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Course Aim: To introduce the basic statistical concepts rel-

evant to environmental science and to provide experience in the

correct use and interpretation of the various statistical methods

currently used in the analysis of weather/climate observed and

model simulated data.

Practical Exercises Each topic covered in the lectures will be

followed by exercises analyzing real data in practical computing

classes using MINITAB statistical software.

PrerequisitesMinimal statistical knowledge but some basic math-

ematics and computer skills will be assumed.

“Some people hate the very name of stat-

istics but I find them full of beauty and in-

terest. Whenever they are not brutalized,

but delicately handled by the higher meth-

ods, and are warily interpreted, their power

of dealing with complicated phenomena is

extraordinary.”

- Sir Francis Galton 1

1 the person who invented the concept of correlation and the word anticyclone!
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Chapter 1

Introduction

Aim: The aim of this chapter is to explain the purpose and structure of this

course and to present a brief introduction to the philosophy of statistics and

available statistical software.

1.1 Purpose of this course

This course will help you to develop:

• statistical expertise necessary for atmospheric and climate research

• an ability to choose appropriate analysis methods

• the practical skills needed to apply statistical methods

• the ability to critically interpret the results of analyses

• a deeper appreciation of statistical science

Many important topics will be covered but not at very great depth due to

time limitations. Instead, it is hoped that this course will provide you with the

basic understanding and skills necessary for applying and interpreting statistics

in climate and environmental research. The underlying concepts and pitfalls

of various methods will be explained in order to avoid you treating statistical

analyses as magical “black box” numerical recipes.

9
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1.2 Brief history of statistics

The Oxford English etymological dictionary defines statistics as follows:

statistics - first applied to the political science concerned with the

facts of a state or community XVIII; all derived immediately from

German statistisch adj., statistik sb.; whence statistician XIX.

Statistics is concerned with exploring, summarising, and making inferences

about the state of complex systems, for example, the state of a nation (official

statistics), the state of peoples’ health (medical and health statistics), the state

of the environment (environmental statistics), etc.

Table 1.1 gives a brief summary of some of the earlier key developments

in statistics and probability in Europe over the last five centuries. The initial

development of statistics in the 16th and 17th centuries was motivated by

the need to make sense of the large amount of data collected by population

surveys in the emerging European nation states. Then, in the 18th century,

the mathematical foundations were improved significantly by breakthroughs

in the theory of probability inspired by games of chance (gambling). In the

19th century, statistics started to be used to make sense of the wealth of new

scientific data. Finally, in the 20th century, modern statistics has emerged

and has continued to progress rapidly throughout the whole century. The

development of electronic computers in the 1950s and ever increasing amounts

of available data have both played a key roles in driving statistics forwards.

For a more complete historical review of statistics refer to the books by David

(1962), Johnson and Kotz (1998) and Kotz and Johnson (1993).
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Year Event Person

1532 First weekly data on deaths in London Sir W. Petty
1539 Start of data collection on baptisms, marriages, and deaths

in France
1608 Beginning of parish registry in Sweden
1654 Correspondence on gambling with dice P. de Fermat

B. Pascal
1662 First published demographic study based on bills of mortality J. Graunt
1693 Publ. of An estimate of the degrees of mortality of mankind

drawn from curious tables of the births and funerals at the

city of Breslaw with an attempt to ascertain the price of

annuities upon lives

E. Halley

1713 Publ. of Ars Conjectandi J. Bernoulli
1714 Publ. of Libellus de Ratiocinus in Ludo Aleae C. Huygens
1714 Publ. of The Doctrine of Chances A. De Moivre
1763 Publ. of An essay towards solving a problem in the Doctrine

of Chances

Rev. Bayes

1809 Publ. of Theoria Motus Corporum Coelestium C.F. Gauss
1812 Publ. of Théorie analytique des probabilités P.S. Laplace
1834 Establishment of the Statistical Society of London
1839 Establishment of the American Statistical Association (Boston)
1889 Publ. of Natural Inheritance F. Galton

1900 Development of the χ2 test K. Pearson
1901 Publ. of the first issue of Biometrika F. Galton et al.
1903 Development of Principal Component Analysis K. Pearson
1908 Publ. of The probable error of a mean “Student”
1910 Publ. of An introduction to the theory of statistics G.U. Yule
1933 Publ. of On the empirical determination of a distribution A.N. Kolmogorov
1935 Publ. of The Design of Experiments R.A. Fisher
1936 Publ. of Relations between two sets of variables H. Hotelling

Table 1.1: Summary of some the earlier key events in the development of
statistics in Europe. For more historical details, refer to Johnson and Kotz
(1998).

1.3 What exactly is statistics ?

The purpose of statistics is to develop and apply methodology for extracting

useful knowledge from both experiments and data. In addition to its funda-

mental role in data analysis, statistical reasoning is also extremely useful in

data collection (design of experiments and surveys) and also in guiding proper

12 CHAPTER 1. INTRODUCTION

scientific inference (Fisher, 1990).

Major activties in statistics include:

• design of experiments and surveys to test hypotheses

• exploration and visualization of sample data

• summary description of sample data

• modelling relationships between variables

• stochastic modelling of uncertainty (e.g. flipped coin)

• forecasting based on suitable models

• hypothesis testing and statistical inference

Statistics is neither really a science nor a branch of mathematics. It is

perhaps best considered as a meta-science (or language) for dealing with data

collection, analysis, and interpretation. As such its scope is enormous and

it provides much guiding insight in many branches of science, business, etc.

Critical statistical reasoning can be extremely useful for making sense of the

ever increasing amount of information becoming available (e.g. via the web).

Knowledge of statistics is a very useful transferable skill!

1.4 General philosophy

Statistical data analysis can be subdivided into descriptive statistics and

inferential statistics. Descriptive statistics is concerned with exploring and

describing a sample of data, whereas inferential statistics uses statistics from

sample of data to make statements about the whole population. Note that

the word “data” is plural and a single element of data is called a “datum”, so

avoid saying things like “the data has been . . .”.

Descriptive statistics is concerned with exploring, visualising, and sum-

marizing sample data but without fitting the data to any probability models.

This kind of Exploratory Data Analysis (EDA) is used to explore sample
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data in the initial stages of data analysis. Since no probability models are in-

volved, it can not be used to test hypotheses or to make testable out-of-sample

predictions about the whole population. Nevertheless, it is a very important

preliminary part of analysis that can reveal many interesting features in the

sample data.

Inferential statistics is the next stage in data analysis and involves the

identification of a suitable probability model. The model is then fitted to the

data to obtain an optimal estimation of the model’s parameters. The model

then undergoes evaluation by testing either predictions or hypotheses of

the model. Models based on a unique sample of data can be used to infer

generalities about features of the whole population.

Much of climate analysis is still at the descriptive stage, and this often

misleads climate researchers into thinking that statistical results are not as

testable or as useful as physical ideas. This is not the case and statistical

thinking and inference could be exploited to much greater benefit to make

sense of the complex climate system.

1.5 Statistical software

The development of computer technology since the 1950s has led to the cre-

ation of many very useful statistical software packages for analysing data.

Off-the-shelf statistical software now makes it possible to perform analyses on

a personal computer that would have been completely impossible in the pre-

computer era. For this reason, computational statistics is now a large and

rapidly advancing branch of modern statistics. Many diverse statistical soft-

ware packages are currently available that offer a wide variety of capabilities.

They can be broadly classified into three main categories:

1. Powerful language-based packages

For example, Splus, R, and SAS, which are packages that allow the user

to develop their own statistical macros and functions in addition to the

comprehensive range of statistical routines available. These powerful

language-based packages are used by many practising statisticians. They

14 CHAPTER 1. INTRODUCTION

are not particularly user-friendly but once mastered can be extremely

powerful tools.

2. Interactive packages

For example, MINITAB and SPSS, which are packages that allow the

user to perform many standard statistical operations at the click of a

mouse. These are quick and easy to use and are useful for applying

standard methods but not ideally suited for developing new functions.

A big danger with such packages is that the user can easily perform

operations that they do not understand. This can create a “black box”

view of statistical methods that often leads to poor interpretations.

3. Packages with statistical libraries

For example, MATLAB and PV-Wave/IDL, which are primarily data

analysis and visualization programs/languages that also include libraries

including statistical functions. These packages can be useful in climate

analysis since they can cope with the large gridded data sets quite eas-

ily and can also be used to quickly visualise spatial data. A problem

with these packages is that the libraries often contain only a subset of

standard statistical functions, and do not benefit from input from profes-

sional statisticians. This is particularly the case with certain spreadsheet

packages such as EXCEL that contain rather idiosyncratic and poorly

developed statistical libraries.

4. Home made subroutines

Many climate researchers have a bad habit of doing statistics using sub-

routines in Fortran that they have either written by themselves, obtained

from a friend, or copied from numerical recipes. This Do-It-Yourself

cookbook approach has several disadvantages that include time being

wasted reinventing the wheel programming routines rather than time

being spent thinking about the appropriate choice of method etc., and

lack of any input or contact with professional statisticians. The lack of

statistical input can lead to ignorance about the range of possible meth-

ods available, and the problems associated with the different methods.
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Just as good surgeons make use of the best professional instruments for

their work rather than using just a few home made tools, so one should

expect scientists to use the best data analysis software at their disposal

rather than something they just hacked together. Good analysis requires

the expert use of good tools.

1.6 Further reading for this course

These notes have been written to give you a readable introduction to basic

statistics. The lectures will cover most (but not all) of the material in these

notes, so please make an effort to read all the chapters.

There are many good books available covering all aspects of statistics.

A cheap and readable introduction to univariate statistics can be found in

the Schaum outline series book by Spiegel (1992). This book is well written

and contains many good examples, but is poor on explaining the underlying

concepts in statistics. The introductory text books by DeGroot and Schervish

(2002), Rice (1995) and Wackerley et al. (1996) provide a clear and much

deeper coverage of basic statistics. In addition, to these books, there are

several recent books on statistics and data analysis written specifically for

either meteorologists or oceanographers, for example, Wilks (1995) and von

Storch and Zwiers (1999), and Emery and Thomson (1997). An interesting

review of the history of probability and risk can be found in the popular book

by David (1962)

In addition to books, there is also a large amount of useful statistical help

and information available online - some of the most useful links are listed on

the web page for this course:

http://www.met.reading.ac.uk/cag/courses/Stats/

By reading the help on these pages, you will be able to deepen your know-

ledge of statistics and learn from statisticians how best to do things. Remember

that its most likely that you are not the first person to have used a particular
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method and that there is a wide range of statistical information and advice

available in text books or via the web. There is no excuse for not knowing

about the method you have used to analyse your data - good scientists always

know how to use their tools properly !



Chapter 2

Descriptive statistics

Aim: The aim of this chapter is to present common methods used to summar-

ise and describe simple data sets. This first stage in data exploration should

be approached with an inquisitive and open mind following the motto “let the

data speak for themselves”. The aim is not to torture the data into confirming

some prior belief!

2.1 Tabulation and the data matrix

Small samples of data are best presented in the form of a table 1. For example,

Table 2.1 below presents the age, height, and weight of a sample of some

colleagues at the Department of Meteorology in the University of Reading.

There are n = 11 objects (or individuals or units) in the sample with

p = 3 observed variables age, height, and weight. Note that for good clarity

and typesetting, published tables should not include ANY vertical lines or

shading even if certain word processors allow such features.

The table of numbers can be considered to be a rectangular data matrix

X having n = 11 rows and p = 3 columns. The data matrix X has dimension

(n× p) and elements Xij where the first subscript i = 1, 2, . . . , n is the object

1 this is good practice when publishing scientifically since it allows others to examine

your data and reproduce your results !
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Person Age (years) Height (cm) Weight (kgs)

1 30.9 180 76

2 26.9 164 64

3 33.2 176 87

4 28.5 172 75

5 32.3 176 75

6 37.0 180 86

7 38.3 171 65

8 31.5 172 76

9 32.8 161 75

10 37.7 175 85

11 29.1 190 83

Table 2.1: Some bodily characteristics of a small sample of (unnamed !) met-

eorologists in the Department of Meteorology at the University of Reading.

index and the second subscript j = 1, 2, . . . , p is the variable index. Note: it

is conventional to denote variables by columns and sample objects by rows.

The rest of this lecture will focus on the special case of descriptive meth-

ods for univariate data {xi; i = 1, 2, . . . , n} having only one variable (p = 1).
Many descriptive methods have also been developed for exploring multivari-

ate data having more than one (p > 1) variables and some of these will be

covered in later lectures.

2.2 Descriptive statistics for univariate data

2.2.1 Key attributes of sample data

To summarize univariate data such as the heights in the previous table, the

following quantities are of paramount interest:
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• Sample size is the number of objects making up the sample. It is also
the number of rows n in the data matrix. It strongly determines the

power of inferences made from the sample about the original population

from which the sample was taken. For example, sample statistics based

on a sample with only 11 objects are not likely to be very representative

of statistics for the whole population of meteorologists at the University

of Reading. Although many results in statistics are really only valid in

the asymptotic limit when the sample size n→∞, exact small sample
(e.g. n < 30) results do exist for certain problems.

