the call is made. The code will continue to execute while
the Finch is moving. To stop the movement, use stop (). stop () halts both wheels,
stopping any movement that is currently happening.

forward () #Moves the Finch forward

backward () #tMoves the Finch backward
turnLeft () #Turns the Finch counterclockwise
turnRight () #Turns the Finch clockwise

stop () #Stops all movement

Each of the above functions can also take an argument to specify the amount of
movement. forward () and backward () take a number of inches to move. turnLeft ()
and turnRight () take an angle in degrees to turn. Unlike before, supplying the inches or
angle will make the function wait for the movement to complete. Code will not continue to
execute until the movement is finished. This offers an advantage of chaining movement in
a simple way. The following code will move the Finch forward 100 inches, then backward
100 inches.

forward (100} $Mowves forward 100 inches
backward (100) fMoves backward 100 inches

The speed of the Finch’'s motors are initially set to % of its full speed. This is to ensure the
accuracy of its movement. You can change the speed of the Finch by using setSpeed ().
setSpeed () takes a single number as an argument, from 0 to 1. At 0, the Finch will not
move at all. At 1, the Finch will move at top speed. Note that the real physical issues of
moving, like motor force, wheel slippage, friction, and air resistance, results in less actual
gain in movement than is programmed. The difference between .75 and 1 is not actually a
25% increase in movement speed.

setSpeed (0] #Not moving at all
setSpeed(.25) fMoving at 1/4 speed
setSpeed(.5) fMoving at 1/2 speed
setSpeed(.75) ftMoving at 3/4 speed
setSpeed(l) #tMoving at full speed

If you find yourself needing to control each wheel manually, you can use setWheels ().
setWheels () takes two numbers as arguments. This is unlike the functions you've seen
previously where you only input a single argument. Any function that takes multiple
arguments must have those arguments separated by commas to tell the function which
input is which.The arguments must also be put in a specific order within parentheses. As
illustrated by the setWheels () example functions below,, the value for the left wheel is
first argument (on the left) and the value for the right wheel is second argument (on the
right). These values range from -1 to 1. At -1, the wheel is moving backwards at full speed.
At 1, the wheel is moving forward at full speed. This also overrides the set speed because it

manually controls the wheels.

setWheels (- 1, -1} #tMoving backwards at full speed
setWheels (—. —-.5) #Moving backwards at half speed
setWheels (1, 1] #Moving forwards at full speed
setWheels (.5, .5) #tMoving forwards at half speed
setWheels (1, -1} #Turning right in place
setWheels (-1, 1) #Turning left in place
setWheels (1, .5) #Turning right gradually
setWheels (.5, 1) #Turning left gradually

Notice how the first number and the second number have a comma between them. This
separates the arguments. The parentheses surround both numbers, which indicates that
they are both arguments to setWheels (). Further, the values are distinct. The
combination (1, -1) causes the Finch to turn right while the combination (-1, 1) causes the
Finch to turn left. This is because each argument operates on a different wheel.

Try it yourself: move the Finch in a square. Then, move the Finch in a circle. (Hint: you
should be able to use a single line of code to move in a circle). If you feel like you still need
more practice, play around with the movement commands in the shell.

Lighting the Nose

Lights are useful indicators on any machine. Most modern computers have several lights to
indicate if it has low battery, if the battery is currently charging, or if the computer is in
sleep mode. The Finch has a single light in its nose that is capable of changing colors. This
light may prove useful in providing a visual indicator of what the Finch is currently doing. To
control the light, use 1ight (). This can be used in one of two ways.

light () can be supplied a single string that tries to match the word you've put in with a
color to display. Light can take any of the following as colors: red, blue, green, cyan,
magenta, yellow, and white. You may also supply the string “o££” to turn off the light.

light ("red") #tturns the light red
light {"blues™) #turns the light blue
light {("green™) #turns the light green
light{"c g'n"] #turns the light cyan
light ("purple™) #turns the light purple
light {™y e_;:*”] #tturns the light yellow
light {"white") #turns the light white
light {"off") #turns the light off

light () can also take three numbers as the red, blue, and green color components of the
light, separated by commas and in that order. If you are familiar with the RGB color model,
this might be interesting, but the above colors should be sufficient for most applications.

Tight {255, O, O #turns the light red
light (0, 255, 0) #turns the light blue
1ight«{0; 93 255) #sturns the light green
1ight (0, 255; ‘255) #tturns the light cyan

Tighkt (255, 0, 245) #turns the light purple
light{255; 255,) #turns the light yellow

light {255, 255, Z255)#turns the light white
Lighit {0; O 0) #turns the light off

Try it yourself: create a program that turns the light blue and moves the Finch
forward a foot. When the movement is complete, turn the light red.

