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Exercise 1: Building the robot

Overview

In this exercise, you are going to build your robot and verify that all of the connected components
are working.

Goals

The goals of this exercise are to introduce you to robot hardware and for you to build a working
robot. You will also understand how to operate the robot at a basic level and be familiar enough
with it to troubleshoot basic problems.

Background and preparation

• Resource 1: The Tutorial for building the GoPiGo1

• Resource 2: GoPiGo Servo assembly instructions2

Materials needed

• Dexter Industries GoPiGo2 base kit
• Raspberry Pi 3 Model B
• Raspbian SD card
• GoPiGo servo assembly
• Phillips head screwdriver
• 8 Rechargeable (preferably) AA batteries

Requirements

• Build the GoPiGo base kit.
• Test and troubleshoot the GoPiGo.

1www.dexterindustries.com/GoPiGo/getting-started-with-your-gopigo-raspberry-pi-robot-kit-2/1-assemble-the-
gopigo-2/assemble-gopigo-raspberry-pi-robot/1-assemble-the-gopigo2

2www.dexterindustries.com/GoPiGo/getting-started-with-your-gopigo-raspberry-pi-robot-kit-2/1-assemble-the-
gopigo-2/assemble-servo-package-assemble-the-raspberry-pi-robot-servo-kit-with-the-gopigo
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Building the GoPiGo base kit

1. Open the box and verify that you have all of the components. You should have:

• 2 wheels
• 2 wooden encoder wheels
• 4 spacers
• 4 t-shaped plastic pieces
• two bags of hardware (bolts, screws, etc.) which include the items that are listed in the

build tutorial
• the robot base
• the robot top
• 2 motors
• battery box
• GoPiGo board
• power cable
• a Raspberry Pi 3 board
• a camera and its ribbon cable

2. Either by following the instructions on the website, using the video, or both, assemble the
GoPiGo Base Kit. DO NOT put batteries into the battery box in this step. If you have any
questions or are not sure of an instruction, please ask the instructor or CLA.

3. Once you have completed assembly of your GoPiGo, ask the instructor or CLA to make sure
everything looks correct. If everything is correct, they will provide you with the assembly for
the GoPiGo servos. They should also screw a mount into the base board of your GoPiGo. Be
careful, the mount is very delicate.

4. Attach the assembly to the mount and plug it into the GoPiGo board.
5. Plug the ultrasonic sensor into the A1 port on the GoPiGo board.
6. Mount the camera, if it is not already part of the servo assembly; ask your instructor or CLA

for directions about how to mount it.
7. Plug the camera ribbon cable into the appropriate slot on the GoPiGo board.
8. Put the microSD card into the appropriate slot on the Raspberry Pi.
9. Put the batteries in the battery case and connect the battery cable and case to the GoPiGo.

Testing the robot

In this section, we will verify that the components of your GoPiGo are running correctly as well as
set up the Raspberry Pi so that you know the password and hostname.

1. Connect to the Raspberry Pi:3

• Ask the CLA for the hostname of the Raspberry Pi as well as the user name/password
to use to start.

• Follow the Connecting to the GoPiGo tutorial on the Dexter Industries website.4
• Use the hostname provided instead of “dex.local” when connecting.
• Use the user name and password provided to log in.

2. Use the test_gogpigo script to test the robot.

3[This will be revised based on the available resources and configuration of the classroom.]
4Go to www.dexterindustries.com/gopigo-tutorials-documentation, select “Getting Started”, and then select the

tutorial.

http://https://www.dexterindustries.com/GoPiGo/getting-started-with-your-gopigo-raspberry-pi-robot-kit-2/4-connect-to-the-gopigo/
https://www.dexterindustries.com/gopigo-tutorials-documentation/
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• Open a terminal on the Pi by clicking on this icon:

3. Type test_gopigo and press the enter key.

• You should now see the GoPiGo perform a few actions, waiting for you to press enter
between them:
– Blink the left then right red forward-facing LED on the GoPiGo board.
– Move forward two wheel rotations
– Move backward two wheel rotations
– Turn Right 90 degrees in place
– Turn Left 180 degrees in place
– Return to original position
– Rotate Servo to the left 90 degrees and then pan all the way to the right printing

numbers (distance to objects based on the ultrasonic sensor) as it goes.
– Servo returns to original position.

• If any of these do not work, notify the CLA or instructor for help.

Questions for thought

• How easy do you feel it was to build the robot?
• What was the hardest part?
• Based on the little bit you now know about the robot, how difficult do you think it would be

to write a Python program to move the robot around while avoiding obstacles? What actions
that you have seen the robot do would you expect to use?
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Exercise 2: Using raspbian

Overview

In this exercise, you will begin to learn how to use Raspbian, the operating system on the Raspberry
Pi processor of your GoPiGo. You will communicate with Raspbian either via a terminal window
or a graphical user interface. You will also learn how to connect to your Raspberry Pi without a
monitor in each of those ways.

Goals

The goal of this section is for you to learn to use your Raspberry Pi, which will be how you control
your robot. It is recommended that you try all of the methods in the packet, although it is not
required.

Resources

1. VNC viewer for the computer you want to control your Raspberry Pi.5

2. Useful tutorial on using the Linux command line.6

3. An Extremely Quick and Simple Introduction to the Vi Text Editor.7

4. List of vi commands.8

5. Beginner’s Guide to Nano.9

6. Absolute Beginner’s Guide to Emacs10

7. PyCharm tutorials and documentation11

8. Python Editor IDLE video12, tutorials, and other information13

Materials needed

• Your GoPiGo.
• A computer with an Internet connection.
• The hostname of your GoPiGo. (Ask the CLA or instructor if you don’t know this.)

5www.realvnc.com/download/viewer
6www.pcsteps.com/5010-basic-linux-commands-terminal
7heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntro.html
8www.cs.colostate.edu/helpdocs/vi.html
9www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor

10www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
11Available at www.jetbrains.com/pycharm/documentation
12www.youtube.com/watch?v=lBkcDFRA958
13www.annedawson.net/Python\Editor\IDLE.htm
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https://www.realvnc.com/download/viewer/
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http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
https://www.jetbrains.com/pycharm/documentation
https://www.youtube.com/watch?v=lBkcDFRA958
http://www.annedawson.net/Python_Editor_IDLE.htm
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Connecting to the GoPiGo

There are two methods we will be using to connect to the Raspberry Pis in this class: VNC (Virtual
Network Computing) which acts like remote desktop and can be used with either GUI or a terminal
window; and SSH (secure shell) which can only be used as a terminal window.

Using VNC

1. Connect to the Raspberry Pi (same as in Exercise 1):

• Ask the CLA for the hostname of the Raspberry Pi as well as the user name/password
to use to start.

• Follow the Connecting to the GoPiGo tutorial on the Dexter Industries website to connect
to the Pi via VNC.14

• Use the hostname provided instead of “dex.local” when connecting.
• Use the user name and password provided to log in.

2. This should bring you to the user interface (the desktop) of the Pi. Have a look around to
familiarize yourself with it.

Using SSH

SSH is a fast and easy way to communicate with another computer. You will need to open a terminal
on your computer in order to run SSH; once you run it to log in to the Pi, it will be as if you were
using a terminal on the Pi’s own desktop.

1. Open a terminal:

• If you are using a Macintosh or a Linux machine: Open a terminal in the usual way.
• If you are using Windows [to be written; may need additional software]

2. At the command prompt, type:

ssh USER@HOSTNAME

where HOSTNAME (e.g., “foo.cs.umaine.edu”) is the name of your Pi, and USER is the user name
the CLA gave you.

3. SSH may ask you if you would like to connect to the unknown host for the first time; if so,
type “yes” and press the enter (or return) key.

4. Next, you will be asked for a password; type in the one the CLA gave you and press enter.

5. You should be in! The line will look something like

user@hostname:~$

This is the pi’s command prompt, telling you it is ready to accept commands.

14Go to www.dexterindustries.com/gopigo-tutorials-documentation, select “Getting Started”, and then select the
tutorial.

http://https://www.dexterindustries.com/GoPiGo/getting-started-with-your-gopigo-raspberry-pi-robot-kit-2/4-connect-to-the-gopigo/
https://www.dexterindustries.com/gopigo-tutorials-documentation/


CONTENTS 11

Using the Linux command line

• Once you are connected to the Pi, you are talking to its operating system; you are probably
familiar with operating systems such as Windows, macOS, Linux, iOS, and/or Android.

• The Pi’s operating system is a version of Linux called Raspbian. If you are familiar with Linux
(or the macOS command line), Raspbian will seem very familiar.

• Raspbian organizes files into directories, which you may know as “folders” on other operating
systems.

• Directories are in a hierarchy, starting from the root directory, which is just known as / (slash).
• At all times in a terminal, there is a current working directory. To see what this is, in a

terminal window type:

pwd

which stands for “print working directory”. (You’ll note that Linux commands are very short.)
You should see something at this point like: /home/foo, if your user name is “foo”.

• To move between directories, use the cd (change directory) command. Try:

cd Desktop
pwd

If you are doing this on the Pi and starting in your home directory, it should tell you that
you are in the directory /home/foo/Desktop – that is, you are in the “Desktop” directory of
the “foo” directory (your home directory) of the “home” directory, which is located in the root
directory.

• Three special ways to refer to directories are worth knowing about:

– “~” is your home directory; these two commands have the same result:

cd ~
cd /home/foo

as do these:

cd ~/Desktop
cd /home/foo/Desktop

– “..” is the parent directory of the current directory; so if you are in your Desktop directory,
then these are the same:

cd ..
cd /home/foo

as are these:

cd ../..
cd /home

– “.” is the current directory; you may have a use for this in the future.
• The command ls lists all files in the directory.

– It accepts wildcards, which in Linux are represented as “*”.
– For example, to see all files with the characters “ware” in their name, do:

ls *ware*
• See the tutorial on basic Linux commands6 mentioned in the Resources section for more

details.

https://www.pcsteps.com/5010-basic-linux-commands-terminal/
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Using Python on the Pi

Using a window-based integrated development environment (IDE):

• You can use the IDLE Python IDE (integrated development environment) or the PyCharm
IDE (recommended) from the menu on the Pi’s desktop (e.g., when using VNC). Click on the
main menu, select programming, then click the menu item for the IDE of choice.

• To get started using PyCharm, see the documentation and tutorials available on the IDE’s
website.11

• To get started using IDLE, you can view an introductory movie12or read a one of the tutorials13

from resources above.
• Note that we will be using Python 3 in this class.

Using Python from the command line

• To run Python from the command line, just type: python3

– We will be using Python 3 in this class.
– There are some minor differences (as far as we are concerned) between this and Python

2, the most noticeable of which is that the arguments to print have to be enclosed in
parentheses in Python 3.

• To run a Python program from the command line, say my_program.py, then do:

python3 my_program.py

Editing files

There are several editors you can use to edit files on the Pi (and on Linux and Mac machines in
general).

• nano: A very simple editor that is likely to be the best for your purposes, at least at first. See
the Beginner’s Guide to Nano9 to get started.

• vi: One of the two most widely-used “programmer’s editors”. See An Extremely Quick and
Simple Introduction to the Vi Text Editor7 and a List of vi commands.8

• Emacs: The other one of the programmer’s editors. Very much worth learning, since it can do
just about everything (including simulate a terminal, run Python, etc.), but a steep learning
curve. If you are interested, see the Absolute Beginner’s Guide to Emacs10

Using SFTP to send files to your Raspberry Pi

You may want to create Python programs on your computer, then send them to the Pi, or you may
create programs on the Pi and want to back them up to your own computer. In either case, you will
need to be able to move files back and forth. For this, we will use either SFTP (SSH File Transfer
Protocol) or SCP (secure copy), both of which are easy ways to transfer files between computers.

SFTP

1. From a new terminal window, type:

sftp user@hostname

https://www.jetbrains.com/pycharm/documentation
https://www.youtube.com/watch?v=lBkcDFRA958
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntro.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntro.html
http://www.cs.colostate.edu/helpdocs/vi.html
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/
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where again hostname is the name of your Pi and user is the user name.
2. You are now in your user directory on the Pi (i.e., /home/user). We will call this the remote

directory, as opposed to the directory you are in on your local machine, which is the local
directory.

3. You can see what is the directory by typing ls (the list command).
4. You can move to another directory using the cd (change directory) command.

• E.g., to go to the directory of your remote desktop and see what is there, type

cd Desktop
ls

• To move up a directory, you can do: cd ...
• To move to your home directory on the remote machine (the Pi), type: cd /home/user.

5. To see what directory you are in, type pwd.
6. There are local versions of all these commands: lls, lcd, and lpwd.
7. To get the file filename from the Pi:

• cd to the correct directory on the PI and lcd to the correct directory on the local machine.
• Type: get filename

8. To put a file filename onto the Pi:

• cd to the correct directory on the PI and lcd to the correct directory on the local machine.
• Type: put filename

9. To exit, type exit or bye and press enter.

SCP – SCP is somewhat more succinct, but relies on you knowing all the direc-
tories and filenames involved.

1. Suppose you have a file filename in the current directory and you want to copy it to the Pi
on your desktop, but call it newfilename.

