Skip Navigation
Return to Layout View | Home | A-Z Directory | my UMaine | MaineStreet | Campus Map | Calendar
Follow UMaine on Twitter | Join UMaine on Facebook | Watch UMaine on YouTube | Admissions | Parents & Family | Emergency

The Maine Center for Research in STEM Education (RiSE Center)

Site Navigation:

December 2 Colloquium – Benedikt Harrer

Department of Physics & Astronomy
University of Maine


Benedikt Harrer
Ph.D. Candidate


A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students’ ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students’ ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students’ ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students’ ideas about energy.

To analyze the disciplinary substance in students’ ideas, a theoretical perspective was developed that extends Hammer et al.’s resources framework (Hammer et al., 2005. Resources, framing, and transfer. In Mestre, Ed., Transfer of Learning: Research and Perspectives, 89-120. Greenwich, CT: Information Age Publishing). This elaboration allows for the identification of disciplinary productive resources—i.e., appropriately activated declarative and procedural pieces of knowledge—in individual students’ utterances as well as in the interactions of multiple learners engaged in group learning activities.

Using this framework, original interview transcripts from one of the most influential studies of students’ ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story were identified and richly described.

Like energy, resources are manifested in various ways. The results of this study imply the necessity of appropriate disciplinary training for teachers that enables them to recognize and productively respond to disciplinary progenitors of the energy concept in students’ ideas.


3:00 pm

Thesis Defense – Daniel Bragdon

Maine Center for Research in STEM Education



MST Candidate
Daniel Bragdon
Thesis Advisor: Dr. Natasha Speer

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Teaching

May 2014

University Students’ Graph Interpretation and Comprehension Abilities

There is an increase in demand for individuals to be successful with graph interpretation. Society is currently lacking individuals who have majored in Science, Technology, Engineering and Mathematics (STEM), where most courses require linear graph comprehension as a prerequisite skill. The Common Core for State Standards Initiative for Mathematics, Next Generation Science Standards, and the Maine Revised Learning Results all characterize these as skills to be mastered before a student enters high school. Reading information from graphs and making inferences based on graphically-presented information is challenging for students and researchers have documented a variety of difficulties students have with graph comprehension. These difficulties include, among others, having knowledge of the graph context incorrectly influencing graph comprehension, viewing the graph as an iconic representation of the event and confusing slope and height. Being able to extrapolate and make predictions based on graphs is especially challenging for students. This research on graph comprehension has been primarily focused on students in elementary, middle, and high school and findings do not provide definitive answers as to why these difficulties are prevalent or why certain kinds of questions are so difficult. Despite the important role graph comprehension plays in undergraduate students’ learning of STEM content, little is known about the performance and thinking of this population of students. For the present study, college students in introductory mathematics and physics classes were given linear graph comprehension tasks. Data include both written responses and interviews designed to investigate student thinking were conducted with a subset of students. Findings indicate that students answered extrapolation questions incorrectly more often than other questions. On a written in class survey only 67.6% of students correctly answered an extrapolation question correctly, compared to a success rate of 86.7% on interpolation questions. Interview data analysis generated similar results with only 50% of students consistently answering extrapolation questions correctly. Student responses to interpolation questions can be used as a predictor of a student’s success on extrapolation questions. Implications for instruction are discussed along with directions for further research.



Monday, November 18, 2013
3:00 pm
Arthur St. John Hill Auditorium (165 Barrows Hall, ESRB)

November 4 – RiSE Center Colloquium

Maine Center for Research in STEM Education (RiSE Center)
Colloquia & Seminar Series


 Erika Allison
Project Director, MainePSP

Susan McKay
Professor of Physics, Director of the Maine Center for Research in STEM Education, and MainePSP Principal Investigator

The Maine Physical Sciences Partnership (MainePSP)
as a Generator of New Opportunities

During the last six months, faculty members from the Maine Center for Research in STEM Education Research (RiSE Center) have received over $8 million in grants.  This rapid growth in funding, spread among so many different RiSE faculty members, is linked directly to the MainePSP and, in many cases, to the new faculty members that this project has attracted and supported.  Those involved with the MainePSP have sought additional funding to build upon and sustain its work.  In this colloquium, Erika and Susan, with input from other RiSE Center faculty, will talk informally about these new research and programmatic opportunities and how they are important in sustaining the MainePSP’s work and building capacity for future projects involving UMaine and its partners.