Making Some Noise

Like lights, sounds are also useful indicators on machines. While visual cues are excellent,
non-invasive, ways of alerting people to some event, sounds draw attention to said event
while similarly alerting people to the event. Fire alarms operate on this principle (imagine if
fire alarms just lit up red). In the context of programming, sounds can be used to signal
that some action has taken place within a program. For this purpose, the Finch has a
buzzer that can generate sounds with frequencies between 20 to 20000 Hz, which is the
audible frequency range for humans (but, you should avoid using sounds above 5000, as
those can hurt your ears). To make a sound with the buzzer, use buzz ().

buzz () takes two numbers as arguments. The first number is the duration in seconds of
the sound you want to play and the second number is the frequency of the sound in Hertz.
These two arguments are separated by a comma syntactically. The following code plays a
sound at the frequency of 1000 Hz for 1 second:

buzz (1, 1000)

Unlike when moving the Finch, buzz () does not wait for the sound to finish. Because of
this, the Finch may continue moving and otherwise acting as it would while the sound is
playing. If you want to wait for the sound to finish before continuing, use delayedBuzz ()
instead. Otherwise, this works exactly as buzz ().

delayedBuzz (1, 1000)
#Will wait for 1 second

= LI [- - — gy e T
print{"Sound is over™)

The Finch can also play music using it's buzzer. To do so, compose a string of notes
separated by spaces. For example, “A B C A B C”. You can make notes sharp by adding
a "#" and make notes flat by adding a “b", like “A#” and “Eb”. Then, use sing (), with the
notes and speed input as comma-separated arguments. The speed is how long a note is
held for. The Finch will sing the song you've put in at the desired speed.

sing("A B B BEeT, 25)
cing{™A C D €", -5)
sing{"C F¥ Eb", -1)

Try it yourself: create a program that plays a 440 frequency sound for a second
before moving forward a foot. Once the Finch completes the movement, play a 880
frequency sound for a second.

Simultaneous Behaviour

Many robots will do things simultaneously. They'll be moving, checking sensors, playing
sounds, lighting up, and much more, all at the same time. The Finch is also capable of doing
this. Already, you've seen that the movement functions keep running code if no distance or
angle is supplied. buzz () and 1ight () also keep running the code while they're in effect.
You can combine these to make complicated behaviour, like moving while playing a song.

You will also want to move a set distance or angle while doing other things. For example,
you may want to move a certain distance while checking the sensors. To accomplish this,
you can add False as an argument to any movement function, separated by a comma.
This tells the program not to wait for the movement to finish. The movement functions are
set to True by default, which is why the program will wait by default. Note that if you call
another movement after a movement function with False, it will override the previous
one:

Forward(l@@,) #the program will not wait for the movement to finish
backward(100) fithis movement executes as it overides the previous movement

You can check if the Finch is currently moving by using the flag i sMoving. isMoving will
be False whenever the Finch is not executing a movement function and will be True
whenever the Finch is executing a movement command.

print (isMoving) Will be False
forward (100, True) Will wait for the movement to finish
p.—‘:int {iSMOVing] i Fals BECAUSE THE LAST MOVEMENT WAITED

forward (100, False)
print (isMoving)

Sk S S e S

e
#ill not wait for movement to finish

If the Finch is engaged in simultaneous behaviour and needs to stop everything, the
function halt () can be used. halt () will stop everything the Finch is currently doing,
including, but not limited to, stopping all movement, turning off lights, silencing any noise,
etc. This can be useful for an emergency measure.

Knowing when to use the halt () function will become much more apparent when we
start receiving data from sensors continuously. You'll then be able to make the Finch

respond to its surroundings while doing other things. For now, know that this is possible
and it will be revisited later.

Try it yourself: make the Finch move three feet while playing a song.

Key Points

To move the Finch, use forward (), backward (), turnLeft (), and turnRight ().
Each can take a number for a distance in inches or an angle to turn. When using a
distance or angle, they an also take a boolean value which determines if the
program should wait for the movement to finish. This is True by default, but adding
False makes the program continue during movement. You can stop any movement
currently happening using stop ().

To light up the Finch’'s nose, use 1ight ().

To use the buzzer, use buzz (). If you want to wait for the sound to finish, use
delayedBuzz (). If you want to play a song, use sing ().

To stop everything that the Finch is doing, use halt().

Exercises

1.

Move the Finch in a triangle. Before a turn, slow down the Finch’s movement, make
the Finch play a short low noise and make the nose red. Before moving forward,
speed up the Finch’s movement, make the Finch play a short high noise and make
the nose green. It is best to do this in small parts, tackling the movement first, then
putting in the sounds and lights.

