DOES CHRONIC N ADDITION INCREASE P LIMITATION IN NORTHEASTERN U.S. FOREST SOILS?

Marie-Cécile Gruselle, Ivan Fernandez, Cayce Salvino, Kevin Simon, Corianne Tatariw

University of Maine
University of Auckland
Objective

Investigate evidence for P limitation of N cycling in ambient and N-enriched forest ecosystems.

Hypothesis

Chronic N addition has shifted the N:P relationship towards P being a limiting resource in the N-enriched ecosystem.
Long-term N treatment: 24 years of \((\text{NH}_4)_2\text{SO}_4\) addition (rate 25.2 kg ha\(^{-1}\) yr\(^{-1}\)) in WB (ongoing).

P treatment: one-time application of NaH\(_2\)PO\(_4\)·H\(_2\)O (dose: 100 kg ha\(^{-1}\)) on June 1\(^{st}\), 2012, in both watersheds.
Response in Extractable P after P Addition During the 2012 Growing Season

\[dP = (+P \text{ plots}) - (\text{no P plots}) \]

- Early June
- Late October

Pooled Forest Type

<table>
<thead>
<tr>
<th>Day</th>
<th>EB</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 129</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference

Treated

EB WB EB WB EB WB EB WB EB WB
P-noP PO4 (mg/kg)
0
50
100
150
200

Day 1 Day 14 Day 34 Day 63 Day 129
Response in Extractable NH$_4^+$-N After P Addition During the 2012 Growing Season

$\text{dN} = (+P \text{ plots}) - (\text{no P plots})$
Phosphatase and N-Acetylglucosaminidase (NAG) Response Ratio in the O horizon by Watershed

Response ratio:
Enzyme activity in a P treated sub-plot divided by the mean enzyme activity of the control sub-plots by date and by watershed.
Conclusions

• P addition increased availability of P in the O horizon in both watersheds.
• Availability of P decreased during the growing season most probably due to biotic immobilization/uptake.
• Evidence of net response of N cycling to P treatment, especially in the treated watershed, but the relation between the role of mineralization, immobilization, and uptake remains to date undefined.
The authors wish to acknowledge the significant contributions of the undergraduate and graduate students, Cheryl Spencer, Jean McRae, Mike Handley, and Madeleine Mineau.

This research is funded through a National Science Foundation grant (DEB 1056692) with support from the NSF LTREB program (DEB 1119708) and the University of Maine.