2. In a terminal window on the local computer in the local directory desired, type:

scp filename user@hostname:Desktop/newfilename

where HOSTNAME is as usual the name of your Pi. It will likely ask you for a password, then it
will show the status of the copying as it completes your request.

Questions for thought

• Do you feel that you now understand Raspbian, VNC, and SSH enough to run programs on
the Pi for the rest of this class?

• With the knowledge of this introduction, do you feel that you will be using command lines,
or just the GUI (VNC) to navigate? Why?
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Exercise 3: Exercising the robot

Overview

In this exercise, you will put your robot through its paces, learning how to control it as you go. You
will also “trim”, or adjust, the motors on your robot so that it be better at moving in a straight line.

Goals

The goal of this exercise is to familiarize yourself with the functions in the supplied gopigo module
(gopigo.py) for commanding and getting information from the robot.

Resources

1. “Python Programming”, from Dexter Industries’ website.15 We won’t be doing part 5 (“Weaponiz-
ing” the GoPiGo), but watch the videos and read the tutorials on the page. This page also
provides very valuable information about the GoPiGo’s API (application program interface,
the set of functions you use to interface with the robot).

2. “Add trim to the motors”, from Dexter Industries’ website.16

Materials needed

You will need:
• Your GoPiGo (with the sonar sensor attached) and some way (e.g., a computer) to commu-

nicate with it
• A smooth floor with enough space to move the robot around.

Part 1: Using the robot API

1. Start Python on the robot and do: from gopigo import *.
2. Try each of the motor control functions listed in Resource 1 (see above).
3. Try different settings of the motor speeds via the motor speed functions described in Resource

1.
4. Try setting encoder targets using enc_tgt() and using fwd() and bwd().

15www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
16www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo/add-trim-

to-the-motors

15

http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo/add-trim-to-the-motors/
http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo/add-trim-to-the-motors
http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo/add-trim-to-the-motors
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5. Read the sonar (ultrasonic sensor) using us_dist(15). (The “15” is the hardware address of
the sonar.)

6. Try entering the following into Python:

from time import sleep
while True:

print us_dist(15)
sleep(0.5)

Now move your hand in front of the sensor in various ways, watching what the loop prints in
response.

7. Turn the LEDs on and off.
8. Move the servo back and forth.
9. Check the status of the robot, including the battery voltage.
10. Glance through the gopigo.py file; this should be in GoPiGo folder on the robot’s desktop,

under Software→Python. If there are any other functions you see there that look interesting,
try them out and make a note of them for later.

Part 2: Trimming the motors

1. Follow the instructions on the Dexter Industries website16 for adjusting the hardware settings
on the robot to trim the motors:

2. Trim the motors so that the GoPiGo goes nearly in a straight line for a meter or more when
you call fwd().

Questions for thought

Was there anything unusual that happened during this exercise? Did you have any problems? If
so, what could you have done differently, and/or what information do you wish we had given you
beforehand?

http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo/add-trim-to-the-motors/


Exercise 4: A movement experiment

Overview

In this assignment, you will consider real versus expected movement by your robot. Since ex-
periments are important in computer science, just as in natural sciences, this assignment involves
performing a formal experiment.

Goals

• Gain experience controlling the robot with Python.
• Refresh your memory of the scientific method.
• Gather data you will use in the next assignment.

Background

Scientific method

To refresh your memory about the scientific method, here is a good diagram of it from a site aimed
at helping high schoolers select science fair projects:17

17www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml

17

http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml
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The “question” you’ll be asking in this assignment is: “Does the robot perform as expected
when commanded to go forward, and if not, how does it deviate from expectations?” We’ll skip
the “background research” portion here. However, you do need to formulate a hypothesis to test.
This can be very general (e.g., “The robot will not behave as expected.”) or very specific (e.g., “The
robot will deviate from expectations by over 10% to the right when moving at 100% of its maximum
speed”)—it’s up to you.

You can gather evidence for a hypothesis, but you can’t prove it outside of the pure realm
of mathematics. It is also much easier in general to reject a hypothesis than to gather enough
evidence to directly support it. The standard thing to do is to flip the hypothesis around into a null
hypothesis, then try to reject that at some level of confidence; if that is possible, then the hypothesis
itself is considered to be well-supported.

A null hypothesis is a statement about what you think would be true if your hypothesis is false.
For example, if you were doing an experiment to see if fertilizer increased the growth rate of algae
in water and your hypothesis was that it does, your null hypothesis would be “fertilizer has no effect
on the growth rate of algae in water”. In the case of this assignment, if your hypothesis is “the robot
will not behave as expected”, then the null hypothesis would be “the robot will behave as expected”.
You would then gather data to reject that hypothesis.

In most experiments, there is are one or more independent variables and one or more dependent
variables. The independent variables are those that you can control in your experiment, while the
dependent variables are those that really are of interest; they are the ones that change as a result of
changes you make to the independent variables. Ideally, only a very small number of independent
variables will be varied an experiment, and usually only one or a few dependent variables are
measured.

In the algae experiment, there are many possible independent variables, including temperature,
salinity, etc., but the one we’re most interested in is the amount of fertilizer added to the water.
All the rest we strive to keep constant. The dependent variable of interest is the growth rate of the
algae (however it is measured).

For this assignment, there is more than one candidate for the independent variable: we could
use speed, distance traveled as measured by the robot’s wheel encoders, amount of time we let the
robot run, and so on. The dependent variable is the position of the robot at the end of the run.

True formal experiments have a control, that is, something to compare the experimental treat-
ments against—where a treatment is one setting of the independent variable(s). In the algae exam-
ple, the control would be containers of water with no added fertilizer, while the treatments would
be containers with differing amounts of fertilizer added. The purpose of a control is to factor out
any variables that we may not have thought of; as much as possible, the controls are exposed to
exactly the same conditions as the treatments, except for the actual settings of the independent
variable(s).

For this assignment, we will use as our control the expected position of the robot after a run.
In essence, we are ignoring the effects of all environmental variables that might affect the robot’s
final position. Another way of thinking of this is to flip things around a bit: the distance traveled
(or duration, or speed) can be thought of as about the only thing that is constant between the
(calculated) control and the other runs; the real independent variables are all the properties of the
real world we can’t account for; the dependent variable, from this view, would be the deviation
from the expected position. Although this is arguably a better way to view the situation, we will
continue assuming the independent variables are the ones having to do with our commands to the
robot.

Since we can’t control all variables in the environment, there will be noise in our data caused
by random (or unknown) changes in the world. Thus, most experiments have multiple replications:
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multiple controls, multiple treatment cases, etc. For the algae experiment, we might have 20 con-
tainers with no fertilizer (the controls) and 20 containers for each concentration of fertilizer applied.
For this assignment, we will perform several runs for each setting of the the independent variable(s).
If we were going to use statistics to reject the null hypothesis, then the number of replications would
in part depend on the statistical method used (Student’s t-test, ANOVA, etc.).

Once the data is gathered, it is time to compare the results of the experiments to the control.
In the algae experiment, this would be the growth in the experimental cases versus the control. For
us, this will be the real versus expected positions of the robot.

In real experiments, we would perform a statistical analysis of our data to see if we can reject the
null hypothesis. We have to have some standard of how likely our rejection is to be valid, however,
that is, how much confidence we have in our conclusion. The level of confidence we have in rejecting
a null hypothesis is usually expressed as something called the p-value, and you’ll see it written after
a conclusion in a scientific paper as something like “(p = 0.013)” or (p < 0.05)“. This means that
there is a probability of 0.013 (i.e., ”a 1.3% chance“) or less than 0.05, respectively, that the results
were due to chance and not to a real difference from the null hypothesis. Statistical tests provide
us with p-values for the effects noticed in our data.

The usual threshold for something being considered “statistically significant” in science is p <
0.05, i.e., a 0.95 probability that the effect observed was real. Anything less (i.e., any p-value ≥
0.05) and we should be concerned that our results were just due to chance.

In this assignment, you will use a very simple statistical test, the Student’s t-test, to see if your
null hypothesis can be rejected or not.

Resources and tutorials

• Introduction to the Scientific Method18

• Wikipedia article on Scientific Method.

• Statistics for Dummies Cheat Sheet19 – if you want to do some statistical testing of hypotheses,
this may help a bit.

• Choosing which statistical test to use – statistics help20 (video)

Materials needed

You will need:
• Your GoPiGo.

• A tape measure or some other way of measuring distance

• A smooth floor with sufficient space for the robot to run on (suggestion: minimum 1 m × 1
m)

• Masking tape or other easy-to-remove tape

• A means of doing a t-test; spreadsheet programs, for example, provide this, and there are also
statistical packages available for Python.

18teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html
19www.dummies.com/education/math/statistics/statistics-for-dummies-cheat-sheet
20www.youtube.com/watch?v=rulIUAN0U3w

http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html
http://www.dummies.com/education/math/statistics/statistics-for-dummies-cheat-sheet/
https://www.youtube.com/watch?v=rulIUAN0U3w
http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html
http://www.dummies.com/education/math/statistics/statistics-for-dummies-cheat-sheet/
https://www.youtube.com/watch?v=rulIUAN0U3w
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Requirements

• Based on what you know about how the robot moves when commanded to go forward (fwd())
(after trimming), formulate a hypothesis about how its motion will compare to that expected
in an ideal case (i.e., going in a completely straight line).

• Formulate the null hypothesis.
• Design an experiment to test your hypothesis

– Determine what the independent and dependent variables are.
∗ Although we said there were several we could use, a good independent variable is

the robot’s speed.
∗ Think about picking a set distance for the robot to travel in all treatments and

varying the speed at which it covers the distance.
∗ The motor speed for the GoPiGo is set using a scale of 0–255.
∗ Distance can be measured by using the GoPiGo’s wheel encoders, which generate a

signal 18 times per revolution of a wheel.
– Decide the number of treatments (i.e., settings of the independent variable, speed) you

will have.
– Decide how many replications you will do of each treatment. You may want to look at

the suggested resources on the t-test to help you decide this.
• Perform the experiments
• Analyze the results
• Keep the data for use in the next assignment!

Programming notes

Overview: Top-down design

In this assignment, you are going to write a program to control the experiment you will be perform-
ing, including telling you what to do, moving the robot, and collecting data. This will be a fairly
complex program.

When faced with a complex program to write, it helps to break it down into smaller pieces that
make sense, even if you don’t yet know how write those pieces. Then, once you know how the pieces
fit together, you work on writing each of them in the same way: breaking them into smaller pieces,
etc. This is called top-down design, step-wise refinement, or, sometimes structural decomposition.
Often this is paired with bottom-up implementation: when you have broken up all the functions into
other functions, starting at the smallest, implement them. The two are not really separate, however:
often during top-down design, functions are essentially complete as soon as you understand how to
break them into smaller pieces.

In this exercise, we’ll develop the program in a top-down fashion. Let’s first think about the
design of the program needed to guide you as you conduct the experiment, to move the robot, and
to collect the data, then think about how to design each of the pieces, and their pieces, etc. Because
this will be a rather long program—maybe the longest you’ve done yet—we will provide you with
a skeleton that includes the function headers and import statements.

Main program: do_experiment()

Let’s call the main program do_experiment(), and let’s assume it has the parameters:
• num_trials: number of trials to perform;
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• repetitions: number of repetitions per trial;
• distance: the distance to move the robot each time; and
• filename: the name of the file in which to write the data.

With these parameters—and by not hard-coding their values into the program—we can use the
function to carry out different versions of the experiment without making changes to it.

There are three tasks for do_experiment:
1. Set up the robot and initialize any variable needed.
2. Do the actual trials.
3. Write the data to a file.
The setup part of the program is simple enough that we can include that directly in do_experiment().

All it needs to do is to make sure the robot is ready to execute motion commands and return sensor
values. In this case, this means just enabling the wheel encoders.

The other two pieces are more complex and should be written as separate functions, which we
can design later. In the meantime, we can assume that we already have them written and write the
main program using them.

Looking first at step 2, we can do this by calling a function, do_trials(). This function will
need to know how many trials there are, how many repetitions to do for each, and the distance
to move the robot, so these will be parameters; that is, we will call it as do_trials(num_trials,
repetitions, distance).

Step 3 will also be done by a function let’s call write_data(). This will need to know the data
to write and the file name to which to write it, so we can call it as write_data(data,filename).

This raises the question: Where did data come from? The answer is, we want do_trials() to
return it: it will be the data you measure for each repetition of each trial. But what should the
format of the data be?

Oddly enough, we don’t need to know this right now; the data is produced by do_trials() and
given to write_data, so the main program, do_experiment(), never needs to know the format!
This is one of the advantages of top-down design: we can delay committing to details (in this case,
the data’s format) until it makes sense to do so.

We can write pseudocode for the main program now. Pseudocode is a way to write the algorithm
a program carries out in a way that is close enough to the way the program will be written to be
easy to translate to code, yet is readable. Pseudocode for the main routine would look like:

• do_trials(num_trials, repetitions, distance, filename):

1. Set up the robot.
2. Call do_trials(num_trials, repetitions, distance), collecting data into data as a

list.
3. Call write_data(data, filename)

1. do_trials(num_trials, repetitions, distance)

This function’s overall purpose is to run each trial for the number of replications needed,
collecting the data (e.g., into a list) to be written out later by write_data(). We can think of
this function’s structure as basically a loop, with one iteration for each trial to be performed.
Since we are concentrating on the structure of this function here, we can let another function,
do_a_trial(), be called in the loop to conduct a single trial.