Monday, November 4, 2013
3:00 pm
Arthur St. John Hill Auditorium, 165 Barrows Hall

Snacks will be provided at 2:45 in the Hill Auditorium Lobby.

Thesis Defense – Kalee Gwarjanski (Gurschick)

The Maine Center for Research in STEM Education

Oral Thesis Defense

Kalee Gwarjanski (Gurschick)
Advisor: Jonathan Shemwell

Friday, November 1, 2013
119 Barrows Hall
3:15 p.m.


             In science classrooms, as in the scientific community, knowledge should be shared, critiqued and advanced through argumentation.  Theory construction, in which claims are advanced beyond the empirical facts of an investigation, is essential to scientific argumentation.  The present study reports on how a group of 18 middle school teachers, using the Claim-Evidence-Reasoning (CER) framework (McNeill & Krajcik, 2011), developed their knowledge of theory construction in student argumentation during three phases of professional development activities.  The first phase illuminated teachers’ initial thinking about theory construction when using CER.  The second phase showed how teachers advanced their thinking about theory when they used a modified form of CER with increased support for theory construction.  Finally, the third phase explored teachers’ enactment of the modified form of CER during classroom scientific argumentation.  Data included surveys, analysis of artifacts and discussion when teachers constructed or critiqued arguments, analysis of student arguments and classroom observation.  With unmodified CER, the teachers did not explicitly attend to theory construction when constructing or critiquing arguments.  After using theory-enhanced CER, the teachers incorporated more theory into their own arguments, and they better understood and embraced the need for theory in students’ arguments.  Still, it was difficult for teachers to discern and make use of varying levels of theory in student arguments.  When using the modified CER in their classrooms, teachers supported students in constructing theory, but they tended to use heavy guidance, moving students quickly to high levels of generalization.  This result suggests that teachers viewed the process of constructing theory as a straightforward, non-iterative form of learning.  I concluded that, in general, teachers and their students would benefit from increased attention to theory within frameworks for supporting scientific argumentation, with particular attention to strategies to support students in the classroom.


Thesis Defense – Levi Lucy

The Maine Center for Research in STEM Education

Oral Thesis Defense

Levi Lucy
Advisor: Michael Wittmann

Friday, October 18, 2013
Hill Auditorium, ESRB, Barrows Hall
9:00 am

Correlations Between Teachers’ Knowledge of Students and Energy,
and Students’ Performance on Assessments

Research in energy education is an important area due to increased attention in recent standards. Within education research, looking at the different knowledge teachers have and use while teaching is also growing. This study was a pilot study in looking at how the different knowledge teachers have and use correlates with student performance, in an effort to help focus professional development and pre-service teacher programs.  A single survey was used to measure two different types of teacher knowledge: knowledge of common content, and knowledge of content and students, as well as student performance. The results show that where correlations between teachers knowledge and student performance could exist, they did. Teachers who gave more detailed responses in a free response question had students who performed better after instruction. Additionally, teachers who were able to predict and explain student misconceptions on the same questions, had students who performed better after instruction. Modifications are needed to the teacher assessment tools to investigate teachers knowledge of energy more deeply, and to engage teachers more in the tasks.