• Central Location is the typical average value about which the sampled
values are located. In other words, a typical size for the variable based

on the sample. It can be measured in many different ways, but one of

the most obvious and simplest is the arithmetic sample mean:

x =
1

n

n
∑

i=1

xi (2.1)

For the example of height in the previous table, the sample mean is equal

to 174.3cm which gives an idea of the typical height of meteorologists in

Reading.

• Scale is a measure of the spread of the sampled values about the central
location. The simplest measure of the spread is the range, R = max(x)−
min(x), equal to the difference between the largest value and the smallest

value in the sample. This quantity, however, is based on only the two

most extreme objects in the sample and ignores information from the

other n − 2 objects in the sample. A more democratic measure of the
spread is given by the standard deviation

s =

√

√

√

√

1

n

n
∑

i=1

(xi − x)2 (2.2)
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which is the square root of the sample variance. 2

• Shape of the sample distribution can be summarized by calculating
higher moments about the mean such as

b1 =
1

n

n
∑

i=1

(

xi − x

s

)3

(2.3)

b2 =
1

n

n
∑

i=1

(

xi − x

s

)4

(2.4)

b1 is called the moment measure of skewness and measures the asym-

metry of the distribution. b2 − 3 is the moment measure of kurtosis
and measures the flatness of the distribution.

2.2.2 Resistant statistics

Observed variables often contain rogue outlier values that lie far away from

the bulk of the data. These can be caused by measurement or recording errors

or can be due to genuine freak events. Especially when dealing with small

samples, outliers can bias the previous summary statistics away from values

representative for majority of the sample.

This problem can be avoided either by eliminating or downweighting the

outlier values in the sample (quality control), or by using statistics that are

resistant to the presence of outliers. Note that the word robust should not be

used to signify resistant since it is used in statistics to refer to insensitivity to

choice of probability model or estimator rather than data value. Because the

range is based on the extreme minimum and maximum values in the sample,

it is a good example of a statistic that is not at all resistant to the presence of

an outlier (and so should be interpreted very carefully !).

2 a denominator of n− 1 is often used rather than n in order to ensure that the sample

variance gives an unbiased estimate of the population variance.
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2.2.3 Empirical quantiles

One way of obtaining resistant statistics is to use the empirical quantiles

(percentiles/fractiles). The quantile (this term was first used by Kendall, 1940)

of a distribution of values is the number xp such that a proportion p of the

values are less than or equal to xp. For example, the 0.25 quantile x0.25 (also

referred to as the 25th percentile or lower quartile) is the value such that 25%

of all the values fall below that value.

Empirical quantiles can be most easily constructed by sorting (ranking) the

data into ascending order to obtain a sequence of order statistics {x(1), x(2), . . . , x(n)}
as shown in Figure 2.1b. The p’th quantile xp is then obtained by taking the

rank r = (n + 1)p’th order statistic x((n+1)p) (or an average of neigbouring

values if (n+ 1)p is not integer):

xp =

{

x((n+1)p) if (n+ 1)p is integer

0.5 ∗ (x([(n+1)p]) + x([(n+1)p]+1)) otherwise
(2.5)

where p is the probability Pr{X ≤ xp} = r/(n + 1) and [a] is the greatest

integer not exceeding a 3. For example, the quartiles of the height example

are given by x0.25 = x(3) = 171 (lower quartile), x0.5 = x(6) = 175 (median),

and x0.75 = x(9) = 180 (upper quartile).

Unlike the arithmetic mean, the median x0.5 is not at all influenced by

the exact value of the largest objects and so provides a resistant measure of

the central location. Likewise, a resistant measure of the scale can be obtained

using the Inter-Quartile Range (IQR) given by the difference between the

upper and lower quartiles x0.75−x0.25. In the asymptotic limit of large sample

size (n → ∞), for normally (Gaussian) distributed variables (see Chapter 4),
the sample median tends to the sample mean and the sample IQR tends to

1.34 times the sample standard deviation. Resistant measures of skewness

and kurtosis also exist such as the dimensionless Yule-Kendall skewness

statistic defined as

γY K =
x0.25 − 2x0.5 + x0.75

x0.75 − x0.25

(2.6)

3 the denominator of n+1 is used rather than n in order to avoid obtaining the impossible

probabilities of either 0 or 1
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Figure 2.1: Diagram showing how the empirical distribution is obtained for

the heights given in Table 2.1. All heights are relative to a reference height of

150cm in order to make the differences more apparent.

There also exist other resistant measures based on all the quantiles such as L-

moments, but these are beyond the scope of this course - refer to Wilks (1995)

and von Storch and Zwiers (1999) for more discussion.

2.2.4 Example: Summary statistics for the height data

2.3 Graphical representation

The human eye has evolved to be extremely good at analysing and recognising

patterns. This most useful tool can be exploited for data analysis by using it

to critically examine plots of the data. Statisticians have developed numer-

ous methods for visualizing samples of both univariate and multivariate data.
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Statistic Symbol Value Comment

sample size n 11 number of objects/individuals
mean x 174.3cm non-resistant measure of location
standard deviation sx 7.9cm non-resistant measure of scale
range xmax − xmin 29cm VERY non-resistant measure of scale!
skewness b1 0.17 non-resistant measure of skewness
kurtosis b2 − 3 0.003 non-resistant measure of kurtosis
median x0.5 175cm resistant measure of location
interquartile range x0.75 − x0.25 9cm resistant measure of scale
Yule-Kendall γY K 0.11 resistant measure of skewness

Table 2.2: Summary statistics for the sample of height data in Table 2.1
.

Some of the standard univariate plots will be illustrated below using the height

data:

Dotplot The sample values are plotted as dots along a line. The center and

spread of dots can easily be identified along with outliers. Multidimensional

dotplots for more than one variable are also extremely useful for exploring

multivariate data and are known as scatter plots.

Boxplot (box-and-whiskers plot) The boxplot is a useful way of plotting

the 5 quantiles x0, x0.25, x0.5, x0.75, and x1 of the data. The ends of the whiskers

show the position of the minimum and maximum of the data whereas the

edges and line in centre of the box show the upper and lower quartiles and the

median. Sometimes shorter whiskers that extend 1.5 IQR above and below

the median are drawn instead of ones that cover the whole range (see the

software help for details). The whiskers show at a glance the behaviour of the

extreme outliers, whereas the box edges and mid-line summarize the sample in

a resistant manner. Strong asymmetry in the box mid-line and edges suggests

that the distribution is skewed and can be quantified using the Yule-Kendall

skewness statistic.

Boxplots are particularly useful for comparing multiple samples of data

from, say, different experiments. The boxplots for each sample can be stacked
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Figure 2.2: Dotplot of sample heights.

side-by-side to allow easy visual comparison of the between and within sample

spreads of the different samples.

Stem-and-Leaf plot This is a simple graphical way of displaying the dis-

tribution of data without having to use computer graphics (it was invented

before graphics became widely available !). In its simplest form, the stem-

and-leaf plot groups the data values according to their all-but-least-significant

digits. These are written in either ascending or descending order to the left

of a vertical bar, and constitute the stem. The leaves are formed by then

writing the least-significant digit to the right of the bar, on the same line as

the more significant digits with which it belongs. The left most column in the

MINITAB output below gives the cumulative total of values from either the

top or bottom of the figure towards the median value in the middle (denoted

by parentheses).

Stem-and-leaf of Heights in Table 2.1 N=11

Leaf Unit = 1.0



2.3 Graphical representation 25

Figure 2.3: Boxplot of sample heights.
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Histogram The range of values is divided up into a finite set of class inter-

vals (bins). The number of objects in each bin is then counted and divided

by the sample size to obtain the frequency of occurrence and then these

are plotted as vertical bars of varying height. It is also possible to divide

the frequencies by the bin width to obtain frequency densities that can

then be compared to probability densities from theoretical distributions. For

example, a suitably scaled normal probability density function has been

superimposed on the frequency histogram in Figure 2.4.
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Figure 2.4: Histogram of sample heights showing frequency in each bin with

suitably scaled normal density curve superimposed.

The histogram quickly reveals the location, spread, and shape of the dis-

tribution. The shape of the distribution can be unimodal (one hump), mul-

timodal (many humps), skewed (fatter tail to left or right), or more-peaked

and fatter tails (leptokurtic), or less-peaked and thinner tails (platykurtic)

than a normal (Gaussian) distribution.

In addition to histograms and density curves, it can also be useful to plot

the empirical distribution function (e.d.f) and the theoretically-derived

cumulative distribution function (c.d.f). The e.d.f (or ogive) is a bar

plot of the accumulated frequencies in the histogram and the c.d.f is the

integral of the density function. This gives plots of empirical probabilities p as

a function of quantile value xp. Mathematical definitions of these quantities

will be given later in Chapter 4.
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2.4 Transformation of data

Transformations are widely used in statistics to reduce data to standard forms.

Some common methods of re-expressing data are as follows:

• Centering The sample mean (column mean) x is subtracted from the
data values xi in order to obtain centered “anomalies” xi − x having

zero mean. All information about mean location is lost.

• Standardizing The data values are centered and then divided by their
standard deviations to obtain “normalised anomalies” (meteorological

notation) having zero mean and unit variance. All knowledge of location

and scale is lost and so statistics based on standardised anomalies are

unaffected by any shifts or rescaling of the original data. Standardiz-

ing makes the data dimensionless and so is useful for defining standard

indices. Certain statistics are unaffected by any linear transformations

such as standardization (e.g. correlation, see Chapter 3).

• Normalizing

Normalizing transformations are non-linear transformations often used

by statisticians to make data more normal (Gaussian). This can reduce

bias caused by outliers, and can also transform data to satisfy normal-

ity assumptions that are assumed by many statistical techniques. Note:

meteorologists (and even some statisticians) often confusingly say “nor-

malizing” when what they really mean is “standardizing”!

A much used class of transformations is the Box-Cox power law trans-

formation y = (xλ − 1)/λ, where λ can be optimally tuned. In the
limit as λ → 0, one obtains the y = log x transformation much used to

make postively skewed quantities such as stockmarket prices more nor-

mal. The λ = 0.5 square root transformation is often a good compromise

for postively skewed variables such as rainfall amounts (Stephenson et

al. 1999).
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2.5 Further reading

Many of the modern techniques used in Exploratory Data Analysis (EDA)

such as box plots were introduced by Tukey (1977) who emphasized the great

importance of using novel descriptive statistics. Chapter 3 of Wilks (1995)

covers standard descriptive techniques in more detail.



Chapter 3

Basic probability concepts

Aim: The aim of this chapter is to present a brief introductory overview into

the fascinating concept of probability. A good grasp of probability is essen-

tial for understanding statistical analysis and for making correct statistical

inferences.

3.1 Motivation

In environmental science and many other subjects there is certainly no short-

age of uncertainty, for example, in our knowledge about whether it will rain or

not tomorrow. Uncertainty about such events arises naturally from errors and

gaps in measurements, incomplete and incorrect knowledge of the underlying

mechanisms, and also from the overall complexity of all the possible interac-

tions in real-world systems. We try to describe this uncertainty qualitatively

by using words such as “likely”, “probably”, “chance”, etc.. However, to make

progress scientifically it is necessary to use a more quantitative definition of

uncertainty. In 1812, the French mathematician Pierre Simon Laplace defined

the word “probability” to mean a number lying between 0 and 1 that measures

the amount of certainty for an event to occur. A probability of 1 means the

event is completely certain to occur, whereas a probability of 0 means that

the event will certainly never occur. Probability is essential for understanding
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how samples of data can be drawn from the underlying population, and for

making inferences about this population based on sample statistics.

3.2 Events and event space

Probability is the chance of a random event happening. An event A is a set

(or group) of possible outcomes of an uncertain process e.g. {Heads in a single
coin toss}, {rain}, {no rain}, {T > 20◦C}, {10◦ ≤ T < 20◦C}. Events can
be elementary (indivisible) or compound e.g. {Heads in a single coin toss}
(elementary), {One head and one tail in 2 coin tosses} (compound). The set of
ALL possible elementary events defines event space (sample space), which

sometimes can be represented visually by using an Euler (or Venn) diagram.

Figure 3.1 shows the event space for two events {A1, A2}. As an example,
{A1} could be the event “precipitating cloud” and {A2} could be the event
“boundary layer below freezing”. In order to get snow falling on the ground, it

is necessary that both events occur at the same time (the intersection region).

3.3 Random variables

A random variable, X, is a label allocated to a random event A (e.g. X = 1

if a tornado occurs and X = 0 otherwise). In statistical literature, random

variables are often abbreviated by “r.v.” and are denoted by upper case letters

(e.g. X). Actual observations (samples) of a particular random variable are

denoted by the corresponding lower case letter (e.g. x). In other words, x is a

possible value that random variable X can take.