Before the loop, however, although we know the number of trials desired at this point (a
parameter passed from the main program), we first need to determine what the trials should
be. This can be done by another function, create_trials(), that generates a list of trials.

The structure of the do_trials() function thus looks like:
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• do_trials(num_trials, repetitions, distance):
(a) Let trials = create_trials(num_trials).
(b) Do for each trial in trials:

– do_a_trial(trial, repetitions, distance), collecting results into data.
(c) Return data.

There are two variables introduced in this pseudocode, trials and data. This is a point
where we need to think about the format of trials, since this function has to iterate over it.
This means that it should be either a list or a tuple. Thinking ahead to create_trials(),
which produces the value trials will contain, it is likely to be better to use a list, since
(though we haven’t really considered the details at this point) create_trials() will likely
use the common coding pattern (sometimes referred to as an idiom) of accumulating the
values for trials it creates one by one. Since a list can be modified (e.g., to add a new element)
and a tuple cannot, then we’ll assume it’s a list and make a mental note that this is what
create_trials() should return.

The other variable, data, contains the data collected from all the trials. We don’t have to
know what each piece of data looks like in order to write this function, but we do know that
we’ll be adding them to data as they are produced. This means that data should be a list,
each element of which is a data point.

There are two ways in Python to add elements to the end of a list, as we need to do here, both
of which are methods of the list data type, extend() and append() append() is the one we
want, since extend() will splice two lists together if the data item is a list or a tuple, which
it is likely to be. Append, on the other hand, does what we want:

>>> a = []
>>> a.append((1, 2))
>>> a
[(1, 2)]
>>> a.append((3,4))
>>> a
[(1, 2), (3, 4)]

whereas extend() does not:

>>> a.extend((5,6))
>>> a
[(1, 2), (3, 4), 5, 6]

Now we can look at the next-lower abstraction level: the two functions create_trials() and
do_a_trial(), which this function needs.

2. create_trials(num)

Assuming that speed is the independent variable for our experiment, then num_trials() justs
needs to return a list of speeds to use. It would be best to randomly generate the speed values,
since this will help eliminate any possible bias on the part of the experimenter that might cause
some representative speeds to be omitted. Thus this is a simple function:

• create_trials(num):
(a) Do num_trials times:
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i. Let s = a randomly-generated speed in the range 0–255.
ii. Collect s into a list trial_list unless it is already in it.
iii. If s was already in trial_list, then go to 2(a)i.

(b) Return trial_list.

Some tips for this function:

• Use a for the loop in step 2a.
• To randomly-generate a value, use Python’s randint() function, which is in the random

module.
– At the top of your file, do:

from random import randint
– It takes two arguments; if it is called as randint(a, b), then it will return a number
n such that a ≤ n ≤ b.

• You will want to initialize trial_list to the empty list:

trial_list = []

• You’ll want to use the append() method of the list data type to add new values to this,
e.g.:

trial_list.append(x)

to add x to the end of trial_list.
• To check to see if something is in a list, use in. For example,

>>> a = [1, 2, 3, 4, 5]
>>> 3 in a
True
>>> 6 in a
False

• You’ll want to keep generating values for s until it contains a value not already in the
list. You can do this with another kind of loop, a while loop.
– For example:

>>> a = [1, 2, 3, 4, 5]
>>> while int(input()) not in a:
... print("nope!")
...
14
nope!
23
nope!
3
>>>

– A word of explanation: input() gets a string from the user, and int() converts its
argument into a number.

– Don’t forget to return trial_list at the end of the function!

do_a_trial(trial, repetitions, distance)

This function does the work of running some number of repetitions of a single trial (i.e., moving the
robot at a given speed for distance cm). This is basically a loop that iterates repetitions times,
each time conducting a single repetition of the trial:
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• do_a_trial(trial, repetitions, distance):

1. Loop repetitions times:
(a) Tell the user (i.e., you) to position the robot for a new repetition.
(b) Wait for the user to indicate that the robot is in position.
(c) Let start_time be the current time.
(d) Move the robot distance cm at the speed specified in trial, keeping track of how

long it takes.
(e) Let end_time be the current time.
(f) Tell the user to measure the robot’s position and enter it (as an x and a y value).
(g) Collect the data into a list data

2. Return data.
You can just use a print statement to tell give the user instructions. You can wait for the user

by using the input() function, e.g.,:

input(’Press enter when the robot is in position: ’)

To get the current time, we will use the time() function from the time module; put this at the
top of your file:

from time import time, sleep

We suggest you also import sleep(), since that will be needed later.
It turns out that step 1d is more difficult than it seems, since we need to move the robot

along the x-axis and wait for it to finish before doing the next step. We’ll use a new function
move_x(speed,distance) to do this step, described below.

Note that we could split this function up further if we wanted, for example, by creating a function
that does all the work in the body of the loop. However, it is simple enough that we really don’t
need to.21

We now have to decide on the format of the data. We suggest that you create a tuple to hold the
data for each replication of the form: (start_time, end_time, speed, distance, x, y), where
the values are can be found in variables in the function.

Again, use the append() method to add tuples to the end of data. Don’t forget to return data
from the function!

move_x(speed, distance)

This needs to move the robot distance cm along the x-axis at speed. It could look like:
• move_x(speed, distance):

1. Set the robot’s speed to speed.
2. Move forward distance cm, waiting until it is done.
3. Return.

Some notes:
• To have the function wait until the robot is done moving, set a target, start the robot, then

wait for it to reach the target.
• You will use the robot’s wheel encoders to set a target distance for the robot.

– The encoders send 18 pulses for each revolution of the wheels. (There is an encoder for
each wheel, but we will treat them as a unit.)

21At least, at this level of thinking about it, it doesn’t seem to need breaking up; if we discover as we are writing
the code that the function is becoming complex and/or long, at that point it may make sense to refactor it into a
parent function with one or more new functions.
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– There is a function, enc_tgt() that sets a target for the encoders that, once reached,
stops the robot’s motion; the target is specified as some number of encoder pulses.

– Your program will need to convert distance into the corresponding number of pulses.
∗ WHEEL_CIRC is a constant supplied in the gopigo module that contains the robot’s

wheels’ circumference, in cm.
∗ There are r = distance

WHEEL_CIRC wheel revolutions in distance.
∗ PPR is a constant in the gopigo module that holds the number of encoder pulses per

revolution (18).
∗ The number of encoder pulses occurring in distance is then r × PPR.

– The call to enc_tgt() takes three arguments:
∗ The first two tell the robot which wheel encoder(s) to use.
∗ The third is the number of pulses that is the target value.
∗ If p is the number of pulses, call this as enc_tgt(1, 1, p).

• To set the robot’s motor speed, you use the function set_speed().

– Recall that motor speed must be in the range of 0–255, with 255 being full speed.
– Your program should check to make sure that the specified speed is within this range.
– If speed < 0, then set the motor speed to 0; if it is > 255, then set the motor speed to

255.
• Once the speed is set and the encoder target is set, your function can move the robot by

calling fwd().
• The function has to wait until the robot finishes movement before returning.

– This can be done by using a loop that continuously checks the encoder status via the
built-in function read_enc_status() and only exits when the status is 0 (signaling that
the target has been reached).

– You should consider using the sleep() function of the time module to wait a fraction
of a second between checking the encoder status, since otherwise the loop will take up a
great deal of the robot’s processing capacity. An example of how this could be done is:

from time import time, sleep # see above
while read_enc_status() is not 0:

sleep(0.1)

which would check to see if the motion has stopped every tenth of a second.22

write_data(data, filename)

This function handles writing the data from the experiment to the file named filename. We need
to think about how we plan to use the data to figure out in what format we should write it. Since
it is likely that we will want to manipulate the data—sorting it by speed or error, for example, or
performing statistics on it—a good format is one that a spreadsheet program can read. Almost
all such programs can read/write comma-separated value (CSV) files, so let’s use that. A CSV file
would have each data point on a line, with commas separating the individual pieces of the data.

The write_data() function will look like:
• write_data(data, filename):

1. Open the file filename.
2. Loop for each data item (i.e., each tuple) in data:

22Note that if you later need to compute the robot’s actual speed in cm/s, i.e., d/∆t, the accuracy will be inversely
proportional to the wait time in this loop. Thus there is a trade-off between accuracy and wasting the computer’s
time and effort. This is not uncommon in computer science.
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(a) Write the tuple to the file, separating elements by commas.
3. Close the file.

Some information:
• Files have to be opened before they can be read, and they need to be closed after you are

done with them.
• Use the open() function to open a file.

– This takes two arguments, the name of the file to open (e.g., filename above) and the
mode—read, write, etc.

– To open the file named ’foo’ for writing, do:

f = open(’foo’, ’w’)

– The variable f above holds the file object returned by open(). You will use this object’s
methods to access the contents of the file.

• To write data to the file, use the write() method.

– f.write(’hi there’) would write the string ’hi there’ to the file.
– You have to tell write() when you want to end the line. You do this via writing a

newline character to the file, e.g., write(’\n’).
– To convert a number into a string for writing, use the str() function, e.g.,

>>> str(2.3)
’2.3’

• Since it’s a little tricky to write commas between data items, but not after the last one, we’ll
give you this one:

for data_point in data:
d = []
for thing in data_point:

d.append(str(thing))
f.write(’,’.join(d) + ’\n’)

• To close the file, use the close() method, i.e., f.close().

Testing & running the experiment

• Testing:

– You should test your functions to make sure they do what you want before running your
experiment.

– Often it’s easiest to test a program written top-down by starting at the smaller functions—
i.e., testing it bottom-up—and making sure they behave correctly, then testing functions
that use them, etc.

– Test the entire program by following the steps for “Running the experiment” below, but
with a replication of 1 or 2.

• Preparing to run the experiment:

– With the tape, mark x- and y-axes on the floor, with each being at least as long the
distance you intend the robot to travel in your experiments.

– The robot will, if it performs correctly, travel straight down the x-axis.
– The y-axis needs to be orthogonal to (90-degrees from) the x-axis, and pointing to the

left as you face in the direction of the x-axis.
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• Running the experiment:

– Start Python.
– Load (import) your Python file containing the functions you’ve written.
– Call the do_experiment() function
– Do what your program tells you.
– When done, make sure that your CSV file looks correct.

• Analyze your data.

– Import the CSV file into a spreadsheet program (e.g., Excel, Numbers, LibreOffice,
OpenOffice, etc.) for easy viewing and manipulation.

– Examine the data – what can you say about it in general?
– What can you say about your hypothesis in light of the data? Can you back that up by

using the spreadsheet’s t-test or other statistical tests?

Questions for thought

• What was your hypothesis? Was it a good one? Would you create a different one if you were
to do the experiment again?

• If there were errors in movement, can you conclude anything about them? Are they pre-
dictable, i.e., given a speed, can you predict the error? Do they conform to some equation?

• Is there any correlation between motor speed and actual speed of the robot? If so, is there an
equation that can convert from one to the other?

Stretch goals

• It is possible that trials() could return two or more trials with the same motor speed.
Modify it so that all of the trials are unique.

• Use a statistical method to provide support for your hypothesis based on your data.
• Write a function based on what you’ve learned that, given a speed and a distance, will return

the estimated errors in x and y (as a list or tuple).

– To do this, you will need to estimate the error rate, in meters of travel per second of
travel, for the speed given, then determine how long it should take to go the required
distance, and finally multiply that by the error rate (in x and y, again).

– You may be able to derive a mathematical function for the error rates using the curve-
fitting funcationality that is built into the spreadsheet you are using.

– If there is no mathematical function you can find, or if none seem to fit well, then your
function should use interpolation based on the speeds you do have data for.
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Exercise 5: Compensating for servo
errors

Overview

In this exercise, you will write a Python function to use to point the servo, instead of using the
built-in servo() function. You will also write a function to replace the us_dist() built-in function
to get sonar data.

The reason to do this is twofold. First, it is very likely that servo() may not exactly point the
servo where you think it should; it is also likely that us_dist() may not return correct values for
the range (distance to an object). Your functions, then, will compensate for this.

Second, this will introduce you to the idea of writing interface functions for hardware-specific
functions. You would ideally want code you write to control the GoPiGo to work for other robots,
so that you wouldn’t have to change much to control another kind of robot. However, both servo()
and us_dist() are functions for the GoPiGo and will likely not be supplied by other robots. By
writing interface functions that your programs can call, which themselves call the robot-supplied
functions, you can isolate your programs from the particular functions that are robot-specific; to
change robots, the only thing you would have to do would be to use a different set of interface
functions.

Goals

• Gain experience writing interface functions while building useful servo and sonar function.
• Begin to learn how to compensate for hardware imprecision.

Resources

1. “Python Programming”, from Dexter Industries’ website.23 This page provides very valuable
information about the GoPiGo’s API (application program interface, the set of functions you
use to interface with the robot).