Natasha Speer – October 7 Colloquium

The Maine Center for Research in STEM Education
(RiSE Center)


Natasha M. Speer, Department of Mathematics & Statistics and Maine RiSE Center,
The University of Maine
Brian Frank, Department of Physics & Astronomy,
Middle Tennessee State University

Monday, October 7, 2013 at 3:00 pm
Arthur St. John Hill, ESRB, Barrows Hall

Developing knowledge for teaching velocity and acceleration

Over the past two decades education researchers have demonstrated that various types of knowledge, including pedagogical content knowledge, influence teachers’ instructional practices and their students’ learning opportunities. Findings suggest that by engaging in the work of teaching, teachers acquire knowledge of how students think, but we have not yet captured this learning as it occurs. We examined whether novice instructors can develop such knowledge via the activities of attending to student work and we identified mechanisms by which such knowledge development occurs. Data come from interviews with physics graduate teaching assistants as they examined and discussed students’ written work on problems involving rates of change. During those discussions, some instructors appear to develop new knowledge–either about students’ thinking or about the content—and others did not. We compare and contrast three cases representing a range of outcomes and identify factors that enabled some instructors to build new knowledge.



Natasha Speer is faculty member in the Department of Mathematics and Statistics at UMaine and is also a member of the Maine Research in STEM Education Center. The focus of her work is on the teaching and learning of college level mathematics. She researches the knowledge teachers use when teaching calculus. In particular, she examines the kinds of knowledge needed by teachers to facilitate mathematically productive classroom discussions. She also conducts research into how graduate students learn to teach and is involved in a variety of projects to develop and provide teaching-related professional development for novice teachers of college mathematics.

Brian Frank is an Assistant Professor of Physics and Astronomy at Middle Tennessee State University, where he conducts physics education research and prepares future physics teachers. His research focuses on knowledge development in pre-service physics teachers and student engagement with physics outside of the classroom.

Oral Thesis Defense – Nitisha Mitchell

The University of Maine and the
Maine Center for Research in STEM Education (RiSE Center)


MST Candidate: Nitisha Mitchell
Thesis Advisor: Leonard Kass

An Abstract of the Thesis Submitted
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Teaching

August, 2013

Student Understanding of Cardiovascular Physiology:
The relationship between pressure, flow, and resistance

An Introductory course in Anatomy and Physiology is an essential body of knowledge for students ranging from nursing to pre-medical training. Although, there are a range of professional careers that require students to take anatomy and physiology, not much research has been done to examine content issues students may have.  An investigation of students enrolled in an introductory anatomy and physiology course and an advanced physiology course, at the University of Maine, will be used to determine if this population of students understands cardiovascular phenomena, such as pressure/flow/resistance, or do they simply memorize terms associated with the physiology of the system?  A previous study done by Michael’s and his colleagues, in 2002, found that students have difficulty understanding the relationship between cardiac output, mean arterial pressure, and peripheral resistance.  With this information I developed ten-question survey where each question altered one or more variables in the equation: Cardiac Output = Mean arterial Pressure / Peripheral Resistance.  The present study was conducted in order to examine whether the findings from that previous research could be applied to physiology coursework delivered at the University of Maine.  Recommendations are made based-upon these findings.

Monday, July 1, 2013
1 pm
Arthur St. John Hill Auditorium
165 Barrows Hall

Post-Doctoral candidate seminar in Hill Auditorium, Thursday, June 13 at 11 a.m.

Eric Kuo
University of Maryland – College Park

candidate for the Physical Sciences Partnership Post-Doctoral Research Associate position

Thursday, June 13
Location: Hill Auditorium, 165 Barrows Hall
11 a.m. – 12:30 p.m.

“A role for conceptual understanding of equations in problem solving”

Research in expert problem-solving practice in physics has pointed out the important role of well-structured conceptual knowledge and initial conceptual analyses. Yet, these conceptualizations of problem-solving expertise do not attend to possible benefits of a conceptual understanding of the equations. In this talk, I will give an example of how use of symbolic forms (Sherin, 2001), cognitive elements that blend intuitive understanding with mathematical symbols, can support heuristic shortcut solutions that avoid explicit algorithmic computations and demonstrate problem-solving expertise.  I also argue that symbolic forms use is connected to epistemological stances – views towards what it means to learn and understand – that value coherence between everyday thinking and formal physics ideas.  Drawing from this study and one other, I suggest that this connection between mathematical reasoning and students’ epistemologies has implications for interdisciplinary education and for considering what factors support transfer of knowledge across disciplines.