Random variables can either be categorical, discrete numbers (i.e. in-

tegers), or continuous numbers (i.e. real numbers). Categorical variables

can either be nominal (no ordering) e.g. {sun}, {rain}, {snow}, or cardinal
(ordered) e.g. {T ≤ 0◦C}, {T > 0◦C}. Discrete random variables can be

binary (e.g. X = 0 or X = 1) or can be count variables (e.g. X = 0, 1, 2, . . .)

representing the number of events (e.g. number of hurricanes). The probab-
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Figure 3.1: Euler diagram showing event space for 2 events.

ility Pr{X = xi} of a random variable X taking different observable values,

{xi} defines the probability distribution discussed in the next chapter.

3.4 How is probability defined?

The probability of an event Pr{A} is a measure between 0 and 1 of whether
the event is likely to happen. The word “probability” is derived from the

word “probable” that comes from the Latin word probabilis meaning provable,

which is rather paradoxical since only when the the probability is exactly one

or zero can anything be definitely proved! The different ways that can be used

to define the concept of probability are briefly described below:

3.4.1 Definition 1: Number of symmetric ways

If an event A can happen in wA ways out of a total of w equally likely possible

ways, then the probability of A is given by Pr{A} = wA/w. For example, the
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probability of getting an odd number when throwing a 6-sided die is given by

3/6 since there are 3 ways to get an odd number (i.e. numbers {1,3,5}) out of
a total of 6 equally likely outcomes (i.e. numbers {1,2,3,4,5,6}).

3.4.2 Definition 2: Relative frequency of repeated event

For repeated events, probability can be estimated by the “long-run” relative

frequency of an event out of a set of many trials. If an event occurs m times

in n trials then the relative frequency m/n provides an unbiased estimate of

the probability of the event. In the asymptotic limit as the number of trials n

tends to infinity, the relative frequency converges to the true probability of the

event (“Law of large numbers”). This interpretation involving repeated trials

is known as the “frequentist” approach to probability.

3.4.3 Definition 3: Non-frequentist subjective approach

The frequentist approach has a number of disadvantages. Firstly, it can not

be used to provide probability estimates for events that occur once only or

rarely (e.g. climate change). Secondly, the frequentist estimates are based

ENTIRELY on the sample and so can not take into account any prior belief

(common sense) about the probability. For example, an unbiased coin could

easily produce 2 heads only when tossed 10 times and this would lead to a

frequentist probability estimate of 0.2 for heads. However, our belief in the

rarity of biased coins would lead us to suspect this estimate as being too low.

In other words, the frequentist estimate does not really reflect our true beliefs

in this case.

In such cases a more subjective approach to probability must be adopted

that takes into account ALL the available information. The subjective prob-

ability of an event A can be defined as the price you would pay for a fair bet

on the event divided by the amount you would win if the event happens. Fair

means that neither you or the bookmaker would be expected to make any net

profit. To make a fair bet all the prior information must be taken into account

- e.g. the biasedness of coins, the previous form of a horse in a horse race,
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etc. This can be done most conveniently by making use of Bayes’ theorem

(covered later in section 3.5 of this chapter). The Bayesian approach takes

a more relativist view of probability and instead uses data to update prior

probability esimates to give improved posterior probability estimates.

3.4.4 Definition 4: The axiomatic approach

None of the above definitions is entirely satisfactory or applicable for all situ-

ations. The Russian scientist Kolmogorov, therefore, proposed that probab-

ility should be defined axiomatically by stating three necessary and sufficient

axioms (assumptions/properties):

1. All probabilities are greater than or equal to zero: Pr{Ai} ≥ 0 for all
events {Ai} (i.e. no event is more unlikely than a zero probability event).

2. The probabilities of all events in event space always sum up to one (i.e.

something must happen !).

3. The probability of either one or other mutually exclusive events is equal

to the sum of the probabilities of each event alone. In other words, Pr{A1

or A2}=Pr{A1}+Pr{A2} for all mutually exclusive events A1 and A2.

All the previous definitions satisfy these axioms and so provide valid and

complementary interpretations of probability.

3.5 Joint and conditional probabilities

We are often interested in the case when two events happen at the same time.

For example, to get snow falling on the ground, it is necessary that two events,

{A1=“precipitating cloud”} and {A2=“boundary layer below freezing”} occur
at the same time. The probability of two events happening at the same time,

Pr{A1 and A2}, is known as the joint probability of events A1 and A2.

For mutually exclusive events that never occur at the same time, the joint

probability is zero.
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It is also useful to define the probability of an event GIVEN that another

event has happened. This approach is very powerful and is known as condi-

tioning. The conditional probability of an event A1 given A2 (i.e. conditioned

on A2) is defined as

Pr{A1|A2} =
Pr{A1 and A2}

Pr{A2}
(3.1)

For example, to estimate the probability of rain during El Niño episodes we

could use a conditional probability conditioned on El Niño events (rather than

all events).

For independent events, Pr{A1 and A2} = Pr{A1}Pr{A2} and so the
conditional probability Pr{A1|A2} = Pr{A1} - in other words, conditioning
on independent events does not change the probability of the event. This is

the definition of independence.

By equating Pr{A1 and A2} = Pr{A1|A2}Pr{A2} and Pr{A1 and A2} =
Pr{A2|A1}Pr{A1}, one can derive the following useful identity

Pr{A1|A2} =
Pr{A2|A1}Pr{A1}

Pr{A2}
(3.2)

This is known as Bayes’ theorem and provides a useful way of getting from

the unconditioned prior probability Pr{A1} to the posterior probability
Pr{A1|A2} conditioned on event A2. Event A2 is invariably taken to be the

occurence of the sample of available data. In other words, by conditioning on

the available data, it is possible to obtain revised estimates of the probability

of event A1.

3.6 Odds

A common way of expressing probability is in the form of the odds of an

event. The odds of an event is defined as the ratio of the probability of the

event occurring to the probability of it not occurring i.e. Pr{A}/Pr{notA}.
So an event with probability 0.001 has odds of 1/999 (or 999:1 against in

gambling jargon). Odds can range from zero to infinity and are equal to one
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for events whose occurrence and non-occurence are equally likely (known as

evens by gamblers). Odds can be used to assess the total risk of a set of

independent events by simply multiplying together the odds of the individual

events.

3.7 Expectation, (co-)variance, and correlation

If probabilities are known for all events in event space, it is possible to calculate

the expectation (population mean) of a random variable X

E(X) =
∑

i

XiPr{Ai} = µX (3.3)

where Xi is the value taken by the random variable X for event Ai. As an

example, if there is a one in a thousand chance of winning a lottery prize of

£1500 and each lottery ticket costs £2 then the expectation (expected long

term profit) is -£0.50= 0.001×£(1500-2) ) + 0.999× (-£2). A useful property
of expectation is that the expectation of any linear combination of two random

variables is simply the linear combination of their respective expecations

E(aX + bY ) = aE(X) + bE(Y ) (3.4)

where a and b are (non-random) constants.

The expectation can also be used to define the population variance

V ar(X) = E((X − E(X))2) = E(X2)− (E(X))2 = σ2
X (3.5)

which provides a very useful measure of the overall uncertainty in the random

variable. The variance of a linear combination of two random variables is given

by

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ) (3.6)

where a and b are (non-random) constants. The quantity Cov(X,Y ) = E((X−
E(X))(Y − E(Y ))) is known as the covariance of X and Y and is equal to

zero for independent variables. The covariance can be expressed as

Cov(X,Y ) = Cor(X,Y )
√

V ar(X)V ar(Y ) (3.7)
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where Cor(X,Y ) is a dimensionless number lying between -1 and 1 known as

the correlation between X and Y . Correlation is widely used to measure the

amount of association between two variables.

Note that the quantities E(.) and V ar(.) refer specifically to population

parameters and NOT sample means and variances. To avoid confusion

the sample mean of an observed variable x is denoted by x and the sample

variance is denoted by s2
x. These provide estimates of the population quantities

but should never be confused with them !

3.8 Further reading

Chapter 6 of Spiegel (1992) provides a clear yet elementary introduction to the

basic concepts of probability together with many good examples. Chapter 2 of

Wilks (1995) also presents a good introduction to probability with examples

taken from meteorological situations. An interesting review of the history of

probability and risk can be found in the popular book by David (1962)



Chapter 4

Probability distributions

Aim: The aim of this chapter is to define the concept of theoretical probability

distributions useful for modelling both discrete and continuous random vari-

ables. Examples of several commonly used distributions will also be discussed.

4.1 Motivation

Statisticians have identified several classes of function suitable for explaining

the probability distribution of both discrete and continuous variables. These

classes of functions can be considered to be probability models for explaining

observed data, and provide the necessary link for inferring population proper-

ties from sample data. The theoretical (population) probability distribution of

a random variable is determined by a small set of population parameters that

can be estimated using the sample data. This chapter will present definitions

and examples of probability distributions for both discrete and continuous

variables.
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4.2 Distributions of discrete variables

4.2.1 Definition

The probability distribution of a discrete variable X is the set of prob-

abilities p(xi) = Pr{X = xi} for all the possible values of X in the set

{x1, x2, . . . , xk} in event space. So for a discrete random variable that can

take k distinct values in the set {x1, x2, . . . , xk}, the probability distribution is
defined by the k probabilities {Pr{X = x1}, P r{X = x2}, . . . , P r{X = xk}, }.
The probability distribution contains complete information about ALL the

statistical properties of X, for example, once the probability distribution is

known, the expectation of any function of X can be calculated.

4.2.2 Empirical estimates

A simple empirical estimate of the probability distribution is obtained from a

sample of data by calculating the relative frequency fi = ni/n of occurrence

of each event {X = xi}. In the limit of large sample sizes, these empirical
estimates p̂(xi) = fi of the distribution provide increasingly accurate unbiased

estimates of the population probabilty distribution. The empirical distribution

can be displayed graphically by plotting bars of height fi for the different values

xi.

4.2.3 Theoretical discrete distributions

The probability distribution p(x) is completely defined by specifying the k val-

ues {p(x1), p(x2), . . . , p(xk)}. However, in many cases, it is possible to obtain a
very good approximation to the distribution by assuming a simple functional

form p(x) = f(x; θ1, . . . , θm) determined by a smaller number (m < k) of

more meaningful population parameters {θ1, θ2, . . . , θm}. Over the years,
statisticians have identified several theoretical probability distributions

p(x) = f(x; θ1, . . . , θm) that are very useful for modelling the probability dis-

tributions of observed data. These distributions are known as parametric
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probability models since they are completely determined by a few import-

ant parameters {θ1, θ2, . . . , θm}. The following subsections will briefly describe
some of the functions that are used most frequently to model the probability

distribution of discrete random variables.
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(c) Poisson distribution

Figure 4.1: Examples of discrete distributions: (a) Bernoulli π = 0.4 , (b)

Binomial with n = 15 and π = 0.4, and (c) Poisson with µ = 6.

Example 1: Bernoulli distribution

A Bernoulli (binary) variable is a random variable that can take only the

value of either 1 (success) or 0 (failure). Bernoulli variables are commonly
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used for describing binary processes such as coin tossing, rain/no rain, yes/no

decisions etc.. The Bernoulli distribution uses one population parameter π to

define the probability of success Pr{X = 1} = π and the probability of failure

Pr{X = 0} = 1− π. This can be written more succinctly as

Pr{X = x} = πx(1− π)1−x = f(x;π) (4.1)

where x takes the value of either 0 or 1. The parameter π completely de-

termines the population distribution and all possible statistics based on X,

for example, the population mean is given by E(X) = π.1 + (1 − π).0 = π

and the population variance is given by V ar(X) = E(X2) − E(X)2 = π.12 +

(1− π).02− π2 = π(1− π). A random variable X distributed with a Bernoulli

distribution is described as X ∼ Be(π) by statisticians (the ∼ symbol means
“distributed as”).

Example 2: Binomial distribution

Suppose we are interested in counting the number of times X a Bernoulli event

with probability π happens in a fixed number n of trials. For example, we might

be interested in counting the total number of times hurricanes hit Florida out

of a specified number of hurricane events. The probability distribution of such

a count variable is given by the Binomial distribution X ∼ Bin(n, π) defined

as

Pr{X = m} =
n!

(n−m)!m!
πm(1− π)n−m = f(m;n, π) (4.2)

for m = 0, 1, ldots, n. The fraction containing factorials on the left hand side

is the number of possible ways m successes can happen out of n events, and

this can often be surprisingly large. A binomially distributed variable has

expectation E(X) = nπ and variance V ar(X) = nπ(1 − π). In the limit of

large n, the binomial distribution is well approximated by a normal distribution

with mean nπ and variance nπ(1 − π). So for example, if the probability of

a hurricane hitting Florida is π = 0.1, then out of 200 hurricanes, one would

expect a mean of 200 × 0.1 = 20 hurricanes to hit Florida with a standard
deviation of

√
200× 0.1× 0.9 = 4.2 hurricanes. The binomial distribution is
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useful for estimating the fraction of binary events X/n such as the fraction of

wet days, or the fraction of people voting for a political party.