2. Ultrasonic Sensing (Rockwell Automation)24

Materials needed

You will need:
23www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
24www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html

29

http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html
http://www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html
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• Your GoPiGo (with the sonar sensor attached)
• A smooth floor or table

Requirements

• Write a function that points the servo by in turn calling servo(), mapping the angles −90 deg
to 90 deg to the robot’s native 0 deg−− 180 deg range.

• Write a function that calls the native sonar (ultrasound) range function, but corrects the
returned value as needed to give accurate ranges.

Programming notes

1. Write a Python function point_servo() that moves the servo.

• It should take one parameter, θ, that specifies the direction the servo should point (in
degrees), −90 ≤ θ ≤ 90, where:
– θ = 0 means that the servo points straight ahead of the robot;
– θ < 0 means the servo points to the right of the robot; and
– θ > 0 means that the servo points to the left of the robot.

• We use these conventions to agree with ones you used in the previous exercise, where
straight ahead is the robot’s x-axis and 90° to the left is the y-axis.

• You’ll need to play around with the servo() function to see where the servo actually
points when called with different values. You’ll need to map from the parameter a of
point_servo() to an appropriate parameter for servo() that will move the servo as
desired.

2. Write a function sonar_range() that returns the range (distance) in cm from the robot to
the nearest object in front of the sonar.

• Experiment with the sonar to ensure that the values it returns when us_dist() is called
are accurate.

• If they are, then sonar_range() will only need to call us_dist(15).
• Otherwise, you should have sonar_range() try to compensate for any errors in the sonar

system.
• Note that you may not be able to find a consistent pattern of errors; in that case, you

can’t really do much to compensate.
• However, if you do find a pattern, you should adjust what the raw sonar function returns

to be more accurate.

Testing

• Make sure that the servo behaves as specified by trying it with several different angles.
• Make sure that what is returned from the sonar interface function is correct by positioning an

object at various distances from the robot and checking what sonar_range() returns.

Questions for thought

• If there were errors in how servo() behaved, what might have caused them?
• How does the ultrasound sensor find the distance to an object? (See, e.g., Resource 2.)
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Stretch goals

• Experiment with objects of different shapes and materials; does the range() function return
the same values for different objects when positioned at the same distance from the robot? If
not, why not, do you think?

• Write a function nearest_object() that uses the servo and the sonar to scan the area in
front of the robot (over the range -90° – 90°), point the servo back to 0°, and returns the servo
to 0°.
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Exercise 6: Compensating for motion
errors

Overview

In this exercise, you will write Python interface functions that call the robot’s own native movement
functions to compensate for motion errors you discovered in your “real versus expected motion”
experiment, done in an earlier exercise. Even if you did not discover any problems with the robot’s
movement in that exercise, you will still write these interface functions, since that will allow you to
isolate the rest of your robot functions from any future changes needed to compensate for changes
in how the robot moves.

Goals

• Gain more experience writing interface functions.
• Learn how to compensate for motion errors.
• Create useful interface functions.

Preparation and resources

• Make sure you have done Exercise 4 (Experiment: Real versus expected movement) prior to
doing this exercise.

• Resource: “Python Programming”, from Dexter Industries’ website.25 This page provides
very valuable information about the GoPiGo’s API (application program interface, the set of
functions you use to interface with the robot).

Materials needed

You will need:
• Your GoPiGo.
• Data and analysis from Exercise 4 (Experiment: Real versus expected movement)
• A smooth floor or table
• A protractor.

25www.dexterindustries.com/GoPiGo/programming/python-programming-for-the-raspberry-pi-gopigo
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Requirements

• Create the function forward() described below
• Create the functions right() and left() described below.

Programming notes

Write function forward(distance,speed,wait)

• This function will move the robot forward using the robot’s native fwd() command, along
with other functions as necessary.

• Parameters:

– distance is the distance (in cm) to move, speed is the speed (1–255) at which to move,
and wait is a Boolean (true/false) parameter telling the function whether (True) or not
(False) to wait for motion to stop before returning.

– Make distance, speed, and wait all optional parameters with sensible defaults.
– If distance is not specified or if it is None, then move the robot forward without setting

any distance at which to stop. (In this case, your function should probably behave as if
wait = False.)

– If speed is not set, then your function should not set the robot’s speed; instead, leave it
at whatever value other functions have set it.

– If wait = True, then the function should not return until the robot has gone the requested
distance.

• Overall style:

– You will want to break the function up into manageable pieces, as you did in the motion
experiment for the major function, then implement each piece as a separate function.

– Don’t forget to comment your code and to make variable and function names illustrative
and helpful to the reader (who will likely be future you, when you are debugging the
program!).

1. Managing distance:

• You will use the fwd() GoPiGo function to move.
• You will want to use the GoPiGo enc_tgt() function to set a target at which to stop –

so don’t forget to enable the encoders.
• The target you set has to be specified in encoder pulses, of which there are 18 per wheel

rotation. (But you should use the provided constant PPR from gopigo.py instead. Why
do you think this is?)

• The radius and circumference of the wheels are provided in gopigo.py as WHEEL_RAD and
WHEEL_CIRC, respectively.

• The first two parameters to enc_tgt() should both be 1; this will enable encoder targets
for both wheels.

• Setting the speed:
– This can be done using both the set_right_speed() and set_left_speed() func-

tions or just the set_speed() function.
– If you found no errors in movement, then you will likely want to use the set_speed()

function. Otherwise (see below) you will want to set the speeds of the two motors
differently.

2. Waiting for the robot to reach its target:
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• If the wait parameter is False, then immediately after initiating motion, your function
will return; otherwise, it needs to wait until the robot has reached its target.

• Although the robot will stop at the target automatically, fwd() does not wait. This
means that if your function needs to wait, it will have to periodically check if the robot
has reached its target. This can be done in one of two ways:

– Use the built-in function read_enc_status(), which returns 0 if the target has been
reached, 1 otherwise.

– Using the undocumented built-in function enc_read(m), which returns the encoder
value for motor m (0 for left, 1 for right). The function header in gopigo.py claims it
returns the encoder distance in cm; to check this, call the function, move the robot
a few cm, then call the function again. Do you think the value is in encoder pulses,
cm, or something else?

– You should have the function sleep a little bit between checking the encoders so as
not to use too much of the CPU for no reason.

∗ You can do this with the sleep(s) function (from time import sleep).
∗ Try different values for s (in seconds) until you find one you feel doesn’t wait

too long (and cause the function to delay returning). Maybe start with a tenth
of a second.

Compensating for motion errors:

• If you did not find any motor errors, then you do not need to do this—you lucked out!

• If you did find errors, then the problem is to get forward() to compensate for them so that
the robot travels straight ahead.

• Let’s define the error es for a given speed s to be the proportion of the desired distance traveled
the robot deviated from the x-axis.

– If d is the distance the robot traveled and yd is the y-value when the robot was at its
destination, then es = yd/d.

– Note that since both yd and d are measured in centimeters, then es is dimensionless: it’s
just a ratio.

• If we know es for the speed desired, then we can predict where the robot would end up if we
let it run for a given distance d′: it’s y-value would be es × d′.

• We can compensate for this in one of two ways:

1. Aim for a spot roughly es × d′ away from the x-axis in the opposite direction of the
expected error.

2. Adjust the motor speeds to make one motor run ∆s faster than s and one ∆s slower so
that the robot moves in a straight line.

1. Compensating by turning

• If we aim away from the expected error, the question is, what angle do we turn to start?
• Graphically, the situation looks like this:
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• We will assume here that the error is small, so that d ≈ d̂. Thus, if we just turn θ
degrees away from the expected error direction, the robot should end up about d along
the x-axis.

• You will need the asin() (arc sine) function from the math module; so put this at the
top of your file:

from math import asin

• Keep in mind that θ is in radians, not degrees, and the turning functions use degrees, a
conversion is in order.

• Since there are 2π radians in 360°, the angle in degrees θd = 360
2π θ.

2. Compensating by adjusting wheel speeds.

• If instead you want to compensate by changing the motor speeds, then it’s a little more
complicated—though also possibly a little more accurate.

• We provide an appendix to this example that explains how we arrive at the formula to
use to adjust the speeds, but for now, the formula we will to find the additional speed
ωadd to add to the outer wheel is:

ωadd =
2Wsyd

rw(x2d + y2d)

where:
– s is the desired speed, in cm/s;
– rw is the radius of a wheel (3.25 cm, the WHEEL_RAD constant from the gopigo

module);
– W is the track (11.75 cm for the GoPiGo);
– xd is the distance the robot moved in the experiment along the x-axis for speed =
ω; and

– yd is the distance the robot deviated from the x-axis (i.e., the y-value) in the exper-
iment for speed ω.

• Suppose that the call is forward(distance, speed), wi is the “inner” wheel, that is, the
one on the side toward which the robot’s direction deviated, and wo is the “outer” wheel.
– Set the speed for wo to be $ω = $ speed. For the sake of argument, let’s say that

wo is the right wheel; then:
set_right_speed(speed)

– Set the speed for wi (the left wheel) to be speed + ωadd.
∗ As you can see above, we need s, the speed in cm/s, that corresponds to speed

(the motor speed), in order to calculate ωadd.
∗ In the experiment, your program recorded the time t it took to go distance d.

You can use this to find the speed, in cm/s: s = d/t.
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∗ Given that, you can do the following to set the left wheel’s speed:
W = 11.75
rw = WHEEL_RAD
s = d/t
omega_add = (2 * W * y * s)/(rw * (x*x + y*y))
set_left_speed(speed + omega_add)
where x and y are xd and yd, respectively, described above, d is the distance from
the trial, and t is the time it took to go d cm.

3. What if the motor speed wasn’t one of the trials?

• So far, we’ve figured out how to compensate for an error for a given speed.
• If one of the experimental trials was for the desired speed given to forward(), then we’re

all set: find that speed in the data and compute es (for the first method) or xd and yd
(for the second method) based on that data.

• Most likely, however, the desired speed won’t match one of the trials.
• If you are lucky enough that the x- and y-values for the trials (averaged over the repli-

cations for each trial, say) can be predicted as a function of speed, you can use those
values for the second method; you can determine es from those functions, too, for the
first method.

• If you aren’t that lucky, then you will to interpolate to find the what you need (either
xd and yd or es). If you don’t remember how to interpolate from high school (assuming
it was covered there), then search for “linear interpolation” on Wikipedia, for example,
to see how to do this.

Write functions left(angle) and right(angle)

• In the best case, you can write these very easily: simply use the (undocumented) gopigo.py
functions turn_left(angle) and turn_right(angle).

• Try these functions for several different angles and measure the resulting angles turned using
a protractor.

• If there were only minor errors, then you can just have your functions call the supplied ones.
• If there were errors, however, then see if you can figure out a pattern; if you can, compensate

for the errors. The compensation doesn’t need to be as extensive as for forward() – you can
just try several angles, measure the results, and estimate the angle you would need to pass to
turn_left() or turn_right() to get the correct turn.

Testing

Try your functions to make sure that the robot goes the distance expected, turns in the correct
direction, etc.

Questions for thought

• There is a third option for compensating for wheel speed mismatches: just initially angle the
robot away from the direction in which it curves. This will let it curve as before, but end up
where it should be.

– See if you can figure out, in general terms, how far to angle the robot.
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– Do you think this is a good way of doing the compensation? Why or why not? What if
you are in a crowded environment? An empty environment?

• Can you see the utility of creating any other interface functions? If so, which ones, and why?

Stretch goals

• Instead of specifying the speed for forward() as being in the range of 0–255, allow it to be
specified in cm/s.

– This will require you to try running your robot at a variety of motor speed settings to
determine the conversion from motor speed to actual speed, both going forward and
backward.

– It is likely that the battery status will impact this calculation. Can you figure out a way
to compensate for this? Would it be worth it?

• Write a backward() function that does the same sort of thing as forward().
• Provide optional speed and wait parameters to right() and left(). Speed should be spec-

ified in degrees/s (°/s), and wait will have the same meaning as for the forward() and
backward() functions.

Appendix: Calculating wheel speeds

• In the following, we use ω to mean motor speed. ω usually means angular velocity (and this
is what it means in the first formula), so for this to work, we have to assume that there is a
linear relation between motor speed and angular velocity.

• The first formula that we need is modified from an answer to a question on math.stackexchange.com,
a very useful site for technical questions, by user “DJohnM”:26

t =
Wθ

rwωadd

where:

– t is the time the robot is moving;
– W is the wheel track;
– rw is the wheel radius
– θ is the angle the robot turns; and
– ωadd is the angular velocity that needs to be added to turn the robot through θ.

This formula has more to do with how to turn a vehicle than how to correct one. However, if
we add ωadd to the “slow” wheel, it should work for us as well.

• We can rearrange this equation to find ωadd:

ωadd =
Wθ

trw

• We know W and rw; we “just” have to find θ and t.

