ECOSYSTEM RESPONSES TO A UNIQUE WHOLE-WATERSHED ISOTOPIC TRACER EXPERIMENT: WHERE DID THE 15N GO?

Marie-Cécile Gruselle, Ivan J. Fernandez
Background

The Bear Brook Watershed in Maine

15N natural abundances

15N tracer enrichments

Conclusions
Most processes in the N cycle discriminate against 15N and favor 14N.

Products are depleted and substrates enriched in 15N.
Evidence of accelerated N cycling in West Bear:

increased net nitrification rates, NO$_3^-$ in soil solution and in stream water, and tree foliar N concentrations.

Uncomplete understanding of the mechanisms involved in altered N cycling.

Stable isotopes are useful in ecosystem ecology at two levels:

Natural abundance 15N, used as an indicator of net change in forest N cycling.

15N enrichment, used to trace N transformations in ecosystems.

N+S additions as ammonium sulfate at WB (ongoing)
Rate: 28.8 kg S and 25.2 kg N ha$^{-1}$ yr$^{-1}$
JUNE 2012 15N PULSE-CHASE EXPERIMENT

$^{(15}\text{NH}_4)_2\text{SO}_4$ (98 atom-%)
(load: 0.402 kg ha$^{-1}$)
TWO-MONTH 15N TRACER ENRICHMENTS

Range of natural abundances

- Foliage
- Understory
- Loose Litter
- COF
- Fine O horizon
- B horizon

Ecosystem component δ^{15}N (‰, ±S.E) in August 2012

- WB (treated)
- EB (reference)
CHASE ^{15}N TRACER ENRICHMENTS

Difference (treated West Bear $\delta^{15}\text{N}$ – reference East Bear $\delta^{15}\text{N}$)

Coarse organic fraction (COF) Fine organic fraction

May 2012 Sept. 2013

May 2012 Sept. 2013

Chase sampling time after tracer application (days)
CONCLUSIONS

- The **natural abundance** results show an ecosystem shift towards accelerated N cycling (higher $\delta^{15}N$) in West Bear.
- The **tracer pulse-chase** short-term results show highest enrichment of the understory vegetation followed by the forest floor components.
- The fundamental understanding of the mechanisms at play in altered ecosystem N cycling will come with our multi-year chase enrichment results.
This research was funded by the National Science Foundation (DEB 1056692 and 0841571), the National Science Foundation Long Term Research in Environmental Biology (DEB 1119708), and the University of Maine.

Thank you to Cheryl Spencer, Mike Handley, Jean McRae, Steve Norton, Tsutomu Ohno, Kevin Simon and the undergraduate and graduate students of the Forest Soils Program of the University of Maine for their contributions.