Example 3: Poisson distribution

Often we do not know the total number of trials, but we just know that events

occur independently and not simultaneously at a mean rate of µ in a certain

region of space or in an interval time. For example, we might know that there

are a mean number of 20 hurricanes in the Atlantic region per year. In such

cases, the number of events X that occur in a fixed region or time interval is

given by the Poisson distribution X ∼ Poisson(µ) defined by

Pr{X = m} =
e−µµm

m!
= f(m;µ) (4.3)

for m = 0, 1, ldots. A Poisson distributed count variable has expectation

E(X) = µ and variance V ar(X) = µ. The Poisson distribution approximates

the Binomial distribution in the limit of large n and finite µ = nπ. The sum

of two independent Poisson distributed variables is also Poisson distributed

X1 + X2 ∼ Poisson(µ1 + µ2). Meteorological events such as storms often

satisfy the independence and non-simultaneity criteria necessary for a Poisson

process and so the number of such events in a specified region or time interval

can be satisfactorily modelled using the Poisson distribution.

4.3 Distributions of continuous variables

4.3.1 Definition

Because there are an infinite continuum of possible values x for a continuous

random variable X, the probability of X being exactly equal to a particu-

lar value is zero Pr{X = x} = 0 ! Therefore, the approach used to define
the probability distribution of discrete random variables can not be used to

describe the distribution of continuous random variables. Instead, the prob-

ability distribution of a continuous variable is defined by the probability of
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a random variable being less than or equal to a particular value

Pr{X ≤ x} = F (x) (4.4)

The probability distribution function, F (x), is close to zero for large negative

values of x and increases towards one for large positive values of x.

The probability distribution function is sometimes referred to more spe-

cifically as the cumulative distribution function (c.d.f). The probability

of a continuous random variable X being in a small interval [a, a+ δx] is given

by

Pr{a < X ≤ a+ δx} = F (a+ δx)− F (a) ≈
[

dF

dx

]

x=a

δx (4.5)

The derivative of the probability distribution, f(x) = dF
dx
, is known as the

probability density function (p.d.f.) and can be integrated with respect to

x to find the probability of X being in any interval

Pr{a < X ≤ b} =

∫ b

a

f(x)dx = F (b)− F (a) (4.6)

In other words, the probability of X being in a certain interval is simply given

by the integrated area under the probability density function curve.

4.3.2 Empirical estimates

An empirical estimate of the population probability distribution can be ob-

tained from a sample of data by calculating the cumulative frequencies of

objects in the sample having values less than x. A cumulative frequency curve

can be calculated either by accumulating up the frequencies in a histogram, or

by sorting all the data into ascending order to get estimates of the empirical

quantiles xq = F̂−1(q). In the limit of large sample sizes, these empirical estim-

ates F̂ (x) provide increasingly accurate unbiased estimates of the population

probability distribution.
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4.3.3 Theoretical continuous distributions

Because the estimates are based on a finite number of sample values, the empir-

ical (cumulative) distribution function (e.d.f.) goes up in small discrete steps

rather than being a truly smooth function defined for all values. To obtain a

continuous differentiable estimate of the c.d.f., the probability distribution can

be smoothed using either moving average filters or smoothing splines or ker-

nels. This is known as a non parametric approach since it does not depend

on estimating any set of parameters.

An alternative approach is to approximate the empirical distribution func-

tion by using an appropriate class of smooth analytic function. For a particular

class of function (probability model), the location, spread, and/or shape of the

probability density function f(x; θ1, θ2, . . . , θm) is controlled by the values of

a small number of population parameters θ1, θ2, . . . , θm. This is known as a

parametric approach since it depends on estimating a set of parameters.

The following sections will describe briefly some (but not all) of the most

commonly used theoretical probability distributions.

Example 1: Uniform distribution

A random variable is uniformly distributed X ∼ U(a, b) when f(x) = 1/(b−a)
for a ≤ x ≤ b and zero otherwise. In other words, the random variable is

equally likely to take any value in the interval [a, b]. Standard (pseudo)random

number generators on computers and pocket calculators generate random num-

bers from 0 to 1 that are distributed as X ∼ U(0, 1).

Example 2: Exponential distribution

A positive random variable is exponentially distributed X ∼ Expon(β) when

f(x) = β exp (−βx) for x > 0 and /beta > 0. In other words, the random

variable is more likely to take small rather than large positive values. The

single parameter, β, fully determines the exponential distribution and all its

moments, for example, E(X) = 1/β and V ar(X) = 1/β2.
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(c) Gamma probability density function

Figure 4.2: Examples of continuous probability density functions: (a) Uniform

with a = −2 and b = 2, (b) Normal with µ = 0 and σ = 1, and (c) Gamma
with α = 2 and β = 1.

Example 3: Normal (Gaussian) distribution

A random variable is normally distributed X ∼ N(µ, σ2) when

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (4.7)

where x is any real number and σ > 0. This is the famous symmetric “bell-

shaped” curve that provides a remarkably good description of many observed

variables. Although often referred to the Gaussian distribution in recogni-
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tion of the work by K.F. Gauss in 1809, it was actually discovered earlier by

De Moivre in 1714 to be a good approximation to the binomial distribution:

X ∼ Bin(n, π) ≈ N(nπ, nπ(1− π)) for large n. Rather than refer to it as the

“Gaussian” (or “Demoivrian” !) distribution, it is better to simply refer to it

as the “normal” distribution.

The reason why the normal distribution is so effective at explaining many

measured variables is explained by the Central Limit Theorem, which

roughly states that the distribution of the mean of many independent vari-

ables generally tends to the normal distribution in the limit as the number

of variables increases. In other words, the normal distribution is the unique

invariant fixed point distribution for means. Measurement errors are often

the sum of many uncontrollable random effects, and so can be well-described

by the normal distribution.

The standard normal distribution with zero mean and unit variance

X ∼ N(0, 1) is widely used in statistics. The area under the standard normal

curve, F (x), is sometimes referred to as the error function and given its own

special symbol Φ(x), which can be evaluated numerically on a computer to find

probabilities. For example, the probability of a normally distributed variable

X with mean µ = 10 and σ = 2 being less than or equal to x = 14 is given by

Pr{X ≤ x}, which is equal to Φ((x−µ)/σ) = Φ((14− 10)/2) = Φ(2) = 0.977.

Example 4: Gamma distribution

A positive random variable is gamma distributed X ∼ Gamma(α, β) when

f(x) =
βα

Γ(α)
xα−1e−βx (4.8)

where α, β > 0. The parameter α is known as the shape parameter and

determines the shape (skewness) of the distribution, whereas parameter β is

known as the inverse scale parameter and determines the scale/width of

the distribution. The population mean E(X) = α/β and the population vari-

ance var(X) = α/β2. The coefficient of variation, σ/µ = 1/
√
α, provides a

simple (moment) method estimate of the shape parameter. The mode of the
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distribution is less than the mean and located at (α − 1)/β when α > 1. For

α ≤ 1, the Gamma density is inverse J-shaped with the mode at x = 0.
The gamma distribution is useful for describing positively skewed positive

variables such as rainfall totals. A nice additive property of gamma distributed

variables is that if X1 and X2 are independent with X1 ∼ Gamma(α1, β) and

X2 ∼ Gamma(α1, β), then X1 +X2 ∼ Gamma(α1 + α2, β). For example, the

sum S of n independent rainfall totals distributed as X ∼ Gamma(α, β) will

also be Gamma distributed as S ∼ Gamma(nα, β).

Several commonly used distributions are special cases of the gamma dis-

tributions. The exponential distribution X ∼ Expon(β) is the special case

of the Gamma distribution when α = 1 i.e. X ∼ Gamma(1, β). The special

case X ∼ Gamma(n/2, 1/2) is also known as the chi-squared distribution

X ∼ χ2
n with n degrees of freedom. The chi-squared distribution describes the

distribution of the sum of squares of n independent standard normal variables,

and so for example, the sample variance of n independent normal variates is

distributed as s2/σ2 ∼ χ2
n−1 (there are n− 1 degrees of freedom rather than n

since one is lost in estimating the sample mean).

4.4 Further reading

Probability distributions are the main building bricks used by statisticians

to model data, and so are covered in most basic statistics books. They are

also well described on many online glossarys, which often include instructive

graphical demonstrations (e.g. StatSoft’s online textbook).



Chapter 5

Parameter estimation

Aim: The aim of this chapter is to explain how sample statistics can be

used to obtain accurate estimates of population parameters. Due to the

finite size of samples, all estimates are uncertain but the amount of sampling

uncertainty can be estimated using sampling theory.

5.1 Motivation

Imagine that we assume a certain random variable to be distributed according

to some distribution X ∼ f(θ) and that we wish to use a sample of data to

estimate the population parameter θ. For example, we may be interested

in estimating either the mean µ or the variance σ2 (or both) of a variable that

is thought to be normally distributed X ∼ N(µ, σ2). A single value point

estimate θ̂ may be obtained by choosing a suitable sample statistic θ̂ = t(x),

for example, the sample mean t(x) = x provides a simple (yet far from unique)

way of estimating the population mean µ. However, because sample sizes are

finite, the sample estimate is only an approximation to the true population

value - another sample from the same population would give a different value

for the same sample statistic. Therefore, rather than give single value point

estimates, it is better to use the information in the sample to provide a range

of possible values for θ known as an interval estimate. To take account of
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the sampling uncertainty caused by finite sample size, it is necessary to

consider the probability distribution of sample statistics in more detail.

5.2 Sampling distributions

The probability distribution of a sample statistic such as the sample mean is

known as a sampling distribution (and should not be confused with the

probability distribution of the underlying random variable). For example, it

can be shown that the sample mean of n independent normally distributed

variables X ∼ N(µ, σ2) has a sampling distribution given by X ∼ N(µ, σ2/n).

In other words, the sample mean of n normal variables is also normally dis-

tributed with the same mean but with a reduced variance σ2/n that becomes

smaller for larger samples. Rather amazingly, the sample mean of any variables

no matter how distributed has a sampling distribution that tends to normal

X ∼ N(µ, σ2/n) for sufficiently large sample size. This famous result is known

as the Central Limit Theorem and accounts for why we encounter the nor-

mal distribution so often for observed quantities such as measurement errors

etc.

The sampling distribution fT (.) of a sample statistic T (X) depends on:

• The underlying probability distribution X ∼ f(.) determined by its pop-

ulation parameters (.) = (µ, σ2, etc).

• The choice of the particular sample statistic. Simple analytic forms
for the sampling distribution can only be derived for a few particularly

simple sample statistics such as the sample mean and sample variance.

In other cases, it is necessary to resort to computer based simulation

methods such as resampling.

• The sample size n. The larger the sample size, the less the uncertainty
(spread) in the sampling distribution. For example, the mean heights of

two different samples of meteorologists could be quite different for small

samples with n = 11, whereas the mean heights are unlikely to be very

different for large samples with n = 11000.
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5.3 Sampling errors

For infinitely large sample sizes, the spread of the sampling distribution (sampling

uncertainity) tends to zero. However, for finite samples, there is always uncer-

tainty in the estimate due to the finite spread of the sampling distribution.

A traditional physicist approach to providing an estimate of this sampling

uncertainty is to quote the standard error, which is defined as the standard

deviation st of a sample statistic t (i.e. the spread of the sampling distribution).

For example, the heights of meteorologists in Table 2.1 have a sample mean of

174.3cm and a sample standard deviation of 7.9cm, and therefore an estimate

of the population mean would be 174.3cm with a standard error of 2.4cm

(sx = s/
√
n). Physicists write this succintly as t ± st e.g. 174.3 ± 2.4cm.

The interval [t − st, t + st] is known as an error bar and it is often stated

that a “measurement without an error bar is meaningless”. In other words, to

interpret a estimate meaningfully you need to have an idea of how uncertain

the estimate may be due to sampling.

Sampling errors of linear combinations of independent random variables

can easily be estimated by summing sampling variances. If random variable

Z is a linear combination aX + bY of two independent and normally dis-

tributed variables X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ), then Z is also nor-

mally distributed Z ∼ N(µZ , σ
2
Z) with mean µZ = aµX + bµY and variance

σ2
Z = a2σ2

X + b2σ2
Y . Therefore, the standard error sZ of Z = aX + bY is

√

a2s2
X + b2s2

Y , and so, for example, the standard error of the difference of two

sample statistics Z = X − Y is simply
√

s2
X + s2

Y - the quadrature sum of the

standard errors of X and Y .

5.4 Confidence intervals

An error bar is a simple example of what statisticians refer to as an interval

estimate. Instead of estimating a point value for a parameter, the sample

data is used to estimate a range of estimates that are likely to cover the true

population parameter with a prespecified probability known as the confidence
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(b) 68.3% confidence interval
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(b) 95% confidence interval

Figure 5.1: Sampling density function of statistic t showing the [tα/2 and t1−α/2]

lower and upper confidence limits.

The (1−α)100% confidence interval (C.I.) [tα/2, t1−α/2], of a sample stat-

istic t(x) is defined by the lower and upper confidence limits tα/2 and t1−α/2,

respectively (where tp is the p’th quantile of the sampling distribution of T ).