26math.stackexchange.com/questions/519523/calculating-individual-wheel-velocities-from-a-desired-angle-in-a-
differential-w

http://math.stackexchange.com
http://math.stackexchange.com/questions/519523/calculating-individual-wheel-velocities-from-a-desired-angle-in-a-differential-w
http://math.stackexchange.com/questions/519523/calculating-individual-wheel-velocities-from-a-desired-angle-in-a-differential-w
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• Here is a diagram of one trial for reference:

• We assume that the robot traces an arc of a circle of radius r. The length of the arc is d, the
distance the robot traveled during the trial.

• We know from geometry that d = rθ, so θ = d/r – now we have to find r.

• From the Pythagorean Theorem, we know that:

r2 = x2d + (r − yd)2

• We can solve this for r:

r2 = x2d + (r − yd)2

= x2d + r2 − 2ryd + y2d

r2 − r2 + 2ryd = x2d + y2d

r =
x2d + y2d

2yd

• Thus:

θ = d/r

=
2dyd
x2d + y2d

• What about t, the time?

– For now, let’s just let the speed of the robot for motor speed ω be s cm/s.
– t = d/s
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– Thus:

ωadd =
2Wθ

trw

=
2Wdyd

trw(x2d + y2d)

=
2Wdsyd

drw(x2d + y2d)

=
2Wsyd

rw(x2d + y2d)



Exercise 7: An approach or avoid
behavior

Overview

Behavior-based robotics is an approach to robot control that relies on combining self-contained
programs called behaviors in such a manner that the desired overall behavior of the robot emerges
from their interaction. It has some advantages over trying to write a single program to control all
of the robot’s behavior, including:

• each behavior can be relatively small, and hence, easy to write, easy to debug, and fast;
• splitting complex behaviors into simpler ones allows a “separation of concerns”, which lets the

programmer optimize the behavior for its task;
• since the behaviors are defined by what they do rather than how they are built, different kinds

of programs that work better for different purposes can be used in the same robot controller;
• because the behaviors are defined by what they do and are separate from each other, it is easy

to replace a behavior with a new version or a different version, either to improve the controller
or to try out a new approach;

• it is easy to add different behaviors;
• it isolates concerns about interactions between behaviors to the behavior controller, keeping

them out of the individual behaviors;
• faster behaviors can potentially respond more rapidly than slower ones, allowing both reflexive

and more computationally-intensive responses to coexist; and
• it separates out some behaviors that may be useful in other robots.
We will be exploring this kind of robot control in the next few exercises as well as in the first two-

week project. In this exercise, you will write a rather complex, standalone behavior that will allow
the robot to approach an obstacle, stop before hitting it, and run away if the obstacle approaches it.
In the next exercise, you will take this behavior apart for use in a simple behavior-based controller.

Goals

• The practical goal of this assignment is to create a behavior that will keep the robot safe and
that will also do some interesting things when approaching an obstacle or when an object is
approaching the robot.

• The pedagogical goals are:

– to gain more experience programming the robot, especially experience using a real-world
sensor (the sonar);
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– to start thinking about how you can make programs more general-purpose for use with
other programs; and

– to begin learning about behavior-based control.

Resources

1. Behavior-based robotics– Wikipedia27

2. Behavior-based robotics – Chapter 3 of Wahde, M., An introduction to autonomous robots,
lecture notes, (MW).28

3. For an example of using the ultrasonic sensor to stop when an object is in front of the robot,
see the basic_obstacle_avoid.py file in the GoPiGo directory on the robot’s desktop; look
in:

GoPiGo/Software/Python/Examples/Ultrasonic_Basic_Obstacle_Avoider

4. A sample project to build a “guard robot” is included in the GoPiGo software on your robot; to
see a description of this, take a look at this web page: www.dexterindustries.com/projects/agent-
kk-2

Materials needed

• Your GoPiGo (with the sonar [ultrasound] sensor attached).
• A smooth floor with sufficient space for the robot to run.
• The Python functions you wrote in previous exercises.

Requirements

• If an object is detected within some distance, say, APPROACH_RANGE, in front of the robot,
move toward the object.

• If the robot is moving forward and an object is detected within some distance, say, CLOSE,
slow down, with the robot’s speed being inversely proportional to the distance (i.e., slower the
closer the robot gets to the object).

• If the robot is moving forward and an object is detected within some distance, say STOPPING_RANGE,
then the robot should stop.

• If the robot is stopped and an obstacle in front of it moves closer to it than STOPPING_RANGE,
then it should back away until it is farther away than CLOSE, then stop. (If the obstacle keeps
chasing the robot, then it should continue backing away.)

• Note that APPROACH_RANGE > CLOSE > STOPPING_RANGE.
• If the robot is dealing with an obstacle and the obstacle moves away, then the robot should

move forward; the speed with which it moves should be based on the above requirements. For
example, r is the obstacle’s range (with r being some large value if the obstacle disappears
entirely from view) and s is its initial speed, then if:

– r > APPROACH_RANGE ⇒ resume speed s going forward
– CLOSE < r < APPROACH_RANGE ⇒ follow the object with speed s

27https://en.wikipedia.org/wiki/Behavior-based_robotics
28http://www.am.chalmers.se/~wolff/AA/Chapter3.pdf

https://en.wikipedia.org/wiki/Behavior-based_robotics
http://www.am.chalmers.se/~wolff/AA/Chapter3.pdf
http://www.dexterindustries.com/projects/agent-kk-2
http://www.dexterindustries.com/projects/agent-kk-2
https://en.wikipedia.org/wiki/Behavior-based_robotics
http://www.am.chalmers.se/~wolff/AA/Chapter3.pdf
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– STOPPING_RANGE < r < CLOSE⇒ follow the object, setting the speed based on s as above
– r < STOPPING_RANGE ⇒ continue moving back from the object, as above

Programming notes

Write a function test_behavior(speed) that meets the requirements above

• speed is the initial forward speed to use, in cm/s.
• The test_behavior() function should loop, repeatedly calling another function you will write

(the behavior), approach_or_avoid(speed,range)

– speed is the base speed for the requirements above; it is set by test_behavior(speed)
to whatever was passed to it.

– sonar_range is the distance to the nearest object in front of the robot, in cm. test_behavior()
should use the sonar_range() function you wrote in a previous exercise (“Compensating
for motion errors”) to get this value.

– approach_or_avoid() will return a single value which we can call new_speed.
• Use the forward(distance,speed,wait) function you defined in a previous exercise (“Com-

pensating for motion errors”) to actually move the robot; recall:

– if distance = False, then the robot will not stop after any particular distance;
– speed sets the motor speeds to achieve a particular forward speed, in cm/s; and
– if wait = False, then forward() returns immediately to the caller.

• test_behavior() will adjust the speed of the robot using new_speed:

– if new_speed > 0, then call forward() with the new speed
– if new_speed < 0, then have the robot go backward (using either the built-in function

bwd() along with set_speed, or using the backward() function you may have written
in the previous exercise)

– if new_speed = 0, then stop (i.e., call stop())
• You may want to use sleep() to wait for a small amount of time each time through the loop;

however, range() may also be waiting sufficiently long, depending on you implemented it, so
you will have to play around with the timing.

• Note that you will want test_behavior to call approach_or_avoid() with the same speed
each time, regardless of what it returns as new_speed. This is the only way for it to know
what speed it should be basing new_speed on. (If the approach_or_avoid( behavior function
were to be used with other behaviors that might also adjust the speed, how would you keep
track of the speed?)

Write the function approach_or_avoid(speed,range)

• speed, range are as specified above.
• This returns the desired speed, given speed and range, as described in the requirements,

based on the constants defined for distances.

Define the constants

• Define the constants APPROACH_RANGE, CLOSE, and STOPPING_RANGE, as described in the re-
quirements.

• You can pick values for these that make sense to you.
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Testing

1. Turning on the GoPiGo and placing it on the floor.
2. Start Python and load your file(s).
3. Put an object some distance in front of the robot on the floor.
4. Using VNC or ssh to connect to the robot and start Python.
5. Load the file containing your functions (e.g., from xxxx import *, if xxxx.py your file).
6. Run your test function: test_behavior(s), where s is an initial speed in cm/s.
7. Now test your behavior by observing what the GoPiGo does. It should go forward until there

is an obstacle, begin slowing down, and stop some distance away.
8. Now remove the obstacle. What does your robot do? It should start up again.
9. Put the obstacle in back in front of the robot. When the robot stops, slide the obstacle further

from it and observe what happens.
10. Slowly move the obstacle toward the robot. It should back up in response, stopping when you

stop moving the object toward it.
11. To stop the behavior, since test_behavior() is implemented as an infinite loop, you will have

to interrupt Python (using control-C).

Questions for thought

In your blog, address these questions.

• Did the behavior work as you anticipated? If not, how did it differ from what you expected?
Can you explain?

• Is this a good way to do obstacle avoidance? In particular, is symmetrically reducing motor
speed, then stopping, the best way of obstacle avoidance?

– What if we want to go from point A to point B and there is an object in the way—what
will happen? Will we ever arrive at point B?

– What would be some other ways that might work better avoiding an obstacle when there
is some target in mind?

– Do you think that modifying the behavior to do these better ways is what should be
done? Or should it be split into two (or more) behaviors, one for when the robot is at
rest or just looking for objects, and one when it is trying to get to some location?

• How hard would it be to modify your behavior so that it could work with other behaviors
when there is behavior controller that loops forever, each time:

– Reading the sensors.
– Calling each defined behavior with a list of the sensor values (called the percept string).
– Collecting the return values of each behavior in a list. Each return value would be some

description of what action the behavior wants to do next; for example, the behavior in
this exercise would want to “set motor speed to s”.

– Combine the various desired actions and issue GoPiGo commands to carry out the result.
What would you need to do? I.e., is there anything about the way you wrote your
behavior that would need to change? If so, what information would we (or whomever
designs the controller) need to give to you in order for you to modify your behavior to
work this way?
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Stretch goals

• Modify the behavior to avoid obstacles in the way(s) you thought about above as better ways
to do it. For example:

– Maybe think about changing only one of the motor’s speed.
– Maybe think about stopping and turning using right() or left().

• Write two versions of this behavior, one for when the robot is stationary and one for when it
is moving, as discussed above. Write a simple control loop to choose one or the other to get
control.
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Exercise 8: Separating concerns

Overview

In this exercise, you will revise (refactor) the work you did in the previous one to split the
approach_or_avoid() function into pieces, each of which deals with only one set of concerns:
stopping, approaching, avoiding, etc.

Usually, it is a good idea when creating a program to identify related issues, called concerns,
and address them together. For example, if you are creating a program to print financial reports,
there are at least two sets of concerns: those having to do with the financial calculations, and those
having to do with formatting and printing the results. (In fact, there may be more: inputting the
data, formatting and printing as two separate sets of concerns, etc.)

By identifying and separating the concerns, you can isolate all the code having to do with the
same data and I/O together, so that if the needs change, only those functions have to be changed.
To extend the financial report-writer example, if the formatting and printing were scattered among
the calculations, then if the format or the printer to use changed, the programmer would have to
chase down all the places affected, rather than just changing one function.

Sometimes, however, you may not be able to know all the related concerns until after a first
draft of the code has been written. In this case, a process of refactoring is done, which really is just
shuffling parts of the code around and revising them to separate the newly-discovered concerns.

This is what you will be doing in this exercise: refactoring your approach_or_avoid() behavior
into several behaviors based on separating related concerns.

Goals

The practical goal of this assignment is to end up with several behaviors that will keep the robot
safe and that will also do some interesting things when approaching an obstacle or when an object
is approaching the robot. The pedagogical goals are to introduce you to the idea of separating
concerns, refactoring, give you more experience programming the robot, especially experience using
a real-world sensor (the sonar), to get you started thinking about how you can make programs more
general-purpose for use with other programs, and to begin learning about behavior-based control.

Resources

• Separation of concerns29 – Wikipedia

29https://en.wikipedia.org/wiki/Separation_of_concerns

47

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns


48 CONTENTS

Materials needed

You will need:
• Your GoPiGo (with the sonar [ultrasound] sensor attached)
• A smooth floor with sufficient space for the robot to run.
• Your test_behavior(), approach_or_avoid(), and related functions from the previous ex-

ercise.

Requirements

Requirements from the previous exercise:

• If an object is detected within some distance, say, APPROACH_RANGE, in front of the robot,
move toward the object.

• If the robot is moving forward and an object is detected within some distance, say, CLOSE,
slow down, with the robot’s speed being inversely proportional to the distance (i.e., slower the
closer the robot gets to the object).

• If the robot is moving forward and an object is detected within some distance, say STOPPING_RANGE,
then the robot should stop.

• If the robot is stopped and an obstacle in front of it moves closer to it than STOPPING_RANGE,
then it should back away until it is farther away than CLOSE, then stop. (If the obstacle keeps
chasing the robot, then it should continue backing away.)

• APPROACH_RANGE > CLOSE > STOPPING_RANGE
• If the robot is dealing with an obstacle and the obstacle moves away, then the robot should

move forward; the speed with which it moves should be based on the above requirements. For
example, r is the obstacle’s range (with r being some large value if the obstacle disappears
entirely from view) and s is its initial speed, then if:

– r > APPROACH_RANGE ⇒ resume speed s going forward
– CLOSE < r < APPROACH_RANGE ⇒ follow the object with speed s
– STOPPING_RANGE < r < CLOSE⇒ follow the object, setting the speed based on s as above
– r < STOPPING_RANGE ⇒ continue moving back from the object, as above

Requirements new to this exercise:

• Identify and make a list of related concerns in the requirements above (and in your old
approach_or_avoid() behavior).