Bio: Eric Kuo graduated Summa Cum Laude from Brandeis University with a B.S. in Physics and a B.A. in Mathematics in December of 2007. He went on to receive his M.S. and Ph.D. in Physics from the University of Maryland, College Park. In that time, he has been a researcher and a graduate research assistant, designing research agenda and co-designing a curriculum targeted at mathematical sense-making in physics, winning a grant for this research in 2010.

Faculty, students, and staff are invited to attend this presentation,
and to partake in a light luncheon.

Dr. Jeong-Yoon Jang, Post-doctoral candidate, June 3 at 11 am in DPC 107, UMaine

The Maine Physical Sciences Partnership

Dr. Jeong-Yoon Jang
University of Iowa
Post-Doctoral candidate

“Using Language as a Learning Tool to Promote Scientific Argument to Construct Science Knowledge”

Abstract: My research has been focused on how we can use language as a learning tool to improve students’ understanding of science and help them to learn about and use scientific argument to construct science knowledge. In this presentation, I will share my longitudinal project that is based on the question of how to promote students’ performance in standardized test, critical thinking skills, and conceptual understanding of science through language embedded in an argument-based inquiry approach. Focusing on both the broad level (quantitatively) and the fine grain level (qualitatively), this on-going longitudinal project have been tracking standardized science tests with respect to science, the development of students’ critical thinking skills, writing samples and students’ interview.

Short Bio:
Ph.D. (2007-2011), Dept. of Teaching & Learning, The University of Iowa
DISSERTATION: The Effect of Using a Structured Reading Framework on Middle School Students’ Conceptual Understanding within the Science Writing Heuristic Approach
Advisor: Dr. Brian Hand

Monday, June 3, 2013
11:00 am – 12:00 pm
Donald P. Corbett Building, Rm. 107

Thesis Oral Defense – Mary Jean Jones


MST Candidate

Mary Jean Jones
Thesis Advisor: Molly Schauffler
An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Teaching

August, 2013


           Proficiency in science learning involves mastering skills and language that are used in communicating about data. Working with data includes analyzing data tables, developing hypotheses, creating graphs, and explaining if and how those graphs support a hypothesis, all of which are part of data literacy. In this study, I examined the extent to which students (a) produced mechanically correct graphs, (b) referred to statistical vocabulary when discussing data and (c) interpreted those graphs by way of producing scientific explanations. After conducting preliminary classroom observations, I selected a survey that aligned with (a) the aspects of data literacy with which students seemed to have difficulties and (b) the current math and science education research. Students tend to perform better at interpreting graphs than constructing them and tend to be lacking in their abilities to produce sufficient evidence and reasoning for their claims. The survey contained two sets of data, each with a hypothesis. Participants were asked to create a graph helping them determine whether or not the data supported the hypothesis. Sixty-four ninth grade students participated in the survey. The majority of students in this study produced mechanically correct graphs. An additional twelve students participated in interviews. Findings from survey and interview data suggest that students can use statistical vocabulary such as mean and range when discussing data but lack the conceptual understanding of those terms to create accurate and adequate scientific explanations.

Friday, April 19, 2013
1:00 pm
117 Donald P. Corbett Building



Past Center News

Additional Links

Contact Information

The Maine Center for Research in STEM Education (RiSE Center)
5727 Estabrooke Hall
Orono, Maine 04469-5727
Phone: (207) 581-4672 | Fax: (207) 581-9555E-mail:
The University of Maine
Orono, Maine 04469