These intervals are shown schematically in Fig. 5.1. The probability that this

interval includes the true population value is equal to the confidence level

(1 − α). In other words, if C.I.’s were calculated for many different samples

drawn from the full population then a (1−α) fraction of the C.I.’s would cover
the true population value. In classical (but not Bayesian) statistics, the true
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population parameter is considered to be a fixed constant and not a random

variable, hence it is the C.I.’s that randomly overlap the population parameter

rather than the population parameter that falls randomly in the C.I..

Statisticians most often quote 95% confidence intervals, which should cover

the true value in all but 5% of repeated samples. For normally distributed

sample statistics, the 95% confidence interval is about twice as wide as the ±1
error bar used by physicists (see example below). The±1 error bar corresponds
to the 68.3% confidence interval for normally distributed sample statistics. In

addition to its more precise probabilistic definition, another advantage of the

C.I. over the error bar is that it is easily extended to skewed statistics such as

sample variance.

5.4.1 Example 1: Confidence Interval for sample mean

The sampling distribution for the sample mean tends in the limit of large

n to X ∼ N(µ, σ2/n). Therefore, the pivotal quantity or test statistic

Z = (X − µ)/(σ/
√
n) is distributed as N(0, 1). The (1 − α)100% confidence

interval for µ can be written

x− Zc
σ√
n
≤ µ ≤ x+ Zc

σ√
n

(5.1)

where Zc(α) = −Φ−1(α/2) is the the half-width of the (1−α)100% confidence
interval measured in standard errors. Zc is sometimes referred to as a critical

value. Table 4.1 gives some critical values for various confidence limits:

α 1− α Zc Description

0.50 0.50 0.68 50% C.I. ± one “probable error”

0.32 0.68 1.00 68% C.I. ± one “standard error”

0.10 0.90 1.65 90% C.I.

0.05 0.95 1.96 95% C.I. about ± two standard errors

0.001 0.999 3.29 99.9% C.I. about ± three standard errors

Table 5.1: Critical values for various common confidence levels
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5.4.2 Example 2: Confidence Interval for sample pro-

portion

Quantities such as the fraction of dry days etc. can be estimated by using the

sample proportion. The sample proportion of a binary event is given by the

sample mean X of a Bernoulli distributed variable X ∼ Be(p). The sampling

distribution of the number of cases X = 1 is given by nX ∼ Bin(n, p). For

large sample size (n ≥ 30), the binomial distribution Bin(n, p) approximates
the normal distribution N(np, np(1− p)), and hence the sampling distribution
becomes X ∼ N(p, p(1− p)/n). Therefore, for large enough samples, the pro-

portion is estimated by p̂ = X/n with a standard error of sp̂ =
√

p̂(1− p̂)/n.

Note the standard errors shrink when p̂ gets close to either zero or one. For

small samples, the normal approximation can not be used and the C.I.’s are

asymmetric due to the skewed nature of the binomial distribution.

5.4.3 Example 3: Confidence Interval for sample vari-

ance

For independent and identically distributed (i.i.d) variables X ∼ N(µ, σ2), the

sample variance s2 is the sum of squared normal variates, and is therefore dis-

tributed as s2/σ2 ∼ χ2
n−1. The C.I. for sample variance is therefore determined

by the α/2 and 1 − α/2 quantiles of the chi-squared distribution with n − 1
degrees of freedom. Because the chi-squared distribution is positively skewed,

the C.I. is asymmetric with a bigger interval between the upper limit and the

sample estimate than between the sample estimate and the lower limit.

5.5 Choice of estimator

Generally, a population parameter can be estimated in a variety of different

ways by using several different sample statistics. For example, the population

mean can be estimated using estimators such as the sample mean, the sample

median, and even more exotic sample statistics such as trimmed means etc..
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This raises the question of which method to use to choose the best estimator.

The three most frequently used estimation approaches are:

1. Moment method - the sample moments, x, x2, x3, etc., are used to

provide simple estimates of the location, scale, and shape parameters

of the population distribution. Although these are the most intuitive

choices for estimator, they have the disadvantage of giving biased estim-

ates for non-normal distributions (non-robust), and can also be unduly

influenced by the presence of outliers in the sample (non-resistant).

2. Robust estimation - instead of using moments, robust estimation

methods generally use statistics based on quantiles e.g. median, in-

terquartile range, L-moments, etc.. These measures are more robust

and resistant but have the disadvantage of giving estimators that have

larger sampling errors (i.e. less efficient estimators - see next section).

3. Maximum Likelihood Estimation (MLE) - These are most widely

used estimators because of their many desirable properties. MLE es-

timates are parameter values chosen so as to maximise the likelihood of

obtaining the data sample. In simple cases such as normally distributed

data, the MLE procedure leads to moment estimates of the mean and

variance. For more complicated cases, the MLE approach gives a clear

and unambiguous approach for choosing the best estimator.

5.6 Accuracy and bias of estimators

The accuracy of an estimator θ̂ can be evaluated by its Mean Squared

Error E((θ̂ − θ)2). The MSE can be decomposed into the sum of two parts:

E((θ̂ − θ)2) = (E(θ̂)− θ)2 + var(θ̂) (5.2)

The first term is the square of the mean bias E(θ̂)− θ and measures the dif-

ference the mean of ALL sample estimates and the true population parameter.
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The second term is the variance of the sample estimate caused by sampling un-

certainty due to finite sample size. Bias can sometimes be reduced by choosing

a different estimator but often at the expense of increased variance.

Estimators with smaller MSE are called more efficient estimators, and

ones with the smallest MSE are called Least Squared Error (LSE) estim-

ators. To obtain the smallest MSE, it is necessary to have small or even no

bias (unbiased) and low variance.

5.6.1 Example 1: The sample mean

The expectation of the sample mean is calculated as follows:

E(X) = E(
1

n

n
∑

i=1

Xi) (5.3)

=
1

n

n
∑

i=1

E(Xi)

=
1

n

n
∑

i=1

µ

= µ

Hence, the bias of the sample mean E(X) − µ is zero and the sample mean

is an “unbiased” estimate of the population mean. As discussed earlier, the

variance of the sample mean is given by σ2/n and, therefore, the MSE of the

sample mean estimate is simply given by σ2/n. As the sample size increases,

the MSE tends to zero and the sample mean estimate converges on the true

population value. This smooth unbiased convergence is what allows us to use

sample means to estimate population means.

5.6.2 Example 2: The sample variance

The sample variance s2 = 1
n

∑n
i=1(xi − x)2 underestimates the population

variance σ2. Using the same approach as in the previous example (try it

!), it is possible to show that E(s2) = σ2(n − 1)/n, and therefore the bias
E(s2) − σ2 = −σ2/n. This underestimate of the true population variance is
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greatest when the sample size is very small, for example, the mean sample

variance is only 2/3 of the true population variance when n = 3. To obtain

an unbiased variance estimate, the sample variance is sometimes defined with

n− 1 in the denominator instead of n i.e. s2 = 1
n−1

∑n
i=1(xi−x)2. However, it

should be noted that this larger estimator also has larger variance than s, and

is therefore a less efficient estimator. It is also worth noting that although this

estimator gives by design an unbiased estimate of the population variance, ŝ

still remains a biased (over)estimate of the population standard deviation.

5.7 Further reading

Chapters 8 and 9 of Spiegel (1992) explain estimation clearly albeit in a rather

old fashioned approach. They also introduce briefly the important idea of res-

ampling which has not been covered in this chapter. Chapter 3 of Emery and

Thomson (1997) give a clear and more in-depth discussion of estimation as

used in oceanography. Von Storch and Zwiers (1999) explains the L-moment

estimation method based on the published articles of Hosking and collaborat-

ors.
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Chapter 6

Statistical hypothesis testing

Aim: The aim of this chapter is to explain how sample statistics can be

used to make binary true/false inferences (decisions) about the population

distribution. How unlikely does the value of a test statistic have to be before

we can reject the idea that it might have just happened by chance sampling ?

6.1 Motivation

6.1.1 The basic approach

The previous chapter on estimation showed how it is possible to use sample

statistics to make estimates of population parameters that include estimates

of sampling uncertainty. However, sometimes we would like to go further and

use sample statistics to test the binary true/false validity of certain hypotheses

(assumptions) about population parameters. In other words, we want to make

true/false decisions about specified hypotheses based on the evidence provided

by the sample of data. This “Sherlock Holmes” detective approach is obviously

more risky than simply estimating parameters, but is often used to clarify

conclusions from scientific work. In fact, the radical idea underlying the whole

of natural science is that hypotheses and theories are not only judged by their

intrinsic beauty but can also be tested for whether or not they explain observed
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data. This is exemplified by the Royal Society’s 1 revolutionary famous motto

“nullis in verba”, which is taken from a poem by the roman poet Horace and

means do not (unquestioningly) accept the words (or theories) of anyone !

Suppose, for example, we suspect there might be a non-zero correlation

between two variables (e.g. sunspot numbers and annual rainfall totals in

Reading). In other words, our scientific hypothesis H1 is that the true (popu-

lation) correlation between these two variables is non-zero. To test this hypo-

thesis, we examine some data and find a sample correlation with, let’s imagine,

a quite large value. Now did this non-zero sample correlation arise because the

hypothesis H1 is really true, or did it just happen by chance sampling ? The

hypothesis that the large sample value happened just by chance is known as

the null hypothesis H0. In order to claim that the alternative hypothesis

H1 is true, we must first show that the large value would be very unlikely to

happen by pure chance. In other words, we must use the data to reject the

null hypothesis H0 in favour of the more scientifically interesting alternative

hypothesis H1. By using the data to reject H0, we are able to make a binary

decision about which of the two hypotheses is least inconsistent with the data.

6.1.2 A legal example

So the approach is not to use the data to accept the alternative hypothesis we

are interested in proving, but instead to use the data to reject the null hypo-

thesis that our peculiar sample of data might just have happened by chance.

In other words, we try to falsify the pure chance hypothesis. To help under-

stand why this somewhat perverse approach actually makes sense, consider

the legal case of trying to prove whether a suspect is guilty of murder. Based

on the available evidence, a decision must be made between the alternative

hypothesis that “the suspect is guilty” and the null hypothesis that “the sus-

pect is innocent”. 2 If we assume the alternative “guilty” hypothesis, then to

avoid conviction we must find evidence of innocence e.g. no sign of a murder

1 one of the world’s oldest scientific academies founded in 1660
2 in this particular example, the alternative hypothesis is the negation of the null hypo-

thesis as is often the case in statistical hypothesis testing.
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weapon with the suspect’s fingerprints. However, no sign of a murder weapon

(or any other evidence of innocence) does not prove that the suspect is inno-

cent since it could just be that the suspect is guilty but the murder weapon

has not yet been found. A different sample of evidence a few years later may

contain the murder weapon and invalidate the earlier evidence of innocence.

Now consider what happens if we start by considering that the null “innocent”

hypothesis is true, and then look for evidence inconsistent with this hypothesis

(e.g. the murder weapon). If we find the murder weapon with the suspect’s

fingerprints, we can clearly reject the null hypothesis that the suspect is in-

nocent, and thereby deduce that the suspect is guilty of murder. One bit of

data inconsistent is enough to falsify a hypothesis, but no amount of consistent

data can verify a non-trivial hypothesis! Look at what happened to Newton’s

laws of motion - the theory was consistent with all observed data over several

centuries, until finally measurements of the speed of light in the 20th century

showed that the whole theory was fundamentally wrong. Therefore, in statist-

ical inference as in science, the correct approach is to use data to falsify rather

than verify hypotheses.

6.1.3 Getting rid of straw men

So to test the alternative hypothesis, we set up a “straw man” null hypothesis

that we then try to knock down by using the data - this is a fairground analogy

where we imagine throwing balls (data) at a straw man (hypothesis) in order to

knock it over. If the data are found to be inconsistent with the null hypothesis,

we can reject the null hypothesis in favour of the alternative hypothesis -

something signficantly different from sampling has happened. If the data are

found to be consistent with the null hypothesis, this does not imply that the

null hypothesis is necessarily true but only that “data are not inconsistent

with the null hypothesis”. In other words, we are not allowed in this case

to make a big fuss about how exciting the result is - it could easily have

happened by chance. This may seem a depressing kind of result but in fact

non-rejections can often be as informative and as useful as rejections and so

deserve to be published. For example, Sir Gilbert Walker successfully isolated
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the Southern Oscillation as a leading global climate pattern by using statistical

testing to eliminate all the other confusing world-wide correlations that were

due to chance.

6.2 Decision procedure
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(a) 75% confidence interval
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(b) 75% upper rejection region
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Figure 6.1: Schematic showing the sampling density function of a test stat-

istic assuming a certain null hypothesis. The critical levels are shown for an

(unusually large) level of significance α = 0.25 for visually clarity.

Statistical testing generally uses a suitable test statistic T (X) that can
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be calculated for the sample. Under the null hypothesis, the test statistic

is assumed to have a sampling distribution that tails off to zero for large

positive and negative values of t. Fig. 6.1 shows the sampling distribution of

a typical test statistic such as the Z-score Z = (X − µ)/σ, which is used to

test hypotheses about the mean. The decision-making procedure in classical

statistical inference proceeds by the following well-defined steps:

1. Set up the most reasonable null hypothesis H0 : X ∼ f(.)

2. Specify the level of significance α you are prepared to accept. This is

the probability that the null hypothesis will be rejected even if it really

is true (e.g. the probability of convicting innocent people) and so is

generally small (e.g. 5%).