• Refactor your approach_or_avoid() function to separate these concerns by creating new
behaviors to address them.

Programming notes

Create multiple behaviors:

• Create multiple behaviors to replace approach_or_avoid().
• Identify for each the parameters they should receive.
• Each should return a desired speed, in cm/s, for the robot.
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Modify test_behavior(speed) to call the new behaviors

• Instead of calling a single behavior, now your function will call several.
• Each will return a desired speed or (new) None, which means the behavior does not want to

change the speed.
• If all desired speeds are the same, there is no problem. However, this is unlikely.
• You must determine how best to deal with the different desired speeds. There are many

possible ways you could think about to do this, including:

– use the maximum of all the ones returned
– use the minimum
– use the average
– use only one, selected randomly
– use only one, but selected in some other way: the first one that doesn’t return None, etc.

Testing

1. Turn on the GoPiGo and place it on the floor.
2. Load Python and your file(s).
3. Put an object some distance in front of the robot on the floor.
4. Use VNC or ssh to connect to the robot and start Python.
5. Load the file containing your functions (e.g., from xxxx import *, if xxxx.py your file).
6. Run your test function: test_behavior(s), where s is an initial speed in cm/s.
7. Now test your behavior by observing what the GoPiGo does. It should go forward until there

is an obstacle, begin slowing down, and stop some distance away.
8. Now remove the obstacle. What does your robot do? It should start up again.
9. Put the obstacle in back in front of the robot. When the robot stops, slide the obstacle further

from it and observe what happens.
10. Slowly move the obstacle toward the robot. It should back up in response, stopping when you

stop moving the object toward it.
11. To stop the behavior, since test_behavior() is implemented as an infinite loop, you will have

to interrupt Python (using control-C).

Questions for thought

1. What did you have to do to refactor your behavior?
2. What control mechanisms did you try and why? What worked? What didn’t work? Do you

have any other ideas for control mechanisms?
3. How did the refactored behaviors compare to the original in terms of performance?

Stretch goal

• Implement multiple control mechanisms and compare them under different conditions.
o#+LATEX:
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Exercise 9: An object-oriented interface
to the robot

Overview

In this exercise, you will learn to use an object-oriented interface to the GoPiGo that you will use
in the next exercise and in Project 1.

Goals

• Begin learning about object-oriented programming (OOP).
• Learn a little about software interfaces to hardware, and how OOP can help by allowing new

interfaces to inherit functionality from existing ones.

Background and resources

• An object is a collection of variables and functions (called methods) associated with those
variables that represent some object in the world of the program.

• For example, a Student class might be implemented as:

class CSStudent(Student):
major = "COS"
advisor = None

def __init__(self,name):
self.name = name

def greet(self):
print("Hello! I’m", self.name, "and I say COS is fun!")

• A class defines a class of objects. Objects are created from the class by instantiating them,
that is, making an instance of the class, e.g.:

me = Student("Joe", "COS")

The variable me now contains a Student object.
• The variables of a class/object are called instance variables, and can be accessed by pre-

pending the object or class to the variable name. For example:
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print(me.name)

would print “Joe”. We see other examples of that in the above definition, in that case using
the parameter self.

• Methods are called the same way. Thus, to have the student greet us, we would do:

me.greet()

which would print “Hello! My name is Joe and my major is COS .”
• Note that greet() takes no arguments. This is because the object contained in me is auto-

matically given to the method as the first parameter, self.
• We can create classes that represent particular kinds of students by defining subclasses of
Student, for example:

class CSStudent(Student):
major = "COS"
advisor = None

def greet(self):
print("Hello! I’m", self.name, "and I say COS is fun!")

• Here, the subclass’ major instance variable value overrides that in the parent Student class,
as does its greet() method. Here is an example:

a = CSStudent("Sally")
a.greet()

would print “Hello! I’m Sally and I say COS is fun!” The Sally object’s major would be “COS”.

Resources:

1. Object-oriented programming Wikipedia article30

2. Python Object Oriented31 – tutorial

Materials needed

You will need:
• Your GoPiGo (with the sonar [ultrasound] sensor attached) and some way (e.g., a computer)

to communicate with it
• A smooth floor with sufficient space for the robot to run.
• Past programs you have written for this module.
• Modules provided by the instructor/CLA:

1. utilities – contains some useful utility functions
2. robot – a generic OO robot interface
3. gopigo_interface – an OO interface to the GoPiGo

30http://www.wikiwand.com/en/Object-oriented_programming
31https://www.tutorialspoint.com/python/python_classes_objects.htm

http://www.wikiwand.com/en/Object-oriented_programming
https://www.tutorialspoint.com/python/python_classes_objects.htm
http://www.wikiwand.com/en/Object-oriented_programming
https://www.tutorialspoint.com/python/python_classes_objects.htm
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The robot and gopigo_interface modules

• The robot module contains the Robot class, a class for generic robots.
• The gopigo_interface module contains the GoPiGo class, which is specific for your robot.
• The Robot class contains instance variables and methods that should be useful for all robots,

while the GoPiGo class contains those specific to the GoPiGo. Look through the file to get a
sense of what each class contains.

• You will create an instance of the GoPiGo class to control your robot.

– This class has functions (methods) that create a percept dictionary that contains all
sensory data for use by you or your controlling program.

– The class also has methods that accept either individual commands (e.g., to go forward)
or a command dictionary that contains a set of commands to carry out simultaneously.

Percepts

• So far, we have dealt with sensed values, also called percepts (e.g., sonar range, wheel encoder
values, etc.), on a piecemeal basis as needed by your functions.

• Now, however, we are moving toward more generic functions—your behaviors—that we would
like to all take the same input and provide output in a common form.

• This way, new behaviors can be added at any time, and the controller will not need to know
anything about the internals of your behaviors, including what sensor data they need.

• Consequently, we need to develop a standard way to represent all sensor data that all of the
behaviors can understand.

• A percept is the collection of all perceptual data provided by the robot’s sensors, plus some
data that may be calculated from it (e.g., velocity).

• In the case of this exercise, the percept will be a Python dictionary whose keys are the names
(as strings) of the sensory data and the values are the actual data values.

• For example, the distance to the nearest object in front of the ultrasound sensor might have
the key ’sonar-range’ and a value of 20 (cm).

• The percept, let’s call it percept, will contain both things that directly correspond to the
robot’s sensors as well as other things that are obtained elsewhere or calculated, for exam-
ple, the time the percept was created, the robot’s velocity, and others—these latter kinds of
information are often thought of as the output of virtual sensors.

• The GoPiGo class returns a percept when its percept() method is called, e.g.:

robot = GoPiGo()
percept = robot.percept()

• The percept has at least the following keys and their values:

– current_time – the time the percept was created
– encoders – a tuple containing the wheel encoder values (left, right)
– motor_speeds – a tuple containing the motor speeds (left, right)
– sonar_range – the range to the nearest object in front of the sonar (in cm)
– servo_angle – servo angle, from -90 (all the way to the right) to +90 (all the way to the

right; 0 = straight ahead
– odometer – the distance, in cm, the robot has traveled since it was turned on (calculated

from the averaged encoder values)
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– cumulative_turn – like an odometer for heading; how far, in degrees, the robot has
turned since it was turned on (not reduced to 0–360; calculated from turn commands to
the robot)

– speed – the speed in cm/s (calculated from odometer value change since the last percept
divided by the time elapsed)

– acceleration – the acceleration (foward/backward) of the robot in cm/s2 (calculated
by the velocity change divided by the elapsed time since the last percept)

– voltage – the voltage of the battery pack, a (very) rough indicator of charge remaining
– target_reached – a Boolean (True/False) value, true if the robot has reached a target

encoder value that was set
• To get a value from the percept, e.g., for speed:

speed = percept[’speed’]

Commands

• GoPiGo has methods to carry out commands.

– Commands methods can be called directly, for example:

robot.set_speed(5)

to set the speed of the robot to 5 cm/s.
– Commands can also be given to the robot by calling the command(name, value) method,

e.g.:

robot.command(’set_speed’, 5)

– Finally, multiple commands can be given to the robot simultaneously by calling the
commands(cmd) method, where cmd is a dictionary of command name/value pairs, e.g.:

commands_to_do = {’set_speed’: 5, ’forward’: 20}
robot.commands(commands_to_do)

This would tell the robot to set the speed to 5 cm/s and to go forward 20 cm.32

• The commands available are:

– set_motor_speeds – value is a tuple (left, right)
– set_speed – value is either a number or a tuple.

∗ If the value is a number, then this is the the speed both motors will be set. The
speed is in the range of 0–255, with no correspondence attempted to cm/s or any
other speed measurement.

∗ If the value is a tuple, then the first value is the speed (0–255), and the second is
the compensation factor.

∗ The compensation factor can be calculated from what you have done previously;
indeed, this is basically a refactoring of your forward() interface function written
previously, but instead of setting the speeds and going forward, you are now con-
verting that into a differential between the wheel speeds.

∗ For example, if for a raw speed of 200 you would set the left motor speed to 210 and
the right to 180, then the compensation factor would be:

(210− 180)/200 = 30/200 = 0.15

32Note that the order in which GoPiGo carries out the commands is not defined; the idea is that they will be done
simultaneously, not one after the other.
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∗ Had the left needed to be slower than the right and the numbers reversed, then the
compensation factor would be -0.15.

∗ This will be applied to the base speed to adjust the two motors. If the base speed is
b and the factor is f , the left motor will be (1 + f)b and the right will be (1− f)b.

– servo – value is an angle (-90 – 90) to which to turn the servo
– change_servo – move the servo left (positive) or right (negative) value degrees
– forward – value is how far (in cm) to go, if value is None, then just go forward forever
– backward – ditto, but for reverse
– turn_left – value is how many degrees to turn left
– turn – value is the degrees to turn, with 0 being straight ahead and positive angles

meaning “turn left”
– turn_rigth – value is how many degrees to turn right
– left_led – value is True (on) or False (off)
– right_led – value is True (on) or False (off)
– set_target – set a target distance at which to stop; the first target is an amount, the

second (optional) argument is True for centimeters, False for encoder pulses
– deactivate_target – turns off distance target, if one is set; no parameters
– stop – stop immediately; no parameters

• If the names of these commands are used to create a dictionary to use as a parameter to the
commands method, then if any of the keys has the value None, nothing will be done for that
command. (This will be useful in the next exercise.)

Requirements

• Instantiate the GoPiGo class and get several percepts from the robot as it is placed at different
locations.

– Make sure you understand how the percept method works and what it returns.
– Make sure you can access individual values from the percept

• Use the class’ methods to control the robot.

– Try out all the commands.
– Try some directly (e.g., robot.set_speed(5)).
– Try some using the command method.
– Try doing several simultaneously using the commands method and a command dictionary.

• Create your own class that is a subclass of GoPiGo:

– This class’ methods should implement your interface functions from prior exercises, e.g.,
forward().

– You will also want to override some other methods, too; for example, change set_speed
to accept cm/s rather than the motors’ raw speed (0–255).

– Test your new methods, for example:

robot = MyGoPiGo()
robot.forward([10,200,False])

where your forward(distance,speed,wait) function from the motion compensation
exercise has been reimplemented as the method forward(parameters) of class MyGoPiGo.
(You don’t have to call your class that, by the way.)

∗ Note that the method can only take one parameter, since we allow calling it as part
of a command dictionary.

∗ Thus, the parameters that your old function had are now combined into a single list
parameter.
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Programming notes

• Create a subclass of GoPiGo in a file, say my_robot.py.

– Don’t forget to include the line: from gopigo_interface import *
– To create the new subclass, use the class Python keyword.

∗ In the Python line:
class Foo(Bar):
a new class, Foo is created that is a subclass of the existing class Bar. Note that the
convention is to capitalize class names.

∗ Choose a name for your class, and have it inherit (be a subclass of) GoPiGo.
• Define any instance variables you your new class needs.

– If your old interface functions used global variables, then you should make these instance
variables.

– For example, if your function needed a default_speed variable, then part of your class
definition, assuming your class name is “MyGoPiGo”, would look something like:

class MyGoPiGo(GoPiGo):
default_speed = 200

– Note that in methods of your class, you would refer to this as self.default_speed.
• Convert your interface functions to methods:

– If your function has more than one parameter—e.g., forward(distance, speed, wait)—
then replace them with a list—e.g., forward(parameters), where parameters would be
given a list such as [distance, speed, wait].

– This means that anywhere you access, say, distance, in your function, your method will
need to access self.parameters[0].

• Your methods should not access the raw robot functions (from gopigo.py) unless there is no
corresponding Robot or GoPiGo method.

– So for example, to move the robot backward (if you for some reason needed to) in a
method that was not backward(), you would call GoPiGo’s backward() method, e.g,:

self.backward(5)

– However, inside forward() you would call the raw fwd() method, since you are defining
the robot interfaces corresponding function:

fwd()

• Don’t forget to add override GoPiGo’s sonar_range method with one of your own that com-
pensates for the sonar errors, i.e., the function you created in a previous example.

Testing

1. Turn on the GoPiGo.
2. Start Python on the GoPiGo.
3. Import your robot interface: from my_robot import *

4. Do the testing specified in the Requirements section.
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Questions for thought

1. How hard was it to refactor your existing interface functions to fit the object-oriented method-
ology of the GoPiGo interface?

2. Was the effort worth it? What benefits do you see from using an OO interface? What
drawbacks?

Stretch goals

• Implement additional “virtual sensors” or “virtual actuator commands”. For example, you
could write a “follow an arc” command, that will have the robot follow a curving trajectory,
or a “picture” sensor that would return an image from the camera (using, e.g., the picamera
Python module) as part of the percept.
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Exercise 10: Using the camera

Overview

In this exercise, you will learn to use the GoPiGo’s camera to take pictures.

Goals

• Learn to use the camera using the picamera module.
• Practice using the servo and ultrasound.
• Practice Python programming.

Background and preparation

• The picamera package documentation, available at picamera.readthedocs.io.
• The PIL (Python Imaging Library) documentation, available at effbot.org/imagingbook/image.htm

(for the Imaging module of PIL, which is what we’ll be using).

Materials needed

You will need:
• Your GoPiGo with the camera attached.
• Something interesting to take a picture of.
• A behavior-based controller from Project 1. (Since your group will be newly-created, you will

likely have two different controllers, one from each prior group; use either or both.)

Requirements

• Install the Imagemagick bundle of Linux programs, if it is not already installed.
• Take a picture with the camera using picamera and display it on the screen using PIL’s Image

module.
• Write a photograph_object behavior and add it to your behavior-based controller; this be-

havior should:

– do nothing (i.e., return no commands) if the robot is greater than some distance away
from any object, say PHOTO_DISTANCE. (You can set this to whatever you like.)

– take a picture when there is an object within PHOTO_DISTANCE of the robot
– display the image using the Image module

• Test your behaviors and controller.
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Programming notes

Install ImageMagick if not installed

1. Check to see if ImageMagick is installed on your GoPigo

• Open a terminal window using either the menu on Raspbian or the terminal icon, shown
below with an arrow pointing toward it:

• Type the following in this window, then hit return:

display Desktop/GoPiGo/GoPiGo_Chassis-300.jpg

• If a picture of a GoPiGo robot appears, ImageMagick is installed and you can skip step
2.

2. If an error message was displayed (e.g., display: command not found) when you typed the
line in the terminal window, then you have to install ImageMagick.

• From the menu, select “Preferences”, then “Add/Remove Software”:

• A window will appear that looks like:

• In the search box in the upper left of that window, type ImageMagick and press return.
• It will search for the ImageMagick bundle of programs on the web, then display a lot of

choices. The correct ones should be checked already.
• Click the Apply button.
• It will likely ask you for your password; enter it.
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• It will then download and install the desired program.
• When it is done, repeat step 1. above to see if you can now display the file.

– If so: you’re done!
– If not: ask the CLA or instructor for help.

Taking a picture

• Turn on the robot.
• Enable the camera:

– Open a terminal window (see above).
– In the terminal, type:

sudo raspi-config

This will bring up a menu to allow you to configure the Raspberry Pi and its associated
hardware. The sudo part is a command that is used to run commands as the “superuser”,
and is not something you need be concerned about here.

– Using the arrow keys, select the line to enable the camera:

∗ Press return; it will display another screen, asking if you really want to enable the
camera; press return again.

∗ At this point, you can use the mouse and click on the little “x” in the upper lefthand
corner of the window to exit the program – the camera is enabled.

• Take a picture:

– For this, we’ll use a “basic recipe” from the picamera documentation (referenced above).
– Start Python.
– Type in the following (without the comments) or type into a file and then import the

file:

from time import sleep
from picamera import PiCamera

file = "/home/pi/Desktop/picture.jpg"

camera = PiCamera() # the ’camera’ object
# now represents the robot’s camera

camera.resolution = (1024,768)
camera.start_preview() # starts the camera warming up
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# wait for it to warm up:
sleep(2)

# actually take the picture
camera.capture(filename)
camera.close() # to turn off the camera

– There should now be a picture on the desktop called “picture.jpg”.
∗ Double-click on it to view it, or. . .
∗ . . . from within Python, do:
import os
os.system(’display /home/pi/Desktop/picture.jpg’)
If you are curious, this tells the operating system (i.e., Raspbian) to display the file
using one of the ImageMagick commands you may have installed above.

∗ . . . or:
from PIL import Image
image = Image.open(’/home/pi/Desktop/picture.jpg’)
image.show()
This uses the Python Image Library to open and display (using one of ImageMagick’s
programs) the picture.

The photograph behavior

• Define a distance at which you will start taking pictures of an object; call it, for example,
PHOTO_DISTANCE.

• Using your past behaviors as a template, create a new behavior called photograph(percept)
that has one parameter, a percept dictionary (as per a previous exercise) and returns a com-
mand dictionary (ditto).

• The only thing this will need from percept is the range to the nearest object:

range = percept[’sonar_range’]

• If the range is > PHOTO_DISTANCE, then just return an empty dictionary or one with all
commands set to None, e.g.:

return {}

• If range is ≤ PHOTO_DISTANCE, then take a picture and display it on the desktop.

– Use the Python code you used previously to take a picture as a starting point.
– You may want to move the camera = PiCamera() and camera.start_preview() lines,

as well as the call to sleep() out of the behavior and into the controller itself.
∗ To do this, modify the __init__() method of your robot class to add these lines.
∗ This way, when you start the robot, the camera will always be available and warmed

up.
– You can use either way we discussed above to display the image from within Python.

• If this is all you did, then you would notice that there would be, over time, more and more
windows opening with images in them.

– This would use up the Raspberry Pi’s resources pretty rapidly, so we need to do something
to avoid that.
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– The thing we are going to do is something known as a kludge: a workaround or inelegant
fix for a problem.

– Make sure that your program does: import os. This loads the operating system interface
package.

– We are going to use the operating system to kill any open image windows when the
behavior is about to take another picture.

– When distance ≤ PHOTO_DISTANCE, do the following before taking a picture:

os.system(’killall display’)

This tells the operating system to kill any processes that are running that have “display”
as part of their name; this will include any images your behavior has displayed.

Testing

1. Turn on the GoPiGo and place it on the floor.
2. Start Python and load your file(s).
3. Put some objects on the floor.
4. Run the simple controller with all your old behaviors + photograph.
5. Let the robot run to see if it takes pictures when it gets close to objects.

Questions for thought

1. If the robot was truly autonomous, would you want it to display pictures?
2. Can you think of any other ways to get a picture from the GoPiGo, for example, if you didn’t

have VNC open?
3. What improvements would you suggest for the photograph() behavior?

Stretch goals

• Find another way to delete the open windows.
• Find another way to display the pictures.
• Look through the picamera documentation to see if you could somehow send the photographs

over the network to a web client (e.g., Firefox, Chrome, etc.).
• Take a video of your robot’s travels using the camera.
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Exercise 11: Following an object

Overview

In this exercise, you will write a behavior that will look for a red object using the camera.

Goals

• Learn a little bit about dealing with images in Python.
• Continue learning about behavior-based robotics.
• Build a useful behavior.
• Practice Python programming.

Background and resources

• In this exercise, you will use the camera to find a “blob” of a particular color (red, in this case)
and to follow it.

• The blob_finder.py package (from the module website) will be used to find the color.
• The function you will use from this package is find_blob().
• This uses a very simple method, modified from that found on the "Physical computing with

Raspberry Pi" website,33 to find the center of a blob of red in an image captured by the
GoPiGo’s camera:

– Using the Python Image Library (PIL), the image is opened and assigned to a variable.
– Each pixel in the image is examined in turn to see if it is red.

∗ PIL represents the image as a rectangular grid, or array, of pixels.
∗ Each pixel is a tuple of (r,g,b), where the values are intensities of red, green, and

blue (respectively), each in the range 0–255.
∗ If the red value is sufficiently higher than the blue and green values, then the function

considers the pixel to be red.
∗ The threshold for “redness” in the function is 100, i.e., if it is 100/255 redder than it

is green or blue.
– If a pixel is red, then its x and y values are added to two variables that are initially both

0. These “accumulate” the x and y values of all red pixels.
– When all pixels have been examined, then each of the variables is divided by the number

of red pixels found to give a mean x and y value for the center of the red area(s).
• Note that this method is simplistic! For example, if there are two red objects of equal size in

the picture, then it will “find” a red object midway between them.
33www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/imageprocessing
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Resources

1. The picamera package documentation, available at picamera.readthedocs.io.
2. The PIL (Python Imaging Library) documentation, available at effbot.org/imagingbook/image.htm

(for the Imaging module of PIL, which is what we’ll be using).
3. Information about basic image processing from the "Physical computing with Raspberry Pi"

website33

Materials needed

You will need:
• Your GoPiGo (with the camera and sonar attached).
• A bright red object.
• Your behavior-based controller and behaviors from Project 1. (Since your group will be newly-

created, you will likely have two different controllers, one from each prior group; use either or
both.)

• The blob_finder.py file (from the module website).

Requirements

• A behavior that will use the servo to scan for a red object, then orient to (turn toward) that
object.

• This behavior should subsume wander(), but not the avoidance behaviors.
• Test your behaviors and controller.

Programming notes

• Use the blob_finder.py package:

from blob_finder import find_blob

– The find_blob() function takes one positional argument and several others that are
optional:

∗ The positional argument is the name of the image file you got from the camera:
find_blob("foo.jpg")
would find a red blob in the file foo.jpg.

∗ The second argument is the threshold for redness. It defaults to 100; you can set it
to something else if you like either by doing (e.g.):
find_blob("foo.jpg",200)
or
find_blob("foo.jpg",red_threshold=200)

∗ The third argument tells the function whether or not to display the image (default
is True). If you do not want to display the image, you can give this the value False,
e.g.:
find_blob("foo.jpg", show=False)

https://picamera.readthedocs.io/en/release-1.12/
http://effbot.org/imagingbook/image.htm
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/image_processing/
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/image_processing/
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which would not show the image (and notice that we left the red_threshold alone
here by using the keyword form of argument for show).

∗ The fourth argument tells the function how long you would like the image displayed,
if show is True; the default is 2 seconds, but you could set it to a different value,
e.g.,
find_blob("foo.jpg", show_for=5)

∗ A final argument, red_pixels, is another threshold, this one for how many red pixels
there must be in the entire image for a blob to be considered found. This is initially
set to 200, and can be set by you:
find_blob("foo.jpg", red_pixels=1000)

– If a blob is found, find_blob returns a tuple, (x,y), that gives the center of the red
blob. (It also draws a small red cross at the center, turns the red pixels white, and dims
the rest of the image, if the image is displayed.)

– If no blob is found, then None is returned.
• Build the behavior, find_object()

– Use the behaviors you built previously as templates.
– Use what you learned in the previous exercise about using the camera to take a picture

each time the behavior is called by the controller, or rely on the photograph() behavior
to take the picture for you, whichever works for you.

– Use find_blob() as described above to look for a red blob in the image.
– If none is found, then this behavior should not suggest any actions.
– If a blob is found, then this behavior should turn the robot to point to it.

• To point toward the blob, you can either:

– Determine mathematically how far to turn and use robot.py’s turn_left(), turn_right(),
or turn() commands; or

– Turn a little bit toward the center of the blob; each time the behavior is called, it will
turn a little more toward it.

∗ You can use the blob’s center to tell which way to turn—if it’s to the left of the
image’s center, then (assuming the servo is pointing to 0 degrees!) you need to turn
left, otherwise right.

∗ Experiment with how much to turn each time.
∗ You could use a fixed angle, say 10°.
∗ You could also turn more the further the blob is from the center of the picture.
∗ You won’t need to worry about the y-value for this, of course.

Testing

1. Turn on the GoPiGo and place it on the floor.
2. Start Python and load your file(s).
3. Let the robot wander for a bit.
4. Place the red object somewhere on the floor, and see if the robot will find it and turn toward

it.
5. Try this both with the simple controller and the blended controller from your prior work.

Questions for thought

1. How well did the new behavior integrate with others? Did it significantly slow down your
robot’s behavior?
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2. Would you recommend running with this behavior enabled? Can you think of a way to speed
things up, say by only running the behavior occasionally—and, if so, in general how would
you do this?

3. Were there any differences between the two controllers (simple and blended) when this behav-
ior is added to the robot?

4. Did you notice any problems with how the robot found or didn’t find objects? Was it accurate?
5. What improvements would you suggest?

Stretch goals

• Copy blob_finder.py and modify it to look for green objects.
• Modify it so that find_blob() takes a parameter (or parameters) to allow the caller to select

the color it looks for.
• Have it look for purple objects.
• Implement a better way to find blobs – for example, one that would allow finding only a blob

of at least some size, or that would not find the “center of mass of redness”, as this one does,
but rather would give back the center of the larger of two blobs rather than a point between
them.