3. Use H0 to calculate the sampling distribution T ∼ fT (.) of your desired

test statistic T (X)

4. Calculate the p-value p = Pr{‖T‖ ≥ t} of your observed sample value t
of the test statistic. The p-value gives the probability of finding samples

of data even less consistent with the null hypothesis than your particular

sample assuming H0 is true i.e. the area in the tails of the probability

density beyond the observed value of the test statistic. So if you observe

a particularly large value for your test statistic, then the p-value will be

very small since it will be rare to find data that gave even larger values

for the test statistic.

5. Reject the null hypothesis if the p-value is less than the level of signific-

ance p < α on the grounds that the data are inconsistent with the null

hypothesis at the α level of significance. Otherwise, do not reject the

null hypothesis since the “data are not inconsistent” with it.

The level of significance defines a rejection region (critical region) in

the tails of the sampling distribution of the test statistic. If the observed value

of the test statistic lies in the rejection region, the p-value is less than α and

the null hypothesis is rejected. If the observed value of the test statistic lies
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closer to the centre of the distribution, then the p-value is greater than or

equal to α and the null hypothesis can not be rejected. All values of t that

have p-values greater than or equal to α define the (1 − α)100% confidence

interval.

Example: Are meteorologists taller or shorter than other people ?

Let us try and test the hypothesis that Reading meteorologists have differ-

ent mean heights to other people in Reading based on the small sample of data

presented in Table 2.1. Assume that we know that the population of all people

in Reading have heights that are normally distributed with a population mean

of µ0 =170cm and a population standard deviation of σ0 =30cm. So the null

hypothesis is that our sample of meteorologists have come from this popula-

tion, and the alternative hypothesis is that they come from a population with

a different mean height. Mathematically the hypotheses can be stated as:

H0 : µ = µ0 (6.1)

H1 : µ 6= µ0

where µ0 = 170cm. Let’s choose a typical level of significance equal to 0.05.

Under the null hypothesis, the sampling distribution of sample means should

follow X ∼ N(µ0, σ
2
0/n), and hence the test statistic Z = (X−µ0)/(σ0/

√
n) ∼

N(0, 1). Based on our sample of data presented in Table 2.1, the mean height

is X = 174.3cm and so the test statistic z is equal to 0.48, in other words, the

mean of our sample is only 0.48 standard errors greater than the population

mean. The p-value, i.e. the area in the tails of the density curve beyond this

value, is given by 2(1−Φ(|z|) and so for a z of 0.48 the p-value is 0.63, which
is to say that there is a high probability of finding data less consistent with

the null hypothesis than our sample. The p-value is clearly much larger than

the significance level and so we can not reject the null hypothesis in this case -

at the 0.05 level of significance, our data is not inconsistent with coming from

the population in Reading. Based on this small sample data, we can not say

that meteorologists have different mean heights to other people in Reading.
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6.3 Alternative hypotheses

So far we have been considering simple situations in which the alternative

hypothesis is just the complement of the null hypothesis (e.g. H0 : µ = µ0

and H1 : µ 6= µ0). The rejection region in such cases includes the tails on

both sides of t = 0, and so the tests are known as two-sided tests or two-

tailed tests. However, it is possible to have more sophisticated alternative

hypotheses where the alternative hypothesis is not the complement of the null

hypothesis. For example, if we wanted to test whether means were not just

different but were larger than the population mean, we would use instead

these hypotheses H0 : µ = µ0 and H1 : µ > µ0. The null hypothesis would

be rejected in favour of the alternative hypothesis only if the sample mean

was significantly greater than the population mean. In other words, the null

hypothesis would only be rejected if the test statistic fell in the rejection region

to the right of the origin. This kind of test is known as a one-sided test or

one-tailed test. One-sided tests take into account more prior knowledge

about how the null hypothesis may fail.

H0 true H1 true

p > α Correct non rejection Missed rejection (Type II error)

don’t reject H0 probability 1− α probability β

p ≤ α reject False rejection (Type I error) Correct rejection

reject H0 probability α probability 1− β

Table 6.1: The four possible situations that can arise in hypothesis testing

Table 6.1 shows the four possible situations that can arise in hypothesis

testing. There are two ways of making a correct decision and two ways of mak-

ing a wrong decision. The false rejection of a true null hypothesis is known

as a Type I error and occurs with a probability exactly equal to the level

of significance α for a null hypothesis that is true. In the legal example, this

kind of error corresponds to the conviction of an innocent suspect. This kind

of error is made less frequent by choosing α to be a small number typically

0.05, 0.01, or 0.001. The missed rejection of a false null hypothesis is known
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as a Type II error and corresponds to failing to convict a guilty suspect in

the legal example. For a true alternative hypothesis, type II errors occur with

an unspecified probability β determined by the sample size, the level of signi-

ficance, and the choice of null hypothesis and test statistic. The probability

1 − β is known as the power of the test and this should ideally be as large

as possible for the test to avoid missing any rejections. There is invariably

a trade off between Type I and Type II errors, since choosing a smaller α

leads to fewer overall rejections, and so fewer type I errors but more type II

errors. To reduce the number of type II errors it is a good idea to choose the

null hypothesis to be the simplest one possible for explaining the population

(“principle of parsimony”).

6.4 Examples of bad practice

The atmospheric sciences literature is full of bad practice concerning statistical

hypothesis testing. Hopefully, after this course, you will not contribute to the

continuation of these bad habits ! Here are some of the classic mistakes that

are often made in the literature:

• “The results ... are statistically significant”
Complete failure to state clearly which hypotheses are being tested and

the level of significance. In addition, the way this is stated treats statist-

ical inference as just a way of rubber stamp approving results that the

author found interesting. This is not what inference is about.

• “... and are 95% significant”
What the author is trying to say is that the null hypothesis can be

rejected at the 0.05 level of significance. In statistics, levels of significance

are kept small (e.g. α = 0.05), whereas levels of confidence are generally

large (e.g. 1 − α = 0.95). This abuse of convention is particularly bad

in the atmospheric science literature (as also noted by von Storch and

Zwiers 1999).
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• “the results are not significant at the 0.05 level but are signi-
ficant at the 0.10 level”

The idea of hypothesis testing is that you FIX the level of significance

BEFORE looking at the data. Choosing it after you have seen what the

p-values are so as to reject the null hypothesis will lead to too many

rejections. If the p-values are quite large (i.e. greater than 0.01) then

it is good practice to quote the values and then let the reader make the

decision.

• “however, the results are significant in certain regions”
This is stating the obvious since the more data samples (variables) you

look at, the more chance you will have of being able to reject the null

hypothesis. With large gridded data sets, there is a real danger of “data

mining” and fooling yourself (and others) into thinking you have found

something statistically significant. The total number of data samples

or variables examined needs to be taken into account when doing many

tests at the same time. See Wilks (1995) for a discussion of these kind

of multiplicity and dimensionality problems.

• “the null hypothesis can not be rejected and so must be true”
Wrong. Either the null hypothesis is true OR your data sample was just

not the right one to be able to reject the null hypothesis. If the null

hypothesis can not be rejected all you can say is that the “data are not

inconsistent with the null hypothesis” (remember this useful phrase !).

6.5 One sample tests in environmental science

This and the following section will briefly list some of the hypothesis tests

most frequently used in the atmospheric and environmental sciences. Some

basic one sample tests will be described in this section, and then some tests

for comparing two samples of data (e.g. control and perturbed experiments)

will be presented in the following section.

One sample tests are used to test whether a particular sample could have
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been drawn from a population with known parameters. The tests compare an

observed sample statistic with a given population parameter.

6.5.1 Z-test on a mean with known variance

Does a sample come from a population with mean µ0 and variance σ0 ?

H0 : µ = µ0 (6.2)

σ = σ0

H1 : µ 6= µ0

Test using a Z-score test statistic with the sampling distribution

Z =
X − µ0

σ0/
√
n
∼ N(0, 1)

6.5.2 T-test on a mean with unknown variance

Does a sample come from a population with mean µ0 ?

H0 : µ = µ0 (6.3)

H1 : µ 6= µ0

Since the population variance is no longer known we must estimate it using the

sample variance s2. This increases the uncertainty and modifies the sampling

distribution of the test statistic slightly for small sample sizes n < 30. Instead

of being distributed normally, the test statistic is distributed as Student’s

t distribution T ∼ tν with ν = n − 1 degrees of freedom. Student’s t
distribution has a density f(t) ∝ (1 + t2)−n/2, which resembles the normal

density except that it has slightly fatter tails (leptokurtic) and so provides

more chance of having values far from the mean. This test is often referred to

as a one-sample t-test on the mean. Test using a T-score test statistic with

the sampling distribution

T =
X − µ0

s/
√
n
∼ tn−1
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6.5.3 Z-test for non-zero correlation

Are two variables significantly correlated with a population correlation ρ dif-

ferent from zero ?

H0 : ρ = 0 (6.4)

H1 : ρ 6= 0

Two-sided test using a t statistic with Student’s t sampling distribution

T =
r
√
n− 2√
1− r2

∼ tn−2

6.6 Two sample tests

Two sample tests are used to test whether two samples of data could have come

from the same population. For example, we might be interested in comparing

results from an experiment with those from a control experiment. Two sample

tests compare the values of the sample statistic observed in the two different

samples. When more than two samples need to be tested (e.g. 3 experiments),

instead of performing two sample tests between all pairs of possible samples, it

is better to use a more integrated multiple testing approach such as ANalysis

Of VAriance (ANOVA). See Von Storch and Zwiers (1999) for more discussion.

6.6.1 T-test on unpaired means with unknown variance

Do two samples come from populations with the same mean ?

H0 : µ1 − µ2 = 0 (6.5)

H1 : µ1 − µ2 6= 0

Two-sided test using a T test statistic based on the difference in sample means

that has a Student’s t distribution with n1 + n2 − 2 degrees of freedom

T =
X1 −X2

sp/
√
n
∼ tn1+n2−2
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where 1
n
= 1

n1
+ 1

n2
and s2

p is the pooled estimate of variance

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

(n1 + n2 − 2)
(6.6)

6.6.2 T-test on paired means with unknown variance

Do two paired samples come from populations with the same mean µ0 ?

Sometimes two samples are either generated or gathered as pairs of values

{(X1, X2)} rather than as two separate samples {X1} and {X2}, e.g. heights
of twins. In this case, the two-sample test on means described above is inap-

propriate and a paired test has to be used. The paired test is based on testing

the mean difference of all pairs D = X1 −X2 for zero mean.

H0 : µD = 0 (6.7)

H1 : µD 6= 0

Test using a T-score test statistic with the sampling distribution

T =
D − µ0

sD/
√
n
∼ tn−1

6.6.3 F-test for equal variances

Do two samples come from populations with the same variance ?

H0 : σ1 = σ2 (6.8)

H1 : σ1 6= σ2

Two-sided test using an F test statistic distributed as an F distribution

with n1 and n2 degrees of freedom . The F distribution is named after the

famous statistician Sir R. Fisher who discovered it while inventing the widely

used ANalysis Of VAriance techniques.

F =
s2
1

s2
2

∼ F (n1 − 1, n2 − 1)
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6.6.4 Z-test for unpaired equal correlations

Do two samples come from populations with the same correlation ?

H0 : ρ1 = ρ2 (6.9)

H1 : ρ1 6= ρ2

The trick here is to transform correlations into variables that are approximately

normally distributed by using Fisher’s Z transformation

Z =
1

2
loge

(

1 + r

1− r

)

(6.10)

The variance of Z is independent of r and is given by s2
Z = 1/(n − 3). The

hypotheses can now be tested easily by using a 2-sample Z-test on unpaired

means of normally distributed variables Z1 and Z2.

Z =
Z1 − Z2

sp
∼ N(0, 1)

where the pooled estimate of variance is given by

s2
p = s2

1 + s2
2 =

1

n1 − 3
+

1

n2 − 3

6.7 Further reading

Because of its obvious importance, inferential statistics is covered in many

statistics books. Chapter 10 of Spiegel (1992) provides a clear introduction to

statistical hypothesis testing with many examples. A more in-depth discussion

is given in Chapter 5 of Wilks (1995). Chapter 3 of Emery and Thomson (1997)

has a concise summary of hypothesis testing.

The whole of this chapter is based on classical statistical inference, which

assumes that the population parameters are fixed constants with no uncer-

tainty. Bayesian statisticians relax this assumption and treat both variables

and population parameters as random variables. The extra uncertainty in the
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population parameters can sometimes lead to different Bayesian inferences to

those found using classical inference. A clear non-mathematical introduction

to Bayesian statistics can be found in Berry (1996).