Exercise 12: A behavior that remembers

Overview

In this exercise, you will write a behavior that will build a map as the robot moves about its
environment.

Goals

• Continue learning about behavior-based robotics.
• Learn about using an object remember information about past states.
• Build a useful behavior.
• Practice Python programming.

Background and resources

Behavior-based robotics, as it was originally conceived, is stateless: each behavior responds to the
current precepts with commands it wants to perform, regardless of the history of the robot. Such a
system is sometimes called a Markov process.34 However, some useful tasks require a memory, that
is, that a robot maintain some notion of the past and present states of the world. Creating a plan
to achieve a goal and carrying out that plan, for example, requires that the agent (person or robot,
e.g.) remember where it is in the plan, the outcome of past actions, what its future actions will be,
etc.

There are several ways to incorporate memory into a behavior-based controller, including:
1. The memory can be external to the controller or behaviors. In this approach, the behaviors

are still without memory; they just treat the external remembered information as part of the
current state. For example, this is done in a simple form via the gopigo_interface module,
which keeps track of the distance moved and the degrees turned so far. A behavior could just
take action when these “percepts” have a particular value, such as indicating that the robot
has traveled over 10 m, etc.

2. The controller can incorporate memory, for example, recording the behaviors’ actions and
their effect on the world or recording past percepts. Behaviors in this approach would work
the same as in the previous one.

3. Behaviors themselves can incorporate memory.
The last approach is the one we will use here, and it is the one used most often, for example, in

artificial intelligence systems that control robots. The question is, how can we keep this information
around in the Python function that implements such a behavior from one call to the next?

34See, e.g., the Wikipedia entry for “Markov Property” if you are curious.
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As you know, in Python, unless told otherwise, variables that first appear on the left-hand side
of an assignment statement in a function create local variables. While these can be given values
within the function, they cease to exist as soon as the function returns. Thus, they cannot be used
to hold our behavior’s memory.

We can access global variables from within a function by using:

global varname

Thus, we could use a global variable to hold the remembered information. Unfortunately, this is not
particularly good programming practice, since: it makes debugging difficult, since the reader will
need to refer back to global variables when looking at a function; it requires every behavior function
that needs to remember something to use a unique name for its global variable; and it violates the
idea of separation of concerns, since now the main program’s file must include global variables that
behaviors depend on.

Some programming languages have a mechanism to declare that a local variable is static, that
is, that it doesn’t disappear when the function returns, but maintains its value until the next time
the function is called. For example, in this C language function:

int count() {
static int counter = 0;
return ++counter;

}

the local variable counter keeps its value from call to call. (The ++ in C before a variable means
increment it, then return its value.) Thus the first time we call count(), it would return 1, the next
time, 2, etc.

Unfortunately, Python does not have such a mechanism to keep variables static. There are
two mechanisms it does have, however, that will work: defining a class to contain the remembered
information; and using a closure.

Remembering information using a class or object

If we define a class that includes a variable definition, then that variable is considered a class variable
and is static. For example:

class Counter:
count = 0
def increment():

Counter.count = Counter.count + 1

This defines count as a class variable. It can be used like this:

>>> Counter.count
0
>>> Counter.increment()
>>> Counter.count
1

We can write a behavior function, then, that uses a class and its class variable to hold its memory.
One problem with this that each time the behavior controller is restarted, it will need to reset

the class variables of all behavior memory classes to the default state. This can be done by defining
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a common name for class methods to reset the state in all classes (e.g., reset_memory()), keeping
a list of all memory classes, then calling the method on each class.

A second problem is that if two behaviors want to use the same kind of memory, two classes
would have to be defined, one for the memory for each behavior, which would unnecessarily duplicate
code. This can lead not only to wasted disk and memory space, but also to inconsistencies if one
class is modified and the other is not (perhaps inadvertently).

A final problem is that this violates the separation of concerns ideal, since once again the
controller has to be aware of things (the classes and how to reset them) that concern only the
behaviors.

We could solve at least one of these problems by instead using objects (i.e., instances of classes)
rather than classes to hold the memories. For example:

class Counter:
count = 0
def increment(self):

self.count = self.count + 1

Note that here, we no longer use the class’ name in increment(), but now use the special name
self to refer to count. self refers to the object whose method is being called, which is given
automatically to the method as its first argument when the method is called. When this class is
instantiated to create a new object, the object is given its own variable count that is initialized to
0. For example:

>>> c = Counter() # c contains a new instance of Counter
>>> c.count
0
>>> c.increment()
>>> c.count
1
>>>

Now, different behaviors can use the same class, but different instances of it, to hold their
memories and there will be no problem. The question is, how do we separate concerns so that
the controller doesn’t have to know about the behaviors’ needs, but still get behaviors to create
instances of their memories once, and not each time they are called?

One way we can do this is to make the behaviors themselves methods of classes that do one of
the following:

1. Use the memory class. In this case, the class implementing the behavior method would have
an __init__() method that would create a variable holding an instance of the memory class;
when the class is instantiated, the behavior object would have the behavior method and its
own copy of the memory object.

2. Inherit from the memory class. Each behavior class would be defined to be a subclass of
the memory class; e.g., class Behavior(Memory):. The variables holding the memory would
be inherited by the behavior and would be accessible in methods using the self variable
described above.

3. Implement their own memory variables and do not use a separate class.
The concerns of the controller and the behaviors can be separated by changing the controller

slightly. Thinking back to Project 1, you defined a list behaviors to contain the behaviors that the
controller would call. It contained a list of functions. Now, we would require behaviors to initially
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contain a list of behavior classes, not functions, that the controller would instantiate when it starts,
replacing behavior’s contents, and the controller would then just call a standard method of each
instance (e.g., behavior) each time through its loop. This would, however, mean refactoring all of
your existing behaviors to be objects and methods.

We can avoid changing your existing behaviors with a slight change to the controller. When the
controller is first started, you would add code to check each element of behaviors to see if it is a
class and, if it is, instantiate it and replace it in the list with the method to call to get the behavior.

This function should do this when called by the controller, assuming that behaviors is a global
variable:

def initialize_behaviors():
global behaviors
for i in range(len(behaviors)):

if type(thing) is type: # then it’s an object
behaviors[i] = behaviors[i]().behavior

What this does is if element i is a class, then it instantiates it via behaviors[i]() and gets the
behavior method associated with that instance (.behavior). This implies that each behavior you
create as an object must have a method named behavior defined that carries out the behavior.

Remembering information using a closure

A different way of having information stay around from function call to function call is to use a
closure. A closure is a function that has additional variables associated with it due to the way it was
defined; it has an environment that contains variables that behave like, but aren’t, global variables.
To create a closure, we define a function inside a function. Here’s an example for a counter:

>>> def createIt(initval):
... count = initval
... def counter():
... nonlocal count
... count = count + 1
... return count
... return counter
...
>>> a = createIt(0)
>>> a()
1
>>> a()
2
>>> a()
3

Here, createIt() defines a local variable count, then defines a function counter(). count is
in the scope of counter: that is, it is visible from inside the function. The nonlocal statement
tells Python that count is not a local variable of counter, nor is it (necessarily) a global variable;
instead, it tells Python to look in the function’s scope for the variable.

When createIt() is called, it returns the new function created; but since count was visible to
counter(), it has to return that, too as part of the environment. This is a closure, which can be
called just like a regular function.
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For our purposes here, you could define behaviors needing memory as closures and put the
closure in behaviors. The controller would not have to be changed, except to make sure that the
closure is put on the list to begin with, and that each time the controller is restarted, a new version
of the closure is created and placed on the list.

A downside of closures is that it is very difficult for anything outside of the closed function to
access the function’s nonlocal variables. This can make debugging difficult.

Resources

1. Article "Classes and Objects" at learnpython.org.35

2. Article "Closures" at learnpython.org.36

Materials needed

You will need:
• Your GoPiGo (with the camera and sonar attached).
• Your behavior-based controller and behaviors from Project 1 and the previous exercise (if

desired).

Requirements

• Create a behavior, “map”, that keeps track of objects seen while moving around the world.

– You can be as fancy as you like with the map.
– At minimum, you should record in the memory any sonar contact’s position in the world

if the sonar is within some predefined range of the robot, say OBJECT_RANGE = 30.
• After the controller is done, you should be able to print a list of things seen by the robot

during its “mission”.

Programming notes

Choosing behavior implementation

• You should decide on one of the ways to implement your behavior’s memory described in the
Background section.

• Given the need to print the list of things seen, you should probably consider using a class or
object for the memory.

• If you do want to use a closure, then you will need to have some way to tell the closure that
it is to print the map rather than keep building it.

– One way would be to give the closed function an optional variable, say print_map, that
defaults to False; if this is True, it should print the map.

– Assuming the closure is in the ith element of behaviors, then after the controller is
stopped, you would call behaviors[i](True) to print the map.

35http://www.learnpython.org/en/Classes_and_Objects
36http://www.learnpython.org/en/Closures

http://www.learnpython.org/en/Classes_and_Objects
http://learnpython.org
http://www.learnpython.org/en/Closures
http://learnpython.org
http://www.learnpython.org/en/Classes_and_Objects
http://www.learnpython.org/en/Closures
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Estimating the robot’s position

• You will need to estimate the robot’s position in the world, which we haven’t done up until
now, in order to determine the location of sonar contacts.

• Assume that where the robot is placed when it is turned on is the origin of an xy-plane, and
that the robot is pointing down the x-axis.

• We will call this location, then, (0, 0), and will refer to the direction the robot is pointing as
its heading, which initially is 0°.

• The gopigo_interface you were given in a previous exercise includes two “sensors” that will
be of use. These are given as part of the precept object to each behavior:

– odometer contains the total distance traveled since the robot started; and
– cumulative_turn contains the total heading change since the robot started.

• map() will have to update the robot’s estimated location and heading each time it is called.

– It should keep track of the prior odometer and cumulative_heading values as part of
its memory.

– It can estimate the current position based on these and the new values as shown here:

– Suppose that map() thinks the robot is currently at P0 = (x0, y0).
– ∆h, the change in heading, is just old heading, h0 + the change in heading from the last

time, which can be computed from the current value of cumulative_heading minus the
old value.

– d can be computed by subtracting the old value of odometer from the current value.
– Thus, the new position could be computed by:

from math import sin
from math import cos
delta_h = percept[’cumulative_turn’] - prev_cumulative_turn
d = percept[’odometer’] - prev_odometer
heading = heading + delta_h
delta_y = d * sin(heading)
delta_x = d * cos(heading)
location = (location[0] + delta_x, location[1] + delta_y)
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Estimating an object’s position

• When an object is within OBJECT_RANGE of the robot, map() will record its position in the
map.

• We will assume that the object is directly in front of the robot.
• The object’s location can be estimated as shown here:

i.e., the location is (xr+r cosh, yr+r sinh), where h is the robot’s current heading, the robot’s
current location is (xr, yr), and r is the sonar range to the object.

Maintaining the map

• In the simplest case, you can just store the map as a list of tuples (x,y), one for each object
found.

• For example, if the map is:

[(1,2), (100, 2), (105, 50)]

this would mean that three objects were found, one at each of the positions.
• You should make sure that you don’t store duplicate objects.

– You can do this by checking to see if a new object’s location is already in this list.
– Note that if you store locations as floating point numbers (i.e., numbers with decimal

points), it is likely that you won’t match two objects even if they are the same, if the
robot moved slightly between sonar samples.

– To solve this, you can either assume that an object is the same as another if it is within
a certain radius of it or you can store all locations as integers (by calling, e.g., int() on
x and y as you store them).

– You may want to do the former, since this would help cut down on duplicate objects.
For example, if you assume that all objects are at least 5 cm in diameter, then you could
ignore any object that is within 2.5 cm of another one.
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Testing

1. Turn on the GoPiGo and place it on the floor.
2. Start Python and load your file(s).
3. Let the robot run for a while. Perhaps you will need to move an object or place to have the

robot continue moving, if it stops facing an object.
4. After a while, see what the map looks like.
5. Try this both with the simple controller and the blended controller from your prior work.

Questions for thought

1. How well did the mapping work? Were there many duplicate objects found?
2. How good were the estimates of where objects were? What do you think would contribute to

any errors observed?
3. Did the errors get worse the longer the robot ran? If so, why, do you think?
4. Did you have to intervene a lot to keep the robot moving? Why? How could this be solved,

do you think?
5. Were there any differences between the two controllers (simple and blended) when this behav-

ior is added to the robot?

Stretch goals

• Change the avoidance behaviors so that the robot never stops permanently. One way to do
this might be to use random numbers to have the robot, with some small probability, turn or
move away from an object. For example, if you wanted the robot to usually stop when there
is an object in front of it, but 20% of the time turn left, you could use randint() to get a
random integer in the range 0–99 and turn if this integer is ≥ 80.

• Improve the way the robot keeps track of its location. For example, you could attempt to
make a better estimate of where the new location is after moving and turning, instead of using
the approximations we used above.

• Draw the map on the screen rather than printing out just the locations.
• Keep track of objects detections that could be part of the same object and merge them. Now

your object representation might be (x, y, diameter), where x and y are the coordinates of the
estimated center of an object with that diameter.
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