Many wise and amusing words on the difficult art of inference and its

potential pitfalls can be found in the stories of Sherlock Holmes by Sir Arthur

Conan Doyle.
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Basic Linear Regression

Aim: The aim of this chapter is to introduce the concept of a linear regression

model and show how it can be used to model the response of a variable to

changes in an explanatory variable.

7.1 A few words on modelling strategy ...

Models provide compact ways of summarising observed relationships and are

essential for making predictions and inferences. Models can be considered to

be maps (representations) of reality and like any map can not possibly describe

everything in reality (nor do they have to !). This is nicely summarised in the

famous quotation:

“All models are wrong, but some are useful” - G.E.P. Box

Good modellers are aware of their models’ strengths and weaknesses and

use the models appropriately. The process of choosing the most appropriate

models is very complex and involves the following stages:

1. Identification

By analysing the data critically using descriptive techniques and thinking

about underlying processes, a class of potentially suitable models can be
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identified for further investigation. It is wise in this stage to consider first

the simplest possible models (e.g. linear with few parameters) that may

be appropriate before progressing to more complex models (e.g. neural

networks).

2. Estimation

By fitting the model to the sample data, the model parameters and

their confidence intervals are estimated by usually using either least-

squares or maximum likelihood methods. Estimation is generally easier

and more precise for parsimonius models that have the least number

of parameters.

3. Evaluation

The model fit is critically assessed by carefully analysing the residuals

(errors) of the fit and other diagnostics. This is sometimes referred to as

validation and/or verification by the atmospheric science community.

4. Prediction

The model is used to make predictions in new situations (i.e. independent

data to that used in making the fit). The model predictions are then

verified to test whether the model has any real skill. Predictive skill is

the ultimate test of any model. There is no guarantee that a model which

provides a good fit, will also produce good predictions. For example, non-

parsimonious models having many parameters that provide excellent fits

to the original data often fail to give good predictions when applied to

new data (over-fitting).

By iterating at any stage in this process, it is possible with much skill and

patience to find the most appropriate models.

7.2 Linear regression

It is a reasonable hypothesis to expect that body height may be an import-

ant factor in determining the body weight of a Reading meteorologist. This
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dependence is apparent in the scatter plot below showing the paired weight

versus height data (xi, yi) for the sample of meteorologists at Reading. Scatter

plots are useful ways of seeing if there is any relationship between multiple

variables and should always be performed before quoting summary measures

of linear association such as correlation.

Figure 7.1: Scatter plot of body weight versus height for the sample of met-

eorologists at Reading. Best least squares fit regression line is superimposed.
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The response variable (weight) is plotted along the y-axis while the ex-

planatory variable (height) is plotted along the x-axis. Deciding which vari-

ables are responses and which variables are explanatory factors is not always

easy in interacting systems such as the climate. However, it is an important

first step in formulating the problem in a testable (model-based) manner. The

explanatory variables are assumed to be error-free and so ideally should be

control variables that are determined to high precision.

The cloud of points in a scatter plot can often (but not always!) be ima-

gined to lie inside an ellipse oriented at a certain angle to the x-axis. Math-

ematically, the simplest description of the points is provided by the additive

linear regression model

yi = β0 + β1xi + εi (7.1)

where {yi} are the values of the response variable, {xi} are the values of the
explanatory variable, and {εi} are the left-over noisy residuals caused by
random effects not explainable by the explanatory variable. It is normally

assumed that the residuals {εi} are uncorrelated Gaussian noise, or to be more
precise, a sample of independent and identically distributed (i.i.d.) normal

variates.

Equation 7.1 can be equivalently expressed as the following probability

model:

Y ∼ N(β0 + β1X, σε) (7.2)

In other words, the Y values are normally distributed about a mean that is

linearly dependent on X i.e. β0 + β1X. This makes the probability distribu-

tion clearly apparent and reveals ways of how to extend regression to more

complicated situations.

The model parameters β0 and β1 are the y-intercept and the slope of

the linear fit. They can be estimated using least squares by minimising the

sum of squared residuals
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SS =
n
∑

i=1

ε2i =
n
∑

i=1

(yi − β0 − β1xi)
2 (7.3)

By solving the two simultaneous equations

∂SS

∂β0

= −2
n
∑

i=1

(yi − β0 − β1xi) = 0 (7.4)

∂SS

∂β1

= −2
n
∑

i=1

(yi − β0 − β1xi)xi = 0 (7.5)

it is possible to obtain the following least squares estimates of the two model

parameters:

β̂1 =
sxy
s2
x

(7.6)

β̂0 = y − β̂1x (7.7)

(7.8)

Since the simultaneous equations involve only first and second moments

of the variables, least squares linear regression is based solely on knowledge

of means and (co)variances. It gives no information about higher moments of

the distribution such as skewness or the presence of extremes.

7.3 ANalysis Of VAriance (ANOVA) table

When MINITAB is used to perform the linear regression of weight on height

it gives the following results:

The regression equation is

Weight = - 25.5 + 0.588 Height
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Predictor Coef StDev T P

Constant -25.52 46.19 -0.55 0.594

Height 0.5883 0.2648 2.22 0.053

S = 6.606 R-Sq = 35.4% R-Sq(adj) = 28.2%

Analysis of Variance

Source DF SS MS F P

Regression 1 215.30 215.30 4.93 0.053

Residual Error 9 392.70 43.63

Total 10 608.00

The regression equation ŷ = β̂0 + β̂1x is the equation of the straight

line that “best” fits the data. The hat symbolˆ is used to denote “predicted

(or estimated) value”. Note that regression is not symmetric: a regression of

x on y does not generally give the same relationship to that obtained from

regression of y on x.

The Coef column gives the best estimates of the model parameters associ-

ated with the explanatory variables and the StDev column gives an estimate

of the standard errors in these estimates. The standard error on the slope is

given by

sβ1 =
1− r2

√
n

sy
sx

(7.9)

where r is the correlation between x and y and sx and sy are the standard

deviations of x and y respectively.

The other two columns can be used to assess the statistical significance of

the parameter estimates. The T column gives the ratio of the parameter estim-

ate and its standard error whereas the P column gives a p-value (probability

value) for rejection of the null hypothesis that the parameter is zero (i.e. not

a significant linear factor). For example, a p-value of 0.05 means that there is
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5% chance of finding data less consistent with the null hypothesis (zero slope

parameter) than the fitted data. Small p-values mean that it is unlikely that

the slope was non-zero purely by chance.

The overall goodness of fit can be summarised by calculating the fraction

of total variance explained by the fit

R2 =
var(ŷ)

var(y)
=
var(β̂0 + β̂1x)

var(y)
(7.10)

which is also known as the coefficient of determination and is the square of

the sample correlation between the variables for this simple regression model.

Unlike correlations that are often quoted by meteorologists, variances have the

advantage of being additive and so provide a clear budget of how much of the

total response can be explained. Note also that even quite high correlations

(e.g. 0.5) mean that only a small fraction of the total variance can be explained

(e.g. (0.5)2 = 0.25).

The MINITAB output contains an ANalysis Of VAriance (ANOVA) table

in which the sums of squares SS equal to n times the variance are presented

for the regression fit ŷ, the residuals ε, and the total response y. ANOVA can

be used to test the significance of the fit by applying F-tests on the ratio of

variances. The p-value in the ANOVA table gives the statistical significance of

the fit. When summarizing a linear regression, it is important to quote BOTH

the coefficient of determination AND the p-value. With the small sample sizes

often encountered in climate studies, fits can have substantial R2 values yet

can still fail to be significant (i.e. do not have a small p-value).

7.4 Model fit validation using residual diagnostics

In addition to the basic summary statistics above, much can be learned about

the validity of the model fit by examining the left-over residuals. The linear

model is based on certain assumptions about the noise term (i.e. independent

and Gaussian) that should always be tested by examining the standardized

residuals. Resisduals should be tested for:
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1. Structure The standardized residuals should be identically distributed

with no obvious outliers. To check this, plot εi versus i and look for

signs of structure. The residuals should appear to be randomly scattered

(normally distributed) about zero.

Figure 7.2: Residuals versus order of points for the regression of weight on

height.

2. Independence The residuals should be independent of one another. For

example, there should be no sign of runs of similar residuals in the plot of

εi versus i. Autocorrelation functions should be calculated for regularly

spaced residuals to test that the residuals are not serially correlated.

3. Outliers There should not be many standardised residuals with mag-

nitudes greater than 3. Outlier points having large residuals should be

examined in more detail to ascertain why the fit was so poor at such

points.

4. Normality The residuals should be normally distributed. This can be

examined by plotting a histogram of the residuals. It can be tested

by making a normal probability plot in which the normal scores of the
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residuals are plotted against the residual value. Straight line indicates

normal distribution.

Figure 7.3: Normal probability plot of the residuals for the regression of

weight on height.

5. Linearity The residuals should be independent of the fitted (predicted)

values {ŷi}. This can be examined by making a scatter plot of εi versus
{ŷi}. Lack of uniform scatter suggests that there may be a nonlinear de-
pendence between y and x that could be better modelled by transforming

the variables. For mutliple regression, with more than one explanatory

variable, the residuals should be independent of ALL the explanatory

variables.

In addition to these checks on residuals, it is also important to check

whether the fit has been dominated by only a few influential observations

far from the main crowd of points that can have high leverage. The leverage

of a particular point can be assessed by testing the mean squared differences of

all the predicted values to leaving out this point (known asCook’s distances).
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Figure 7.4: Residuals versus the fitted values for the regression of weight on

height.

7.5 Weighted and robust regression

In the above Ordinary Least Squares (OLS) regression, it was assumed

that the noise term was i.i.d. normal (identically and independently distributed

normally). However, this assumption about the noise term is not always the

most appropriate as can sometimes be noted in the residual diagnostics.

In cases where the variance of the noise is not identical at all points, it is

better to perform a General Least Squares regression that gives less weight

to yi values that are more uncertain.

In cases where the noise is more extreme than that expected from a normal

distribution (i.e. fatter tails), it is better to perform robust regression. This

is appropriate if it is found that the standardized residuals have large mag-

nitudes. Robust regression is also advisable when dealing with small samples

as often occurs in climate studies. There are many different ways to do ro-

bust regression including Least Absolute Deviations (L1 norm), M-Estimators,

Least Median Squares, and Ranked Residuals. More details can be found in

standard texts such as Draper and Smith (1998).
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7.6 Further sources of information

The comprehensive book by Draper and Smith (1998) on applied regression

analysis covers all these areas in much more depth and is well worth reading if

you are involved with regression. StatSoft Inc.’s Electronic Statistics Textbook

(www.statsoft.com/textbook/stathome.html) has a nice animated section on

basic linear regression showing the danger of influential observations.
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Chapter 8

Multiple and nonlinear

regression

Aim: Linear regression can be extended to deal with cases having more than

one explanatory variable (multiple regression), more than one response variable

(multivariate regression), or non-linear dependencies. This chapter will briefly

present all these possible extensions.

8.1 Multiple regression

It is often the case that a response variable may depend on more than one

explanatory variable. For example, human weight could reasonably be expec-

ted to depend on both the height and the age of the person. Furthermore,

possible explanatory variables often co-vary with one another (e.g. sea surface

temperatures and sea-level pressures). Rather than subtract out the effects of

the factors separately by performing successive iterative linear regressions for

each individual factor, it is better in such cases to perform a single multiple

regression defined by an extended linear model. For example, a mutliple

regression model having two explanatory factors is given by
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yi = β0 + β1xi1 + β2xi2 + εi (8.1)

This model can be fit to the data using least squares in order to estimate

the three β parameters. It can be viewed geometrically as fitting a q = 2

dimensional hyperplane to a cloud of points in (x1, x2, y) space.

The multiple regression equation can be rewritten more concisely in matrix

notation as

Y = Xβ + E (8.2)

where Y is a (n× 1) data matrix (vector) containing the response variable, X
is a (n × q) data matrix containing the q factors, β is a (q × 1) data matrix
containing the factor coefficients (model parameters), and E is a (n× 1) data
matrix (vector) containing the noise terms.

The least squares solution is then given by the set of normal equations

(X′X)β = X′Y (8.3)

where ′ denotes the transpose of the matrix. When X′X is non-singular, these

linear equations can easily be solved to find the β parameters. The β paramet-

ers can be used to determine unambiguously which variables are significant in

determining the response.

As with many multivariate methods, a good understanding can be obtained

by considering the bivariate case with two factors (q = 2). To make matters

even simpler, consider the unit scaled case in which x1 and x2 have been stand-

ardized (mean removed and divided by standard deviation) before performing

the regression. By solving the two normal equations, the best estimates for

the beta parameters can easily be shown to be given by

β1 =
r1y − r12r2y
1− r2

12

(8.4)

β2 =
r2y − r12r1y
1− r2

12

(8.5)
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where r12 = cor(x1, x2) is the mutual correlation between the two x variables,

r1y = cor(x1, y) is the correlation between x1 and y, and r2y = cor(x2, y) is the

correlation between x2 and y. By rewriting the correlations in terms of the

beta parameters

r1y = β1 + β2r12 (8.6)

r2y = β2 + β1r12 (8.7)

it can be seen that the correlations with the response consist of the sum of

two parts: a direct effect (e.g. β1), and an indirect effect (e.g. β2r12) mediated

by mutual correlation between the explanatory variables. Unlike descriptive

correlation analysis, multiple regression is model-based and so allows one to

determine the relative contribution from these two parts. Progress can then

be made in discriminating important direct factors from factors that are only

indirectly correlated with the response.

The MINITAB output below shows the results of multiple regression of

height on weight and age for the sample of meteorologists at Reading:

The regression equation is

Weight = - 40.4 + 0.517 Age + 0.577 Height

Predictor Coef StDev T P

Constant -40.36 49.20 -0.82 0.436

Age 0.5167 0.5552 0.93 0.379

Height 0.5769 0.2671 2.16 0.063

S = 6.655 R-Sq = 41.7% R-Sq(adj) = 27.1%

Analysis of Variance

Source DF SS MS F P

Regression 2 253.66 126.83 2.86 0.115
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Residual Error 8 354.34 44.29

Total 10 608.00

It can be seen from the p-values and coefficient of determination that the

inclusion of age does not improve the fit compared to the previous regression

that used only height to explain weight. Based on this small sample, it appears

that at the 10% level age is not a significant factor in determining body weight

(p-value 0.379 > 0.10), whereas height is a significant factor (p-value 0.063 <

0.10).

8.2 Multivariate regression

Multiple regression can easily be extended to deal with situations where the

response consists of p > 1 different variables. Multivariate regression is

defined by the General Linear Model

Y = Xβ + E (8.8)

where Y is a (n × p) data matrix containing the response variables, X is a

(n×q) data matrix containing the factors, β is a (q×p) data matrix containing
the factor coefficients (model parameters), and E is a (n × p) data matrix

containing the noise terms.

The least squares estimates for the beta parameters are obtained by solving

the normal equations as in multiple regression. To avoid having large uncer-

tainities in the estimates of the beta parameters, it is important to ensure that

the matrix X′X is well-conditioned. Poor conditioning (determinant of X′X

is small) can occur due to collinearity in explanatory variables, and so it is

important to select only response variables that are not strongly correlated

with one another. To choose the best model, it is vitally important to make

a careful selection of variables when choosing the explanatory variables.

Semi-automatic methods such as forward, backward, and stepwise selection

have been developed to help in this complex process of model identification.
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8.3 Non-linear response

While a linear response is justifiable in many situations, there are also occa-

sions when the response is not expected to be linear. For example, a least

squares regression of probability incorrectly implies that predicted probabilit-

ies can lie outside the acceptable range of 0 to 1. To deal with such situations,

there are two basic approaches. Either you nonlinearly transform the response

variable (see normalising transformations, chapter 2) and then do a linear re-

gression using the transformed response, or you non-linearly transform the

fitted values, which are a linear combination of the explanatory variables. For

example, the widely applied logistic regression uses the logit transformation

y′ = log(y/(1 − y)) (“log odds”). The logarithm transformation is often used

when dealing with quantities that are strictly positive such as prices, while the

square root transformation is useful for transforming positive and zero count

data (e.g. number of storms) prior to linear regression. In a ground-breaking

paper, Nelder and Wedderburn (1972) introduced a formal and now widely

used procedure for choosing the link function g(y) known as Generalized

LInear Modelling GLIM (note “Generalized” not “General” !).

8.4 Parametric and non-parametric regression

The response can also sometimes depend on a nonlinear function of the ex-

planatory variables e.g. y = f(x) + ε. For example, under realistic carbon

emission scenarios, predicted future global warming is not expected to be a

simple linear function of time and so a linear fit would be inappropriate.

In some cases, the expected form of the non-linear function is known and

can be parameterised in terms of basis functions. For example, polynomial re-

gression consists of performing multiple regression with variables {x, x2, x3, . . .}
in order to find the polynomial coefficients (parameters). Note, however, that

strong correlations between {x, x2, x3, . . .} can lead to collinearity and poor
fits. A better approach is to use a basis set of orthogonal uncorrelated pre-

dictor functions such as Fourier modes. These types of regression are known
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as parametric regression since they are based on models that require the

estimation of a finite number of parameters.

In other cases, the functional form is not known and so can not be paramet-

erised in terms of any basis functions. The smooth function can be estimate in

such cases using what is known as non-parametric regression. Two of the

most commonly used approaches to non-parametric regression are smooth-

ing splines 1 and kernel regression. Smoothing splines minimise the sum of

squared residuals plus a term which penalizes the roughness of the fit, whereas

kernel regression involves making smooth composites by applying a weighted

filter to the data. Both methods are useful for estimating the slow trends

in climatic time series and avoid spurious features often obtained in simpler

smoothing approaches.

8.5 Further sources of information

The comprehensive book by Draper and Smith (1998) on applied regression

analysis covers linear and parametric regression in detail and provides many

other useful references. Non-parametric regression and Generalized Linear

Models are well-described in the book by Green and Silverman (1986). The

pioneering article by Nelder and Wedderburn (1972) presents the original mo-

tivation for this important development in modern statistics.

1 not to be confused with the common interpolating cubic splines as described in Nu-

merical Recipes and elsewhere !



Chapter 9

Introduction to time series

Aim: The aim of this chapter is to provide a brief introduction to the analysis

of time series with emphasis on the time domain approach.

9.1 Introduction

The variation in time of environmental quantities can be studied using the rich

branch of statistics known as time series analysis. A discrete (as opposed

to continuous) time series1 is a sequence of observed values {x1, x2, . . . , xn}
measured at discrete times {t1, t2, . . . , tn}. Climatological time series are most
often sampled at regular intervals tk = kτ where τ is the sampling period.

The main aims of time series analysis are to explore and extract signals

(patterns) contained in time series, to make forecasts (i.e. future predictions

in time), and to use this knowledge to optimally control processes.

The two main approaches used in time series analysis are time domain

and spectral (frequency) domain. The time domain approach represents

time series directly as functions of time, whereas the spectral domain approach

represents time series as spectral expansions of either Fourier modes or wave-

lets.

1 NOTE: time series NOT timeseries !
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9.2 Time series components

A lot can be learnt about a time series by plotting xk versus tk in a time series

plot. For example, the time series plot in Figure 9.1 shows the evolution of

monthly mean sea-level pressures measured at Darwin in northern Australia.

Figure 9.1: Time series of the montly mean sea-level pressure observed at

Darwin in northern Australia over the period January 1950 to July 2000.

A rich variety of structures can be seen in the series that include:

• Trends - long-term changes in the mean level. In other words, a smooth
regular component consisting primarily of Fourier modes having periods
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longer than the length of the time series. Trends can be either determ-

inistic (e.g. world population) or stochastic. Stochastic trends are not

necessarily monotonic and can go up and down (e.g. North Atlantic Os-

cillation). Extreme care should be exercised in extrapolating trends and

it is wise to always refer to them in the past tense.

• (Quasi-)periodic signals - having clearly marked cycles such as the
seasonal component (annual cycle) and interannual phenomena such

as El Niño and business cycles. For periodicities approaching the length

of the time series, it becomes extremely difficult to discriminate these

from stochastic trends.

• Irregular component - random or chaotic noisy residuals left over after
removing all trends and (quasi-)periodic components. They are (second-

order) stationary if they have mean level and variance that remain

constant in time and can often be modelled as filtered noise using time

series models such as ARIMA.

Some time series are best represented as sums of these components (ad-

ditive) while others are best represented as products of these components

(multiplicative). Multiplicative series can quite often be made additive by

normalizing using the logarithm transformation (e.g. commodity prices).

9.3 Filtering and smoothing

It is often useful to either low-pass filter (smooth) time series in order to

reveal low-frequency features and trends, or to high-pass filter (detrend)

time series in order to isolate high frequency transients (e.g. storms).

Some of the most commonly used filters are:

• Moving average MA(q)
This simple class of low-pass filters is obtained by applying a running

mean of length q to the original series
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yt =
1

q

q/2
∑

k=−q/2

xt+k (9.1)

For example, the three month running mean filter MA(3) is useful for

crudely filtering out intraseasonal oscillations. Note, however, that the

sharp edges in the weights of this filter can causing spurious ringing

(oscillation) and leakage into the smoothed output.

• Binomial filters (1/2, 1/2)m

These smoother low-pass filters are obtained by repeatedly applying

the MA(2) filter that has weights (1/2, 1/2). For example, with m =

4 applications the binomial filter weights are given by (1/2, 1/2)4 =

(1, 4, 6, 4, 1)/16 which tail off smoothly towards zero near the edges.

After many applications, the weights become Gaussian and the filter-

ing approximates Gaussian kernel smoothing.

• Holt exponential smoother

This simple and widely used recursive filter is obtained by iterating

yt = αxt + (1− α)yt−1 (9.2)

where α < 1 is a tunable smoothing parameter. This low-pass filter gives

most weight to most recent historical values and so provides the basis

for a sensible forecasting procedure when applied to trend, seasonal, and

irregular components (Holt-Winters forecasting).

• Detrending (high-pass) filters

High-pass filtering can most easily be performed by subtracting a suitably

low-pass filtered series from the original series. The detrended residuals
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xt−yt contain the high-pass component of x. For example, the backward
difference detrending filter ∆x = xt − xt−1 is simply twice the residual

obtained by removing a MA(2) low-pass filtered trend from a time series.

It is very efficient at removing stochastic trends and is often used to

detrend non-stationary time series (e.g. random walks in commodity

prices).

Figure 9.2: Time series plot of one-year backward differences in monthly

mean sea-level pressure at Darwin from the period January 1951 to July 2000.

The differencing has efficiently removed both the seasonal component and the

long-term trend thereby revealing short-term interannual variations.
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9.4 Serial correlation

Successive values in time series are often correlated with one another. This

persistence is known as serial correlation and leads to increased spectral

power at lower frequencies (redness). It needs to be taken into account when

testing significance, for example, of the correlation between two time series.

Among other things, serial correlation (and trends) can severely reduce the

effective number of degrees of freedom in a time series. Serial correlation can

be explored by estimating the sample autocorrelation coefficients

rk =
1
n

∑n
i=k+1(xi − x)(xi−k − x)
1
n

∑n
i=k+1(xi − x)2

(9.3)

where k = 0, 1, 2, . . . is the time lag. The zero lag coefficient r0 is always

equal to one by definition, and higher lag coefficients generally damp towards

small values with increasing lag. Only autocorrelation coefficients with lags

less than n/4 are sufficiently well-sampled to be worth investigation.

The autocorrelation coefficients can be plotted versus lag in a plot known

as a correlogram. The correlogram for the Darwin series is shown in Fig.

9.3. Note the fast drop off in the autocorrelation function (a.c.f.) for

time lags greater than 12 months. The lag-1 coefficient is often (but not

always) adequate for giving a rough indication of the amount of serial correl-

ation in a series. A rough estimate of the decorrelation time is given by

τ0 = −τ/ log(r1) and the effective number of degrees of freedom is given by
nτ/τ0 = −n log(r1). See von Storch and Zwiers (1999) for more details.

9.5 ARIMA(p,d,q) time series models

Auto-Regressive Integrated Moving Average (ARIMA) time series models form

a general class of linear models that are widely used in modelling and fore-

casting time series (Box and Jenkins, 1976). The ARIMA(p,d,q) model of the

time series {x1, x2, . . .} is defined as

Φp(B)∆
dxt = Θq(B)εt (9.4)
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Figure 9.3: Correlogram showing the autocorrelations as a function of lag for

the Darwin series

where B is the backward shift operator, Bxy = xy−1, ∆ = 1 − B is the

backward difference, and Φp and Θq are polynomials of order p and q, respect-

ively. ARIMA(p,d,q) models are the product of an autoregressive part AR(p)

Φp = 1 − φ1B − φ2B
2 − . . . − φpB

p, an integrating part I(d) = ∆−d, and a

moving average MA(q) part Θq = 1−θ1B−θ2B
2− . . .−θqBq. The parameters

in Φ and Θ are chosen so that the zeros of both polynomials lie outside the

unit circle in order to avoid generating unbounded processes. The difference

operator takes care of “unit root” (1−B) behaviour in the time series and for
d > 0.5 produces non-stationary behaviour (e.g. increasing variance for longer
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time series).

An example of an ARIMA model is provided by the ARIMA(1,0,0) first

order autoregressive model xy = φ1xy−1 + ay. This simple AR(1) model has

often been used as a simple “red noise” model for natural climate variability.

9.6 Further sources of information

A vast number of books and articles have been written on time series ana-

lysis. One of the clearest introductory guides is a little red book by Chatfield

(1984) which is well worth reading. A much larger book by Brockwell and

Davis (1991) goes into more details and is clearly illustrated. It also cov-

ers methods for multivariate time series analysis and forecasting. Bob Nau’s

“Statistical Forecasting” course at Duke University is a good online guide to

how to go about forecasting time series (www.duke.edu/ rnau/411home.htm).

Some humourous quotations about forecasting time series can be found at

www.met.rdg.ac.uk/cag/STATS/quotes.html.
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